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Summary

This document describes in detail the methods used to generate a virtual environmental driver with
a given temporal autocorrelation, to be used as an input for a population model simulating synthetic
pollen curves generated by virtual taxa with different life-traits (life-span and fecundity) and envi-
ronmental niche features (niche position and breadth). We also describe how we generated a virtual
sediment accumulation rate to aggregate the results of the population model to mimic taphonomic
processes producing real pollen curves, and how we resampled virtual pollen data at different depth
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intervals. Finally, we present the code used to generate the 16 virtual taxa used for the analyses
described in the paper.

IMPORTANT: the Rmarkdown version of this document is hosted at https://github.com/BlasBenito/
EcologicalMemory
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1 Generating a virtual environmental driver

1.1 Rationale

To simulate virtual pollen curves with the population model described in section 2 a virtual driver
representing changes in environmental conditions is required. This section explains how to generate
such a driver as a time series with a given temporal autocorrelation simulating the temporal structure
generally shown by observed environmental drivers.

1.2 Generating a random walk

The following steps are required to generate a random walk in R:

1. Generate a vector time with time values.

2. Re-sample with replacement the set of numbers (-1, 0, 1) as many times as values are in the
time vector, to produce the vector moves (as in moves of a random walk).

3. Compute the cumulative sum of moves, which generates the random walk.

#sets a state for the generator of pseudo-random numbers

set.seed(1)

#defines the variable ”time”

time <- 1:10000

#samples (-1, 0, 1) with replacement

moves <- sample(x=c(-1, 0, 1), size=length(time), replace=TRUE)

#computes the cumulative sum of moves

random.walk <- cumsum(moves)
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Figure 1: Random walk (a) and its temporal autocorrelation (b).
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Every time this code is executed with a different number in set.seed(), it generates a different random
walk with a different temporal autocorrelation, but still, this simple method is not useful to generate
a time series with a given temporal autocorrelation.

1.3 Applying a convolution filter to generate a given temporal autocorrelation

Applying a convolution filter to a time series allows to generate dependence among sets of consecutive
cases. Below we show an example of how it works on a random sequence a composed by five numbers
in the range [0, 1]. The operations to compute the filtered sequence are shown in Table 1.

#setting a fixed seed for the generator of pseudo-random numbers

set.seed(1)

#generating 5 random numbers in the range [0, 1]

a <- runif(5)

#applying a convolution filter of length 2 and value 1

b <- filter(a, filter=c(1,1), method=”convolution”, circular=TRUE)
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Figure 2: Original sequence (dashed line) and filtered sequence with filter (solid line).

The operation column in Table 1 shows how the convolution filter generates a dependence between
values located within the length of the filter. This positional dependence creates a temporal autocor-
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Table 1: Original sequence (a), filtered sequence (b), and filtering operations. Numbers beside letters
a and b represent row numbers, while f1 and f2 represent the values of the convolution filter (both
equal to 1 in this case).

row a b operation

1 0.27 0.64 b1 = a1 x f2 + a2 x f1
2 0.37 0.94 b2 = a2 x f2 + a3 x f1
3 0.57 1.48 b3 = a3 x f2 + a4 x f1
4 0.91 1.11 b4 = a4 x f2 + a5 x f1
5 0.20 0.47 b5 = a5 x f2 + a6 x f1

relation pattern with a significant length equal to the length of the filter. The following piece of code
demonstrates this by generating two versions of the same moves vector used before, one with a length
of the significant temporal autocorrelation equal to 10 (defined in the same units of the time vector),
and another with a length of 100. Results are shown in Figure 3.

moves.10 <- filter(moves, filter=rep(1, 10), circular=TRUE)

moves.100 <- filter(moves, filter=rep(1, 100), circular=TRUE)
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Figure 3: Sequences filtered with different filter lengths: a) Sequence with autocorrelation length
equal to 10; b) Temporal autocorrelation of a); c) Sequence with autocorrelation length equal to 100:
d) Temporal autocorrelation of c).

