
Appendix II
Analyzing ecological memory with Random Forest

Blas M. Benito

Contents
1 Statistical properties of simulated pollen curves 2

1.1 Temporal autocorrelation . 6
1.2 Multicollinearity . 6
1.3 Non-linearity . 8

2 The logics behind Random Forest 9
2.1 The trees . 9
2.2 The forest . 11
2.3 Variable importance . 15
2.4 Testing the significance of variable importance scores 18

3 Analyzing ecological memory with Random Forest 21

Summary

This document describes in detail how we analyzed ecological memory patterns in simulated pollen
curves with Random Forest. First, we describe the complex statistical properties of the virtual pollen
curves produced by the simulation explained in Appendix I and how these may impact ecological
memory analyses; second we explain how Random Forest works, from its basic components (regres-
sion trees) to the way in which it computes variable importance; Third, we explain how we applied
Random Forest to analyze ecological memory patterns on the simulation outputs.

IMPORTANT: An Rmarkdown version of this document can be found at: https://github.com/
BlasBenito/EcologicalMemory.

1

https://github.com/BlasBenito/EcologicalMemory
https://github.com/BlasBenito/EcologicalMemory

1 Statistical properties of simulated pollen curves

The simulation explained in Appendix I generates synthetic pollen curves from virtual taxa with
different life-traits and niche features as a response to changes in the values of an environmental
driver. The driver values are transformed into suitability values by a Gaussian function representing
the environmental niche of the given taxa. Figure 1 shows a sample of pollen abundances, suitability,
and driver values generated by the simulation for a virtual taxa with 1000 years life-span, and a wide
environmental niche centered on the average values of the driver.

Pollen

Suitability

Driver

0 2500 5000 7500 10000

25
50
75

100

0.25
0.50
0.75
1.00

0
1000
2000
3000
4000
5000

Time (years)

A

Driver Suitability

25 50 75 100 0.25 0.50 0.75 1.00
0

1000

2000

3000

4000

5000

P
ol

le
n

2500 5000 7500
Time (years)

B

Figure 1: Example data from a virtual taxa represented with 1000 years life-span, and a centered and
wide environmental niche. Time series are shown in panel A. Panel B shows relationships between
variables.

2

Our primary target is to fit a model of the form shown in Equation 1 on the data shown in Table 1:

Equation 1 (simplified from the one in the paper):

pt = pt−1 + ... + pt−n + dt + dt−1 + ... + dt−n

Where:

• p is Pollen.
• d is Driver.
• t is the time of any given value of the response p.
• t − 1 is the lag 1.
• pt−1 + ... + pt−n represents the endogenous component of ecological memory.
• dt−1 + ... + dt−n represents the exogenous component of ecological memory.
• dt represents the concurrent effect of the driver over the response.

To organize the data in Figure 1 as required to fit Equation 1 it is necessary to define a set of time
lags. The function prepareLaggedData shown below organizes the data in such a format. It requires
to identify what columns in the original data should act as response, drivers, and time, and what lags
are to be computed.

#generating vector of lags (same as in paper)

lags <- seq(20, 240, by = 20)

#organizing data in lags

sim.lags <- prepareLaggedData(

input.data = sim,

response = ”Pollen”,

drivers = c(”Driver”, ”Suitability”),

time = ”Time”,

oldest.sample = ”first”,

lags = lags,

scale = FALSE

)

This function returns the data shown in Table 1. This kind of data structure is known as lagged data
or time delayed data. Note that the function can use a scale argument (set to FALSE above) to stan-
dardize the data before generating the lags. Random Forest does not generally require standardization
to fit accurate models of the data, but computing variable importance with variables having large dif-

3

ferences in range (i.e. [1, 10] vs. [1, 10000]) might yield biased results, making standardization a
recommended step in data preparation. In this appendix all data are shown without any standardiza-
tion to let the reader to keep track of the different variables across analyses and have a sense of their
magnitude, but note that all analyses presented in the paper were based on standardized data.

4

Table 1: First rows of the lagged data. Numbers represent lag in years, letter p represents pollen, and letter d represents driver. Column p0
(in bold) indicates the response variable

p0 p20 p40 p60 p80 p100 p120 p140 p160 p180 p200 p220 p240 d0 d20 d40 d60 d80 d100 d120 d140 d160 d180 d200 d220 d240

1793.2 4215.8 4616.3 2495.0 1874.1 1999.0 1453.7 829.5 652.6 1235.0 1148.1 826.7 767.2 71.4 66.1 69.3 72.4 75.5 77.3 81.1 86.9 87.3 81.6 83.5 86.9 86.1
195.9 1793.2 4215.8 4616.3 2495.0 1874.1 1999.0 1453.7 829.5 652.6 1235.0 1148.1 826.7 81.7 71.4 66.1 69.3 72.4 75.5 77.3 81.1 86.9 87.3 81.6 83.5 86.9
252.5 195.9 1793.2 4215.8 4616.3 2495.0 1874.1 1999.0 1453.7 829.5 652.6 1235.0 1148.1 81.3 81.7 71.4 66.1 69.3 72.4 75.5 77.3 81.1 86.9 87.3 81.6 83.5
179.6 252.5 195.9 1793.2 4215.8 4616.3 2495.0 1874.1 1999.0 1453.7 829.5 652.6 1235.0 84.4 81.3 81.7 71.4 66.1 69.3 72.4 75.5 77.3 81.1 86.9 87.3 81.6
500.2 179.6 252.5 195.9 1793.2 4215.8 4616.3 2495.0 1874.1 1999.0 1453.7 829.5 652.6 82.0 84.4 81.3 81.7 71.4 66.1 69.3 72.4 75.5 77.3 81.1 86.9 87.3

2444.5 500.2 179.6 252.5 195.9 1793.2 4215.8 4616.3 2495.0 1874.1 1999.0 1453.7 829.5 76.1 82.0 84.4 81.3 81.7 71.4 66.1 69.3 72.4 75.5 77.3 81.1 86.9
1793.3 2444.5 500.2 179.6 252.5 195.9 1793.2 4215.8 4616.3 2495.0 1874.1 1999.0 1453.7 77.9 76.1 82.0 84.4 81.3 81.7 71.4 66.1 69.3 72.4 75.5 77.3 81.1
2133.8 1793.3 2444.5 500.2 179.6 252.5 195.9 1793.2 4215.8 4616.3 2495.0 1874.1 1999.0 75.8 77.9 76.1 82.0 84.4 81.3 81.7 71.4 66.1 69.3 72.4 75.5 77.3
354.9 2133.8 1793.3 2444.5 500.2 179.6 252.5 195.9 1793.2 4215.8 4616.3 2495.0 1874.1 84.3 75.8 77.9 76.1 82.0 84.4 81.3 81.7 71.4 66.1 69.3 72.4 75.5
575.7 354.9 2133.8 1793.3 2444.5 500.2 179.6 252.5 195.9 1793.2 4215.8 4616.3 2495.0 84.3 84.3 75.8 77.9 76.1 82.0 84.4 81.3 81.7 71.4 66.1 69.3 72.4

1127.2 575.7 354.9 2133.8 1793.3 2444.5 500.2 179.6 252.5 195.9 1793.2 4215.8 4616.3 80.1 84.3 84.3 75.8 77.9 76.1 82.0 84.4 81.3 81.7 71.4 66.1 69.3
1621.5 1127.2 575.7 354.9 2133.8 1793.3 2444.5 500.2 179.6 252.5 195.9 1793.2 4215.8 76.1 80.1 84.3 84.3 75.8 77.9 76.1 82.0 84.4 81.3 81.7 71.4 66.1
2964.9 1621.5 1127.2 575.7 354.9 2133.8 1793.3 2444.5 500.2 179.6 252.5 195.9 1793.2 70.5 76.1 80.1 84.3 84.3 75.8 77.9 76.1 82.0 84.4 81.3 81.7 71.4
3086.8 2964.9 1621.5 1127.2 575.7 354.9 2133.8 1793.3 2444.5 500.2 179.6 252.5 195.9 66.5 70.5 76.1 80.1 84.3 84.3 75.8 77.9 76.1 82.0 84.4 81.3 81.7
2845.8 3086.8 2964.9 1621.5 1127.2 575.7 354.9 2133.8 1793.3 2444.5 500.2 179.6 252.5 63.3 66.5 70.5 76.1 80.1 84.3 84.3 75.8 77.9 76.1 82.0 84.4 81.3

3002.0 2845.8 3086.8 2964.9 1621.5 1127.2 575.7 354.9 2133.8 1793.3 2444.5 500.2 179.6 59.1 63.3 66.5 70.5 76.1 80.1 84.3 84.3 75.8 77.9 76.1 82.0 84.4
2297.9 3002.0 2845.8 3086.8 2964.9 1621.5 1127.2 575.7 354.9 2133.8 1793.3 2444.5 500.2 54.7 59.1 63.3 66.5 70.5 76.1 80.1 84.3 84.3 75.8 77.9 76.1 82.0
1962.1 2297.9 3002.0 2845.8 3086.8 2964.9 1621.5 1127.2 575.7 354.9 2133.8 1793.3 2444.5 55.5 54.7 59.1 63.3 66.5 70.5 76.1 80.1 84.3 84.3 75.8 77.9 76.1
1618.7 1962.1 2297.9 3002.0 2845.8 3086.8 2964.9 1621.5 1127.2 575.7 354.9 2133.8 1793.3 58.2 55.5 54.7 59.1 63.3 66.5 70.5 76.1 80.1 84.3 84.3 75.8 77.9
1882.9 1618.7 1962.1 2297.9 3002.0 2845.8 3086.8 2964.9 1621.5 1127.2 575.7 354.9 2133.8 57.7 58.2 55.5 54.7 59.1 63.3 66.5 70.5 76.1 80.1 84.3 84.3 75.8