A major limitation is that this method does not work well when the required length of the temporal
autocorrelation is a large fraction of the overall length of the time series. The code below and Figure
4 show an example with a filter of length 5000 (note that the time variable has 10000 elements).

moves.5000 <- filter(moves, filter=rep(1, 5000), circular=TRUE)
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Figure 4: Sequence moves.5000 (a) and its temporal autocorrelation (b). In this case there is a large
deviation between the required temporal autocorrelation (5000) and the outcome (2000).

All the ideas presented above are implemented in a function named simulateDriver(), with the fol-
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lowing arguments:

• random.seed: an integer for set.seed(), to use the same random seed in the generation of random
numbers and make sure that results are reproducible.

• age: a vector (i.e. 1:1000), representing the length of the output.
• autocorrelation.length: length of the desired temporal autocorrelation structure, in the same
units as age.

• output.min: minimum value of the driver.
• output.max: maximum value of the driver.

simulateDriver <- function(random.seed,

time,

autocorrelation.length,

output.min,

output.max){

#setting random seed

set.seed(random.seed)

#generating driver

driver = filter(rnorm(max(time)),

filter=rep(1, autocorrelation.length),

circular=TRUE)

#rescaling it between output.min and output.max

driver = as.vector(((driver - min(driver)) /

(max(driver) - min(driver))) *

(output.max - output.min) +

output.min)

return(driver)

}

we used this function to generate a driver with annual resolution in the range [0, 100], over a period
of 10000 years (see Figure 5), with a temporal autocorrelation length of 600 years.

drivers.10k <- simulateDriverS(

random.seeds = 60,
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time = 1:10000,

autocorrelation.lengths = 600,

output.min = 0,

output.max = 100,

driver.names = ”A”,

filename = NULL

)
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Figure 5: Virtual driver used for the simulations in the paper.

2 Simulating pollen curves from virtual taxa

2.1 Rationale

The ability of plant populations to respond more or less quickly to environmental change is mediated
by a set of species’ traits, such as niche optimum and breadth, growth rate, sexual maturity age,
effective fecundity, and life span. Even though we have values for these traits for many plant species,
pollen types are often clusters of species of the same genus or family rather than single species, making
the assignment of trait values uncertain. For the purpose of this paper it is more practical to work
with virtual pollen curves generated by virtual taxa with known relationships with the environment
and traits. These virtual taxa are the result of a population model with different parametrizations.

2.2 Assumptions

The model follows these assumptions:

• The spatial structure of the population is not important to explain its pollen productivity.
This is an operative assumption, to speed-up model executions. The lack of spatial structure
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is partially compensated by the model parameter charge capacity, which simulates a limited
space for population expansion.

• The environmental niche of the species follows a Gaussian distribution, characterized by a
mean (niche optimum, also niche position) and a standard deviation (niche breadth or tolerance).

• Different drivers can have a different influence on the species dynamics, and that influence
can be defined by the user by tuning the weights of each driver.

• Environmental suitability, expressed in the range [0, 1], is the result of an additive function
of the species niches (normal function defined by the species’ mean and standard deviation for
each driver), the drivers’ values, and the relative influence of each driver (driver weights).

• Pollen productivity is a function of the individual’s biomass and environmental suitability,
so under a hypothetical constant individual’s biomass, its pollen production depends linearly on
environmental suitability values.

• Effective fecundity is limited by environmental suitability. Low environmental suitability
values limit recruitment, acting as an environmental filter. Therefore, even though the fecundity
of the individuals is fixed by the fecundity parameter, the overall population fecundity is limited
by environmental suitability.

2.3 Parameters

We have designed a simple individual-based population model which input parameters are:

• Drivers: Values of up to two drivers (provided as numeric vectors) for a given time span.
• Niche mean: The average (in drivers units) of the normal functions describing the species niche
for each driver. This parameter defines the niche optimum of the species.

• Niche breadth: Standard deviations (in driver units) of the normal functions describing the
species niche for each driver. Smaller values simulate more specialized species, while larger
values simulate generalist species.