1979.6 1882.9 1618.7 1962.1 2297.9 3002.0 2845.8 3086.8 2964.9 1621.5 1127.2 575.7 354.9 59.2 57.7 58.2 55.5 54.7 59.1 63.3 66.5 70.5 76.1 80.1 84.3 84.3
1671.4 1979.6 1882.9 1618.7 1962.1 2297.9 3002.0 2845.8 3086.8 2964.9 1621.5 1127.2 575.7 62.2 59.2 57.7 58.2 55.5 54.7 59.1 63.3 66.5 70.5 76.1 80.1 84.3
2072.1 1671.4 1979.6 1882.9 1618.7 1962.1 2297.9 3002.0 2845.8 3086.8 2964.9 1621.5 1127.2 61.2 62.2 59.2 57.7 58.2 55.5 54.7 59.1 63.3 66.5 70.5 76.1 80.1
2146.4 2072.1 1671.4 1979.6 1882.9 1618.7 1962.1 2297.9 3002.0 2845.8 3086.8 2964.9 1621.5 60.7 61.2 62.2 59.2 57.7 58.2 55.5 54.7 59.1 63.3 66.5 70.5 76.1
1654.7 2146.4 2072.1 1671.4 1979.6 1882.9 1618.7 1962.1 2297.9 3002.0 2845.8 3086.8 2964.9 62.1 60.7 61.2 62.2 59.2 57.7 58.2 55.5 54.7 59.1 63.3 66.5 70.5

5

The data in Table 1 are organized to fit the model described by Equation 1, but to select a proper
method to fit the model, three main features of the data have to be considered first: temporal auto-
correlation, multicollinearity, and non-linearity.

1.1 Temporal autocorrelation

Temporal autocorrelation (also serial correlation) refers to the relationship between successive values
of the same variable present in most time series. Temporal autocorrelation generates autocorrelated
residuals in regression analysis, violating the assumption of “independence of errors” required to
correctly interpret regression coefficients. Several methods can be used to address temporal auto-
correlation in regression analysis, such as increasing time intervals between consecutive samples, or
incorporating an auto-regressive structure into the model.

Every variable used in our study presents this characteristic. The driver was generated ex profeso with
a temporal autocorrelation significant for periods of 600 years. The suitability produced by the niche
function of the virtual taxa based on the values of the driver also presents temporal autocorrelation,
but generally lower than the one of the driver. Finally, the response, since it is the result of a dynamic
model in which every data-point depends on the previous one, also shows a temporal structure, which
varies depending on the taxa’s traits, as so does the suitability (see Figure 2).

0.0

0.4

0.8

0 50 100 150 200

P
ea

rs
on

 c
or

re
la

tio
n

Driver

0 50 100 150 200

Lag (years)

Suitability

0 50 100 150 200

Response

Figure 2: Temporal autocorrelation of the variables in the example data.

1.2 Multicollinearity

Multicollinearity occurs when there is a high correlation between predictors in a model definition. It
increases the standard error of the coefficients, meaning that their estimates for important predictors
can become statistically insignificant, wildly impacting model interpretation.

6

Adding consecutive time-lags of the same variables to the data, as required by the model expressed
in Equation 1 largely increases multicollinearity. Furthermore, this effect is amplified by the data
sampling at increasing depth intervals and posterior re-interpolation to 20 years resolution, as shown
in Table 3.

Table 2: Variance inflation factor (VIF) of the predictors across datasets available for a virtual taxa
with 1000 years life-span, and wide and central niche. VIF values higher than 5 indicate that the given
predictor is a linear combination of other predictors.

Annual 1cm 2cm 6cm 10cm

p20 1.9 3.2 4.0 9.9 18.4
p40 2.7 6.8 9.0 33.4 78.5
p60 2.7 6.9 8.9 42.5 108.7
p80 2.7 6.8 8.6 44.7 114.5
p100 2.7 6.9 8.6 45.5 118.3

p120 2.7 6.9 8.8 44.8 123.0
p140 2.7 6.9 8.9 44.7 124.4
p160 2.7 7.0 8.7 45.1 122.1
p180 2.8 7.0 8.8 44.1 118.5
p200 2.8 7.0 8.9 41.5 108.4

p220 2.8 6.8 8.6 32.2 73.4
p240 1.9 3.3 3.8 9.5 16.8
d0 20.7 50.6 43.4 96.7 151.9
d20 43.8 154.5 132.0 348.8 655.4
d40 43.4 163.9 143.7 410.6 939.2

d60 43.1 163.5 144.1 423.7 1144.6
d80 43.2 164.0 145.7 430.0 1244.8
d100 43.2 164.4 146.3 427.1 1273.6
d120 43.2 165.6 146.2 420.8 1271.7
d140 43.7 164.7 146.1 421.2 1290.4

d160 43.9 161.8 145.7 418.5 1302.0
d180 44.0 160.2 144.5 413.0 1320.2
d200 45.0 160.9 143.2 401.4 1256.8
d220 46.0 154.9 135.1 341.7 867.6
d240 21.5 51.7 45.2 96.2 180.9

7

1.3 Non-linearity

The simulation model described in Appendix I has the ability to produce pollen abundances vari-
ably decoupled from environmental conditions depending on the life-traits and niche features of the
virtual taxa considered. This model property increases the chance of finding non-linear relationships
between time-lagged predictors and the response (see Figure 3), hindering the detection of meaning-
ful relationships with methods not able to account for non-nonlinearity.

Suitability_20 Suitability_120 Suitability_220

Driver_20 Driver_120 Driver_220

Pollen_20 Pollen_120 Pollen_220

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

25 50 75 100 25 50 75 100 25 50 75 100

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

value

R
es

po
ns

e
(P

ol
le

n_
0)

2500 5000 7500
Time (years)

Figure 3: Linear and non-linear relationships arising from lagged data in the annual dataset.

8

After considering carefully the properties of our data, and how they changed across datasets, and after
testing several methods to evaluate the importance of lagged variables in predicting pollen output, we
decided to use Random Forest to evaluate ecological memory patterns arising from our simulation.
The following section of the documents explains in detail how Random Forest works, and why it is a
suitable tool to analyze ecological memory in our data.

2 The logics behind Random Forest

2.1 The trees

The fundamental units of a Random Forest model are regression trees. A regression tree grows
through binary recursive partition. Considering a response variable, and a set of predictive variables
(also named features in the machine learning language), the following steps grow a regression tree:

• For each variable, the point in their ranges that optimizes the separation (partition) of the re-
sponse in two groups of cases is searched for. The selected point minimizes the sum of the
squared deviations from the mean in the two separated partitions.

• The variable with the lower sum of the squared deviations from the means is selected as the root
node of the tree, and the data are separated in two partitions, one on each side of the split value
of the given variable.

• The steps above are recursively applied to each partition to create new partitions, until all cases
are in partitions that can be no longer separated in smaller partitions because they are too ho-
mogeneous, or because they have reached a minimum sample size. These final partitions are
named terminal nodes.

The code below shows how to fit a recursive partition tree with the rpart library on the first lag (20
years) of pollen and driver of the data shown in Figure 2.

#fitting model (only two predictors)

rpart.model <- rpart(formula = Response_0 ~ Response_20 + Driver_20,

data = sim.lags,

control = rpart.control(minbucket = 5))

#plotting tree

rpart.plot(rpart.model, type = 0, box.palette = viridis(10, alpha = 0.2))

9

Response_20 < 1562

Response_20 < 879 Response_20 < 2397

Response_20 < 1867 Response_20 < 2845

Driver_20 >= 32

773
11%

1396
26%

1722
16%

2011
32%

2353
8%

3127
1%

3098
5%

yes no

Figure 4: Recursive partition tree (also regression tree) of pollen abundance (noted as Response_0
in the model) as a function of Response_20 (antecedent pollen abundance at lag 20) and Driver_20
(antecedent driver values at lag 20). Numbers in branches represent split values, while numbers in
terminal nodes represent the predicted average for that particular node. Percentages represent the
relative number of cases included in each terminal node.

0

1000

2000

3000

4000

5000

25 50 75 100

Driver_20

R
es

po
ns

e_
20

Observed
1000
2000
3000
4000

Predicted
773
1396
1722
2011
2353
3098
3127

Figure 5: Recursive partition surface generated by the model fitted above. Dots represent observed
data, and colours identify partitions shown in the recursive partition tree. Note that this partition
surface can be generalized to any number of predictors/dimensions.

Figure 4 shows the recursive partition tree fitted on Pollen_0 as a function of the first lag of pollen
(Pollen_20) and the driver (Driver_20), while Figure 5 shows the partitions in the space of both

10

variables. As shown in both figures, the recursive partition tree is, in essence, separating the cases into
regions in which given combinations of the predictors lead to certain average values of the response.
The tree also shows the hierarchy in importance between both predictors, with Pollen_20 defining all
splits but one. Only when Pollen_20 is higher than 3772, the variable Driver_20 becomes important,
indicating that maximum abundances are only reached after that point, and only if Driver_20 has
a value lower than 71. This is how partial interactions among predictors are expressed in recursive
partition trees.

The tree has grown until data in the terminal nodes cannot be separated further into additional parti-
tions, or has reached the minimum number of cases defined by the variableminbucket. The minimum
amount of cases in a terminal node defines the overall resolution of the model. Smaller numbers lead
to a higher amount of terminal nodes, and therefore to more partitions in the data space. This can be
confirmed by changing the minbucket value in the code above, and assessing subsequent changes in
tree structure and number of partitions.

As a drawback, the splits of a recursive partition trees are highly sensitive to small changes in the
input data, specially when sample size is small. This instability has led to the development of more
sophisticated methods to fit recursive partition trees, such as conditional inference trees (see function
ctree in library partykit), or ensemble methods such as Random Forest.