• Driver weight: Importance of each driver (note that in the paper we only used one driver) in
defining climatic suitability for the given species. Balanced weights mean each driver is con-
tributing equally to climatic suitability. The sum of both drivers must be 1.

• Maximum age: age (in years) of senescence of the individuals. Individuals die when reaching
this age.

• Reproductive age: age (in years) at which individuals start to produce pollen and seeds.
• Fecundity: actually, effective fecundity, which is the maximum number of viable seeds pro-
duced by mature individuals per year under under fully suitable climatic conditions.

• Growth rate: amount of the maximum biomass gained per year by each individual. Used as
input in the logistic equation of the growth model.
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• Maximum biomass: maximum biomass (in relative units) individuals can reach. Used as input
in the logistic equation of the growth model to set a maximum growth.

• Carrying capacity: maximum sum of the biomass of all individuals allowed in the model.
Ideally, to keep model performance, it should be equal to maximum biomass multiplied by
100 or 1000. The model removes individuals at random when this number is reached is reached.

In order to explain the model dynamics in the most simplified way, the parameters in Table 1 are
considered.

Table 2: Parameters of a virtual species.

Parameter Species 1

1 maximum.age 50
2 reproductive.age 20
3 fecundity 2
4 growth.rate 0.2
5 pollen.control 0

6 maximum.biomass 100
7 carrying.capacity 10000
10 niche.A.mean 50
11 niche.A.sd 10

2.4 Ecological niche and environmental suitability

The model assumes that normal distributions can be used as simple mathematical representations of
ecological niches. Considering a virtual species and an environmental predictor, the abundance of the
species along the range of the predictor values can be defined by a normal distribution with a mean
(niche optimum or niche position), and standard deviation (niche breadth or tolerance).

The equation to compute the density of a normal distribution has the form:

Equation 1:

f(x) = 1/((2))e−((x−)2/(22))

Where:

• x is the value of the predictor.
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• is the mean of the normal distribution.
• is the standard deviation.

The following code shows a simple example on how dnorm() uses Equation 1 to compute the density
of a normal function over a data range from a mean and a standard deviation:

niche.A <- dnorm(x=0:100, mean=50, sd=10)

We use the code above and a computation on the density of the driver to plot the ecological niche of
the virtual taxa against the availability of driver values (Figure 6).
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Figure 6: Ecological niche of the virtual species (blue) against the density (relative availability of
values over time) of the driver (gray). Both densities have been scaled in the range [0, 1].

Environmental suitability for the given species over the study period is computed as follows:

1. dnorm() is computed on the mean and standard deviation defined for the species niche for a
given driver.

2. The output of dnorm() is scaled to the range [0, 1].
3. The scaled values of the output are multiplied by the driver weights (which equals 1 if only one
driver is used).

4. If there are two drivers, suitability values of each individual driver are summed together.

A burn-in period with a length of ten generations of the virtual taxa is added to the environmental
suitability computed from the species niche and the driver/drivers. The added segment starts at maxi-
mum environmental suitability, stays there for five generations, and decreases linearly for another five
generations until meeting the first suitability value of the actual simulation time. The whole burn-in
segment has a small amount of white noise added (Figure 7). The burn-in period lets the population
model to warm-up and go beyond starting conditions before simulation time starts.
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Figure 7: Driver and environmental suitability of the virtual taxa. Burn-in period is highlighted by a
gray box in the Environmental suitability panel.

2.5 Biomass growth

Individuals age one year on each simulation step, and their biomass at any given age is defined by
the following equation of logistic growth (Equation 2). Figure 8 shows different growth curves for
different growth rates for a virtual taxon with a maximum age of 400 years.

Equation 2:

f(x) = B

1 + B
× e(−α×t)

Where:

• B is the maximum biomass an individual can reach.
• α is the growth rate.
• t is the age of the individual at a given time.
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Figure 8: Biomass vs. age curves resulting from different growth rates for a 400 years life-span.