2.2 The forest

A Random Forest model is composed by a large number of individual regression trees (500 or more)
generated on random subsamples of the predictors and the cases. For a random set of cases, each tree
is fitted as follows:

• A random subset of predictors of size mtry is selected. The default mtry is the rounded-up
squared root of the total number of predictors, but the user can modify it.

• The predictor from the random subset that better separates the data into two partitions is selected
as root node, an the data are separated in two partitions, one at each side of the split value.

• On each partition, a new random subset of predictors of size mtry is selected (and this is the
main difference between a recursive partition tree and a Random Forest tree, the former uses all
variables on each split), and again the predictor that better separates the partition into two new
partitions is selected, and new partitions are defined.

• The tree is grown until minimum node size is reached in all terminal nodes, or no further parti-
tions can be defined.

• The tree is evaluated by computing its mean squared error (mse) on the ~37% of the data not
used to train it (named out-of-bag data).

11

• For each variable in the tree the algorithm performs a permutation test as follows:
– The column with the given variable is randomly permuted.
– A new tree is fitted with the permuted variable.
– Mean squared error is computed again on the out-of-bag data.
– Difference in mse between the tree fitted with the original variable and the tree fitted with
the permuted one is computed and stored.

Once all trees have been fitted, for every given case, the prediction is computed as the mode of the
individual predictions of every tree (but not the ones fitted with permuted variables). The impor-
tance of every variable is computed as the average of the differences in mean squared error between
trees computed with the variable and trees computed with the permuted variable, normalized by the
standard deviation of the differences.

Random Forest does not require any assumptions to be fulfilled by the data or the model outcomes,
and therefore it can be applied to a wide range of analytic cases where data are non-linear. As a
drawback, the randomness in the selection of cases and predictors to fit individual regression trees
turns it into a non-deterministic algorithm, and therefore, fine-scale variations in the outcomes are to
be expected between different runs with the same data.

To fit Random Forest models on the simulated data we selected the package ranger over the more
traditional randomForest because the former allows multithread computing (uses all available cores
in a computer while fitting the forest), achieving a better performance for large datasets than the later.
The code below shows how to use ranger to fit a Random Forest model.
#getting columns containing ”Response” or ”Driver”

sim.lags.rf <- sim.lags[, grepl(”Driver|Response”, colnames(sim.lags))]

#fitting a Random Forest model

rf.model <- ranger(

data = sim.lags.rf,

dependent.variable.name = ”Response_0”,

num.trees = 500,

min.node.size = 5,

mtry = 2,

importance = ”permutation”,

scale.permutation.importance = TRUE)

#model summary

print(rf.model)

12

#R-squared (computed on out-of-bag data)

rf.model$r.squared

#variable importance

rf.model$variable.importance

#obtain case predictions

rf.model$predictions

#getting information of the first tree

treeInfo(rf.model, tree=1)

The function ranger has the following key arguments:

• data: dataframe with the variables to be included in the model.
• dependent.variable.name: model definition can be done in two ways, either through a formula,
or through the argument dependent.variable.name, that names the response variable, and uses
the remaining variables in the dataset as predictors, which forces us to be careful with what
variables are available in the dataset.

• num.trees: controls number of trees generated (the default value is 500).
• mtry: controls the number of variables randomly selected to fit each tree. In the code above this
argument is set to 2, indicating that the model only considers interactions among two predictors
only on each tree. This allows to compute variable importance as independently as possible from
other variables.

• min.node.size: minimum number of cases in a terminal node, which determines the overall
resolution of the model.

• importance: when set to “permutation” it triggers the computation of variable importance
through permutation tests.

• scale.permutation.importance: scales importance values computed through the permutation
tests by the overall standard error.

The relationship between the response variable and the predictors can be examined through partial
dependence plots (see Figure 6). A partial dependence plot is a simplified view of the inner structure
of the model. Since regression trees consider interactions among variables, the prediction for any
given case depends on the values of all predictors considered at the same time. Since it is not possible
to generate such a representation in 2D or 3D, partial dependence plots set all variables not represented
in the plot to their respectivemeans. Therefore, partial dependence plots must be interpreted as simple
approximations to the true shape of the model surface.

13

1600

1800

2000

0 1000 2000 3000 4000 5000

Response_20

R
es

po
ns

e_
0

A

25 50 75 100

Driver_20

B

25 50 75 100

Driver_0

C

Figure 6: Partial dependence plots of the lags 20, of Pollen (A) and Driver (B), and the concurrent
effect (Driver_0, panel C).

Interactions among predictors can be represented in the same way done before for recursive partition
trees (see Figure 7). Again, all variables not represented in the plot are set to their average to generate
the prediction.

0

1000

2000

3000

4000

5000

25 50 75 100

Driver_20

R
es

po
ns

e_
20

1600

1800

2000

Predicted

Observed
1000
2000
3000
4000

Figure 7: Interaction between Pollen_20 (first lag of the endogenous memory) and Suitability_0 (con-
current effect).