2.6 Population dynamics

The model starts with a population of 100 individuals with random ages, in the range [1, maximum
age], taken from a uniform distribution (all ages are equiprobable). For each environmental suitability
value, including the burn-in period, the model performs the following operations:

1. Aging: adds one year to the age of the individuals.
2. Mortality due to senescence: individuals reaching the maximum age are removed from the
simulation.
• Local extinction and immigration If the number of individuals drops to zero, the pop-
ulation is replaced by a “seed bank” of 100 individuals with age zero, and the simulation
jumps to step 7.. This is intended to simulate the arrival of seeds from nearby regions, and
will only lead to population growth if environmental suitability is higher than zero.

3. Plant growth: Applies a plant growth equation to compute the biomass of every individual (see
Figure 8).

4. Carrying capacity: If maximum population biomass is reached, individuals are iteratively se-
lected for removal according to a mortality risk curve computed by Equation 3 (see Figure
9). This curve gives removal preference to younger individuals, matching observed patterns in
natural populations.

5. Pollen productivity: In each time step the model computes the pollen productivity (in relative
values) of the population using Equation 4.

6. Reproduction: Generates as many seeds as reproductive individuals are available multiplied by
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the maximum fecundity and the environmental suitability of the given time.

The model returns a table with climatic suitability, pollen production, and population size (reproduc-
tive individuals only) per simulation year. Figure 10 shows the results of the population model when
applied to the example virtual species.

Equation 3:

Pm = 1 − sqrt(a/A)

Where:

• Pm is the probability of mortality.
• a is the age of the given individual.
• A is the maximum age reached by the virtual taxa.
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Figure 9: Risk curve defining the probability of removal of a given individual as a function of its
fractional age when maximum carrying capacity is reached.

Equation 4:

Pt =
∑

xit × max(St, B)

Where:

• t is time (a given simulation time step).
• P is the pollen productivity of the population at a given time.
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• xi represents the biomass of every adult individual.
• S is the environmental suitability at the given time.
• B is the contribution of biomass to pollen productivity regardless of environmental suitability
(pollen.control parameter in the simulation, 0 by default). If B equals 1, P is equal to the total
biomass sum of the adult population, regardless of the environmental suitability. If B equals 0,
pollen productivity depends entirely on environmental suitability values.

The code below shows the core of the simulatePopulation function. It is slightly simplified to improve
readability, and only pollen counts are written as output. Note that age of individuals is represented
as a proportion of the maximum age to facilitate operations throughout the code.

#parameters (1st line in dataframe ”parameters”)

maximum.age <- parameters[1, ”maximum.age”]

reproductive.age <- parameters[1, ”reproductive.age”]

growth.rate <- parameters[1, ”growth.rate”]

carrying.capacity <- parameters[1, ”carrying.capacity”]

fecundity <- parameters[1, ”fecundity”]

#reproductive age to proportion

reproductive.age <- reproductive.age / maximum.age

#years scaled taking maximum.age as reference

scaled.year <- 1/maximum.age

#vector to store pollen counts

pollen.count <- vector()

#starting population

population <- sample(seq(0, 1, by=scaled.year),

100,

replace=TRUE)

#iterating through suitability (once per year)

#------------------------------------

for(suitability.i in suitability){

#AGING -----------------------------------------------
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population <- population + scaled.year

#SENESCENCE ------------------------------------------

#1 is the maximum age of ages expressed as proportions

population <- population[population < 1]

#LOCAL EXTINCTION AND RECOLONIZATION -----------------

if (length(population) == 0){

#local extinction, replaces population with a seedbank

population <- rep(0, floor(100 * suitability.i))

#adds 0 to pollen.count

pollen.count <- c(pollen.count, 0)

#jumps to next iteration

next

}

#PLANT GROWTH ---------------------------------------

#biomass of every individual

biomass <- maximum.biomass /

(1 + maximum.biomass *

exp(- (growth.rate * suitability.i) *

(population * maximum.age)

)

)

#SELF-THINNING --------------------------------------

#carrying capacity reached

while(sum(biomass) > carrying.capacity){

#removes a random individual based on risk curve

individual.to.remove <- sample(

x = length(population),

size = 1,
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replace = TRUE,

prob = 1 - sqrt(population) #risk curve

)

#removing individuals from population and biomass

population <- population[-individual.to.remove]

biomass <- biomass[-individual.to.remove]

}#end of while

#REPRODUCTION --------------------------------------

#identifyies adult individuals

adults <- population > reproductive.age

#seeds (vector of 0s)

#fractional biomass of adults * fecundity * suitability

seeds <- rep(0, floor(sum((biomass[adults]/maximum.biomass) *

fecundity) * suitability.i))

#adding seeds to the population

population <- c(population, seeds)

#POLLEN OUTPUT -------------------------------------

#biomass of adults multiplied by suitability

pollen.count <- c(pollen.count,

sum(biomass[adults]) * suitability.i)

} #end of loop through suitability values

The code below executes the simulation, and plots the outcome using the function plotSimulation.

#simulate population based on parameters

simulation <- simulatePopulation(parameters=parameters[1, ],

drivers=drivers.10k)

#plotting simulation output

plotSimulation(simulation.output=simulation,
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burnin=TRUE,

panels=c(”Driver A”,

”Suitability”,

”Population”,

”Pollen”),

plot.title=””,

text.size=12,

line.size=0.4)
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Figure 10: Simulation outcome. Green shades represent different age groups (seedlings, saplings, and
adults).

The simulation outcomes can vary with the traits of the virtual species. Table 2 shows the param-
eters of two new taxa named Species 2 and Species 3. These species have a higher niche breadth
than Species 1, and Species 3 has a pollen productivity depending more on biomass than suitability
(parameter pollen.control higher than zero). The comparison of both simulations (Figure 11) along
with Species 1 shows that different traits generate different pollen curves in our simulation.
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Table 3: Parameters of the three virtual species.

Parameter Species 1 Species 2 Species 3

1 maximum.age 50 50 50
2 reproductive.age 20 20 20
3 fecundity 2 4 6
4 growth.rate 0.2 0.3 0.4
5 pollen.control 0.0 0.0 0.5

6 maximum.biomass 100 100 100
7 carrying.capacity 10000 10000 10000
9 niche.A.mean 50 50 50
10 niche.A.sd 10 15 20

Pollen
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Figure 11: Comparison of the pollen abundance and environmental suitability (same in all cases)
for the three virtual species shown in Table 2 within the period 4000-5000. Species 2 has a higher
fecundity than Species 1 (1 vs 10)

2.7 Testing the model limits

We searched for the minimum values of the parameters required to keep a simulated population viable
under fully suitable conditions. The taxa Test 1 and Test 2 shown below
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Table 4: Parameters of virtual taxa used to test model limits.

Parameter Test 1 Test 2

1 maximum.age 4 3
2 reproductive.age 1 1
3 fecundity 0.55 0.50
4 growth.rate 2 2
5 pollen.control 0 0

6 maximum.biomass 1 1
7 carrying.capacity 30 30
10 niche.A.mean 50 50
11 niche.A.sd 10 10

simulation.test.1 <- simulatePopulation(

parameters=parameters.test,

driver.A=jitter(rep(50, 500), amount=4)

)

The test driver used had an average of 50 (optimum values according the environmental niche of
both species) for 500 years, with random noise added through the jitter function. The model results
(column Pollen only) for both virtual taxa are shown below.
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Figure 12: Pollen output of virtual taxa Test 1 and Test 2 for a 200 years time-window.

The outputs of the test taxa show how a minimal change in the parameters can lead to fully unstable
results when the considered taxa are short lived. Considering such a result, values for life-traits (max-
imum.age, reproductive.age, fecundity, growth.rate, and maximum.biomass) of taxon Test 1 should be
taken as safe lower limits for these traits.
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A similar situation can happen with long lived species when the age of sexual maturity is close to
the maximum age. The table below shows three new test species with long life-spans and increasing
maturity ages. The driver is again centered in 50, with added white noise, and 2000 years length.

Table 5: Parameters of virtual taxa used to test model limits.