14

2.3 Variable importance

Random forest variable importance computation works under the assumption that if a given variable
is not important, then permuting its values does not degrade the prediction accuracy. Variable im-
portance scores are extracted with the importance function (see code below and Table 4), and are
interpreted as “how much model fit degrades when the given variable is removed from the model”.
importance(rf.model)

Values shown in Table 4 are the result of one particular Random Forest run. For variables with
small differences in importance, the ranking shown in the table could change in a different model run.
This situation can be addressed by running the model several times, and computing the average and
confidence intervals of the importance scores of each predictor across runs. This is shown in the code
below (see output in Figure 8).
#number of repetitions

repetitions <- 30

#list to save importance results

importance.list <- list()

#repetitions

for(i in 1:repetitions){

#fitting a Random Forest model

rf.model <- ranger(

data = sim.lags.rf,

dependent.variable.name = ”Response_0”,

mtry = 2,

importance = ”permutation”,

scale.permutation.importance = TRUE)

#extracting importance

importance.list[[i]] <- data.frame(t(importance(rf.model)))

}

#into a single dataframe

importance.df <- do.call(”rbind”, importance.list)

15

Table 3: Importance scores of a Random Forest model ordered from higher to lower importance.
Importance scores are interpreted as increase in model error when the given variable is removed from
the model.

Variable Importance

Response_20 24.34
Driver_0 20.79
Driver_20 15.84
Response_40 15.21
Driver_40 13.57

Driver_80 12.98
Driver_60 12.81
Driver_120 11.35
Driver_240 10.82
Driver_220 10.71

Driver_140 10.37
Driver_100 10.36
Response_60 10.28
Driver_160 10.14
Driver_200 10.07

Driver_180 9.23
Response_160 7.93
Response_240 7.87
Response_80 7.67
Response_220 7.62

Response_100 7.19
Response_140 7.13
Response_200 7.10
Response_180 7.06
Response_120 7.01

16

Response_20

Response_40

Response_60

Response_80

Response_100

Response_120

Response_140

Response_160

Response_180

Response_200

Response_220

Response_240

Driver_0

Driver_20

Driver_40

Driver_60

Driver_80

Driver_100

Driver_120

Driver_140

Driver_160

Driver_180

Driver_200

Driver_220

Driver_240

5 10 15 20 25

Importance (% increment in mse)

Figure 8: Importance scores of predictors in Random Forest model after 100 repetitions. Note that
Response_X predictor refers to the endogenous memory, and Driver_X predictors from lag 20 refer
to exogenous memory. Driver_0 represents the concurrent effect.

17

2.4 Testing the significance of variable importance scores

Random Forest does not provide any tool to assess the significance of these importance scores, and
it is therefore impossible to know at what point they become irrelevant. A simple solution is to add a
random variable as an additional predictor to themodel and compute its importance. If the importance
of other variables is equal or lower than the importance of the random variable, it can be assumed
that these variables do not have a meaningful effect on the response, and can therefore be considered
irrelevant.

Two types of random variables can be considered to be used as benchmarks to test variable importance
scores provided by Random Forest: white noise (without any temporal structure), and random walk
with temporal structure (as explained in Appendix I). In both cases the idea is to generate a null
model providing a baseline to assess to what extent importance scores are higher than what is expected
by chance. To test the suitability of both methods, the code below generates 100 Random Forest
models, each one with two additional random variables: random.white representing white noise, and
random.autocor representing an autocorrelated randomwalk. The length of the autocorrelation period
of random.autocor is changed for every iteration.

#number of repetitions

repetitions <- 100

#list to save importance results

importance.list <- list()

#rows of the input dataset

n.rows <- nrow(sim.lags.rf)

#repetitions

for(i in 1:repetitions){

#adding/replacing random.white column

sim.lags.rf$random.white <- rnorm(n.rows)

#adding/replacing random.autocor column

#different filter length on each run = different temporal structure

sim.lags.rf$random.autocor <- as.vector(filter(rnorm(n.rows),

filter = rep(1, sample(1:floor(n.rows/4), 1)),

method = ”convolution”,

18

circular = TRUE))

#fitting a Random Forest model

rf.model <- ranger(

data = sim.lags.rf,

dependent.variable.name = ”Response_0”,

mtry = 2,

importance = ”permutation”,

scale.permutation.importance = TRUE)

#extracting importance

importance.list[[i]] <- data.frame(t(importance(rf.model)))

}

#into a single dataframe

importance.df <- do.call(”rbind”, importance.list)

19

Response_20

Response_40

Response_60

Response_80

Response_100

Response_120

Response_140

Response_160

Response_180

Response_200

Response_220

Response_240

Driver_0

Driver_20

Driver_40

Driver_60

Driver_80

Driver_100

Driver_120

Driver_140

Driver_160

Driver_180

Driver_200

Driver_220

Driver_240

random.white

random.autocor

0 5 10 15 20 25

Importance (% increment in mse)

Figure 9: Importance of predictors in relation to the importance of a white noise variable (gray), and
a temporally structured random variable (yellow). Solid lines represent the medians of the random
variables, while dashed lines represent their maximum importance across 100 model runs.