Parameter Test 3 Test 4 Test 5

1 maximum.age 1000 1000 1000
2 reproductive.age 100 500 900
3 fecundity 0.5 0.5 0.5
4 growth.rate 0.05 0.05 0.05
5 pollen.control 0 0 0

6 maximum.biomass 100 100 100
7 carrying.capacity 10000 10000 10000
10 niche.A.mean 50 50 50
11 niche.A.sd 10 10 10
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Figure 13: Pollen output of virtual taxa Test 1 and Test 2 for a 200 years time-window.

The figure shows how Test 3 yields a stable pollen productivity across time, while Test 4 and Test
5 show, respectively, a very low productivity due to scarcity of adults, a total inability to sustain
stable populations. Considering these results, it is important to keep a careful balance between the
parameters maximum.age and reproductive.age to obtain viable virtual populations.
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3 Simulating a virtual accumulation rate

Sediments containing pollen grains accumulate at varying rates, generally measured in years per cen-
timeter (y/cm). Accumulation rates found in real datasets are broadly between 10 and 70 y/cm, with a
paulatine increase towards the present time. To simulate such an effect and aggregate the annual data
produced by the simulation in a realistic manner we have written a function named simulateAccumula-
tionRate that takes a random seed, a time-span, and a range of possible accumulation rate values, and
generates a virtual accumulation rate curve. It does so by generating a random walk first, smoothing
it through the application of a GAM model, and scaling it between given minimum and maximum
accumulation rates (see Figure 12).
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Figure 14: Virtual accumulation rate.

The output is a dataframe with three columns: time, accumulation.rate, and grouping (see Table 4).

Cases of the simulation data belonging to the same group according to the grouping column are aggre-
gated together to simulate a centimeter of sedimented data. The data are aggregated by the function
aggregateSimulation, that can additionally sample the resulting data at given depth intervals expressed
in centimeters between consecutive samples (2, 6, and 10 cm in the code below).

simulation.aggregated <- aggregateSimulation(

simulation.output=simulation,

accumulation.rate=accumulation.rate,

sampling.intervals=c(2, 6, 10)

)
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Table 6: Dataframe resulting from the function to generate virtual accumulation rates. Each group in
the grouping column has as many elements as accumulation.rate the given group has.

time accumulation.rate grouping

1 30 1
2 30 1
3 30 1
4 30 1
5 30 1

6 30 1
7 30 1
8 30 1
9 30 1
10 30 1

11 30 1
12 30 1
13 30 1
14 30 1
15 30 1

16 30 1
17 30 1
18 30 1
19 30 1
20 30 1

The function returns a matrix-like list with as many rows as simulations are available in simula-
tion.output, a column containing the data of the original simulations, a columnwith the data aggregated
every centimeter, and the sampling intervals requested by the user. The data are accessed individually
by list subsetting, as shown below (see Figure 13), to allow easy analysis and visualization.
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Figure 15: Effect of applying accumulation rate and different sampling depth intervals to a section
of the the annual data produced by the simulation (represented in the Legend by the label Annual).
Note that the 10 cm resampling completely misses the whole high-suitability event in the Pollen panel,
and barely registers it in the Suitability panel. Inter-decadal variability shown by the Annual data is
completely lost even at 1 cm, the higher sampling resolution.

4 Sampling virtual pollen curves at different depth intervals

Applying a virtual accumulation rate to the data generated by the population model at given depth
intervals simulates to a certain extent how pollen deposition and sampling work in reality, and the
outcome of that is data-points separated by regular depth intervals, but not regular time intervals.
Figure 14 shows that time intervals between consecutive samples produced by aggregateSimulation
are not regular. However, analyzing ecological memory requires to organize the input data in regular
time lags, and to do that the data need to have regular time intervals between consecutive cases.
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Figure 16: Histogram of the time differences (in years) between consecutive samples for the outcome
of aggregateSimulation when resampled at intervals of 6 centimeters on Species 1. It clearly shows
how the data are not organized in regular time intervals, and therefore are unsuitable for analyses
requiring regular time lags.