The boxplot in Figure 9 shows the relative importance of the random variables, and suggests that
the variable representing random noise is not useful to identify importance scores arising by chance.

20

On the other hand, the variable based on autocorrelated random walks (marked in yellow in the plot)
tells a different story. Importance values below the yellow solid line have a probability higher than
0.5 of being the result of chance. Importance values between the yellow solid and dashed lines have
probabilities between 0.5 and 0 and are the result of a random association between a predictor and the
response, while beyond the dashed line the results can be confidently defined as non-random. Note
that Figure 8, when compared with Figure 7, also shows that adding random variables to a Random
Forest model does not change the importance scores of other variables in the model.

3 Analyzing ecological memory with Random Forest

So far we have explained how to organize the simulated pollen curves in lags, and how to fit Random
Forest models on the lagged data to evaluate variable importance. However, further steps are required
to quantify ecological memory patterns:

• Extract and aggregate variable importance scores, and organize them in ecological memory
components (endogenous, exogenous, and concurrent).

• Plot the pattern to facilitate interpretation.
• Extract ecological memory features from these components, namely memory strength (maxi-
mum difference in relative importance between each component (endogenous, exogenous, and
concurrent) and the median of the random component), memory length (proportion of lags
over which the importance of a memory component is above the median of the random compo-
nent), and dominance (proportion of the lags above the median of the random term over which
a memory component has a higher importance than the other component).

The function computeMemory fits as many RandomForest models as indicated by the argument repe-
titions on a lagged dataset, and on each iteration includes a random variable in the model. The function
plotMemory gets the output of computeMemory and plots it, while the function extractMemoryFea-
tures computes the features of each ecological memory component. The simplified workflow is shown
below.
#computes ecological memory pattern

memory.pattern <- computeMemory(lagged.data = sim.lags,

drivers = ”Driver”,

random.mode=”autocorrelated”,

repetitions=30,

response=”Response”)

#computing memory features

21

memory.features <- extractMemoryFeatures(memory.pattern = memory.pattern,

exogenous.component = ”Driver”,

endogenous.component = ”Response”)

#plotting the ecological memory pattern

plotMemory(memory.pattern)

0

10

20

30

40

20 40 60 80 100 120 140 160 180 200 220 2400

Lag (years)

R
el

at
iv

e
im

po
rt

an
ce

Variable
Response
Driver
Random

Ecological memory pattern

Figure 10: Ecological memory pattern of taxon 6, 1cm dataset. The variable Response represents
the endogenous memory, the first lag of the variable Suitability represents the concurrent effect of
environmental conditions, and the rest of the lags of Suitability represent the exogenous memory
component. Relative importance values below the yellow line are considered non-significant.

Table 4: Features of the ecological memory pattern shown in Figure 10 by using the extractMemo-
ryFeatures function.

strength.endogenous 27.88
strength.exogenous 14.16
strength.concurrent 23.30
length.endogenous 0.33
length.exogenous 1.00

dominance.endogenous 0.17
dominance.exogenous 0.83

In order to analyze the ecological memory patterns of 16 virtual taxa across the 5 levels of data quality

22

(Annual, 1cm, 2cm, 6cm, and 10cm), we integrated the functions above into a larger function named
runExperiment. The code below runs an artificial simple example with only two virtual taxa (1 and
6 in parameters), and two dataset types (“1cm” and “10cm”). Only 30 repetitions are generated to
quicken execution, which is not nearly enough to achieve consistent results.
#running experiment

E1 <- runExperiment(simulations.file = simulation,

selected.rows = c(1, 6), #2 species only

selected.columns = c(2, 5), #1cm dataset only

parameters.file = parameters,

parameters.names = c(”maximum.age”,

”fecundity”,

”niche.A.mean”,

”niche.A.sd”),

sampling.names = c(”1cm”, ”10cm”),

driver.column = ”Driver.A”,

response.column = ”Pollen”,

time.column = ”Time”,

lags = lags,

repetitions = 30)

#E1 is a list of lists

#first list: names of experiment output

E1$names

#second list, first element

i <- 1 #change to see other elements

#ecological memory pattern

E1$output[[i]]$memory

#pseudo R-squared across repetitions

E1$output[[i]]$R2

#predicted pollen across repetitions

E1$output[[i]]$prediction

#variance inflation factor of input data

E1$output[[i]]$multicollinearity

Experiment results can be plotted with the function plotExperiment shown below.

plotExperiment(experiment.output=E1,

parameters.file=parameters,

23

experiment.title=”Toy experiment”,

sampling.names=c(”1cm”, ”10cm”),

legend.position=”bottom”,

R2=TRUE)

ma 1000; f 10; Am 50; Asd 20; smp 1cm; R2 0.9sd 0 ma 1000; f 10; Am 50; Asd 20; smp 10cm; R2 0.9sd 0

ma 10; f 10; Am 50; Asd 10; smp 1cm; R2 0.9sd 0 ma 10; f 10; Am 50; Asd 10; smp 10cm; R2 0.9sd 0

20 40 60 80 1001201401601802002202400 20 40 60 80 1001201401601802002202400

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

Lag (years)

R
el

at
iv

e
im

po
rt

an
ce

Variable Response Driver.A Random

Toy experiment

Figure 11: Ecological memory patterns of 2 virtual taxa (one per row, taxa 1 and 6) at two different
sampling resolutions (one per column: 1cm and 10cm). Abbreviations in plot title: ma - maximum
age, f - fecundity, Am - niche mean, Asd - niche breadth, smp - sampling resolution, R2 - pseudo
R-squared.

The experiment data can be organizes as a single table, joined with the data available in the parameters
dataframe to facilitate further analyses.
E1.df <- experimentToTable(experiment.output=E1,

parameters.file=parameters,

sampling.names=c(”1cm”, ”10cm”),

R2=TRUE)

24

Table 5: First rows of the experiments table.

median sd min max Variable Lag R2mean R2sd VIFmean VIFsd label maximum.age reproductive.age fecundity growth.rate driver.A.weight driver.B.weight niche.A.mean niche.A.sd niche.B.mean niche.B.sd sampling

43.1 0.85 0 0 Response 20 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
32.5 0.53 0 0 Response 40 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
24.5 0.57 0 0 Response 60 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
19.8 0.50 0 0 Response 80 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
17.6 0.54 0 0 Response 100 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm

14.3 0.56 0 0 Response 120 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
12.0 0.78 0 0 Response 140 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
13.5 0.63 0 0 Response 160 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
12.8 0.64 0 0 Response 180 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
11.9 0.61 0 0 Response 200 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm

12.9 0.51 0 0 Response 220 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
11.9 0.78 0 0 Response 240 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
45.2 0.72 0 0 Driver.A 0 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
41.1 0.79 0 0 Driver.A 20 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
33.1 0.55 0 0 Driver.A 40 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm

27.1 0.69 0 0 Driver.A 60 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
22.4 0.63 0 0 Driver.A 80 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
19.4 0.49 0 0 Driver.A 100 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
18.4 0.62 0 0 Driver.A 120 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
17.6 0.50 0 0 Driver.A 140 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm

17.8 0.55 0 0 Driver.A 160 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
17.1 0.77 0 0 Driver.A 180 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 0.70 0 0 Driver.A 200 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
15.7 0.63 0 0 Driver.A 220 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.5 0.73 0 0 Driver.A 240 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm

16.0 2.69 0 0 Random 20 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 40 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 60 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 80 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 100 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm

16.0 2.69 0 0 Random 120 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 140 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 160 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 180 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 200 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm

16.0 2.69 0 0 Random 220 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 240 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
16.0 2.69 0 0 Random 0 0.97 0 81.07157 74.62925 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 1cm
40.0 0.70 0 0 Response 20 0.98 0 466.86776 376.67591 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 10cm
34.0 0.69 0 0 Response 40 0.98 0 466.86776 376.67591 S10A50-5_f10 10 4 10 1.5 1 0 50 10 50 5 10cm

25

Finally, ecological memory features can be extracted from the experiment with extractMemoryFea-
tures in order to facilitate further analyses, as shown below.
E1.features <- extractMemoryFeatures(

memory.pattern = E1.df,

exogenous.component = ”Driver.A”,

endogenous.component = ”Response”,

scale.strength = TRUE

)

Table 6: Features of the ecological memory patterns produced by the example experiment. Note that
when more than one taxa is available, strength components are scaled between 0 and 1.

label S10A50-5_f10 S10A50-5_f10 S1000A50-20_f10 S1000A50-20_f10
strength.endogenous 0.9783394 0.6353791 1.0000000 0.7689531
strength.exogenous 1.0000000 0.2988048 0.5657371 0.1195219
strength.concurrent 1.0000000 0.4109589 0.7808219 0.2739726
length.endogenous 0.417 0.417 0.333 0.583

length.exogenous 0.833 0.167 1.000 0.500
dominance.endogenous 0.083 0.417 0.167 0.500
dominance.exogenous 0.833 0.000 0.833 0.083
maximum.age 10 10 1000 1000
fecundity 10 10 10 10

niche.mean 50 50 50 50
niche.sd 10 10 20 20
sampling 1cm 10cm 1cm 10cm

26

	Statistical properties of simulated pollen curves
	Temporal autocorrelation
	Multicollinearity
	Non-linearity

	The logics behind Random Forest
	The trees
	The forest
	Variable importance
	Testing the significance of variable importance scores

	Analyzing ecological memory with Random Forest