Irregular time series can be interpolated into regular time series by using the loess function. This
function fits a polynomial surface representing the relationship between two (or more) variables. The
smoothness of this polynomial surface is modulated by the span parameter, and finding the right value
for this parameter is critical to obtain an interpolation result as close as possible to the real data. The
following code is able to find the value of span that maximizes the correlation between input and
interpolated data for any given time series.

#getting example data sampled at 2cm intervals

simulated.data = simulation.aggregated[[1, 3]]

#span values to be explored

span.values=seq(20/nrow(simulated.data),

5/nrow(simulated.data),

by=-0.0005)
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#plotting the optimization process in real time

x11(height=12, width=24)

#iteration through candidate span values

for(span in span.values){

#function to interpolate the data

interpolation.function = loess(

Pollen ~ Time,

data=simulated.data,

span=span,

control=loess.control(surface=”direct”))

#plot model fit

plot(simulated.data$Pollen, type=”l”, lwd=2)

lines(interpolation.function$fitted, col=”red”, lwd=2)

#if correlation equals 0.9985 loop stops

if(cor(interpolation.function$fitted,

simulated.data$Pollen) >= 0.9985){break}

}

#gives time to look at result before closing the plot window

Sys.sleep(5)

The function toRegularTime (usage shown below), uses the code above to interpolate the data pro-
duced by aggregateSimulation into a given time interval, expressed in years, returning a list of the
same dimensions of the input list.

simulation.interpolated <- toRegularTime(

x=simulation.aggregated,

time.column=”Time”,

interpolation.interval=10,

columns.to.interpolate=c(”Pollen”,

”Suitability”,

”Driver.A”)
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)

Figure 15 shows the same data segment shown in Figure 13, but with samples re-interpolated into a
regular time grid at 10 years intervals.
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Figure 17: Data aggregated using virtual accumulation rate and reinterpolated into a regular time grid
of 10 years resolution.

5 Generating the virtual taxa used in the paper

To assess how species traits might influence ecological memory patterns we simulated 16 virtual taxa
with different features (see Table 5).
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Table 7: Parameters of the 16 virtual taxa used in the analyses.

Taxa Max. age Reprod. age Fecundity Groth rate Niche mean Niche breadth

S10A50-5_f10 10 4 10 1.50 50 10
S10A50-20_f10 10 4 10 1.50 50 20
S10A75-5_f10 10 4 10 1.50 75 10
S10A75-20_f10 10 4 10 1.50 75 20
S1000A50-5_f10 1000 100 10 0.01 50 10

S1000A50-20_f10 1000 100 10 0.01 50 20
S1000A75-5_f10 1000 100 10 0.01 75 10
S1000A75-20_f10 1000 100 10 0.01 75 20
S10A50-5_f1 10 4 1 1.50 50 10
S10A50-20_f1 10 4 1 1.50 50 20

S10A75-5_f1 10 4 1 1.50 75 10
S10A75-20_f1 10 4 1 1.50 75 20
S1000A50-5_f1 1000 100 1 0.01 50 10
S1000A50-20_f1 1000 100 1 0.01 50 20
S1000A75-5_f1 1000 100 1 0.01 75 10

S1000A75-20_f1 1000 100 1 0.01 75 20

We simulated virtual pollen curves for each one of these virtual taxa as explained above, using the
following code.

#simulating virtual taxa

simulation <- simulatePopulation(

parameters=parameters,

drivers=drivers.10k

)

#accumulation rate

accumulation.rate <- simulateAccumulationRate(

seed=140,

time=1:10000,

output.min=1,

output.max=50,

plot=FALSE
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)

#aggregation and sampling

simulation <- aggregateSimulation(

simulation.output=simulation,

accumulation.rate=accumulation.rate,

sampling.intervals=c(2, 6, 10)

)

#resampling data

simulation <- toRegularTime(

x=simulation,

time.column=”Time”,

interpolation.interval=20,

columns.to.interpolate=c(”Pollen”,

”Driver.A”,

”Suitability”))

Plots below show the pollen curves produced by the different virtual taxa at annual resolution.
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