
Learning from Errors: Detecting
Cross-Technology Interference in WiFi Networks

Daniele Croce, Domenico Garlisi, Fabrizio Giuliano, Ilenia Tinnirello
Department of Electrical Engineering, Università di Palermo, Italy
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Abstract—In this work we show how to detect and iden-
tify cross-technology interference on commodity WiFi cards by
monitoring the reception errors, such as synchronization errors,
invalid header formats, too long frames, etc. Indeed, in presence
of non-WiFi modulated signals, the occurrence of these types of
errors follows statistics that can be easily recognized. Moreover,
the duration of the error bursts depends on the transmission
interval of the interference source, while the error spacing
depends on the receiver implementation.

On the basis of these considerations, we propose the adoption
of hidden Markov chains for characterizing the behavior of WiFi
receivers in presence of controlled interference sources (training
phase) and then run-time recognizing the most likely cause of
error sequences. Experimental results prove the effectiveness of
our approach for detecting ZigBee, Microwave and LTE (in
unlicensed spectrum) interference.

Index Terms—Wireless LAN, Interference, Hidden Markov
models.

I. INTRODUCTION

Nowadays, we are witnessing an impressive success of IEEE
802.11 technology, better known as WiFi, for supporting the
growing demand of wireless broadband connectivity. Public
WiFi networks are deployed worldwide, with more than 50%
of the total mobile traffic carried by WiFi. The availability
of WiFi networks is often considered as a commodity service
driving immense economic value, and the unlicensed spec-
trum is becoming one of society’s most valuable resources.
Although WiFi is a dominant communication technology in
this spectrum, many other low range technologies coexist in
unlicensed ISM bands for supporting several vertical applica-
tions, such as house and building automation, smart metering
systems, surveillance systems, health care monitoring, game
remote controllers and so on. Moreover, cellular technologies
are trying to extend their operation to ISM bands for increasing
their capacity. Two different solutions have been envisioned
by 3GPP in ISM bands, referred to as Licensed Assisted
Access (LAA) [1] and LTE-Unlicensed (LTE-U) [2], which
work respectively, with and without the listen-before-talk
mechanism.

Despite the fact that many mechanisms have been included
in the WiFi standard to cope with interference (e.g. carrier
sense, adaptive modulation and coding), it has been shown
that serious performance impairments can arise in presence
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of exogenous interfering signals due to different technologies.
For example, in [3] it is shown that the capacity of a good
WiFi link can be reduced to zero in presence of analog
phones, video cameras, or sensors based on IEEE 802.15.4
technology, while other devices such as a Xbox controller
and a microwave oven can half the throughput. The effect
of sensors’ interference on the WiFi link is impressive if we
consider that the 802.11 and 802.15.4 technologies are pretty
heterogeneous in terms of bandwidth (2 MHz for 802.15.4,
and 20 MHz for 802.11, hereafter referred as ZigBee and
WiFi) and transmission power (e.g. 0 dBm for ZigBee and 20
dBm for WiFi). Moreover, ZigBee applications are typically
low rate, while WiFi networks exhibit abundant channel idle
space in time domain [4]. About the interference with cellular
technologies, several research studies are trying to characterize
the impact of LTE transmissions on WiFi performance. In [5]
it is demonstrated that even when utilizing the listen-before-
talk principle, LAA-LTE heavily impacts WiFi performance,
and that WiFi with MIMO performs worse than WiFi without
MIMO when LTE interference is strong. Additionally, increas-
ing distance between LTE and WiFi links does not necessarily
decrease the impact of interference in indoor environments.

In this scenario, we argue that a critical aspect for WiFi
networks is enabling the correct identification of coexistence
problems with other technologies, which in turn can serve
as basis for some cross-technology coordination mechanisms.
While state-of-the-art solutions for detecting coexistence prob-
lems in WiFi networks have mainly worked on the charac-
terization of RSSI samples observed at different frequencies
and with varying temporal gaps, in this work we propose
to simply monitor the reception errors of commodity WiFi
cards, and then apply hidden Markov chains in order to
identify and characterize cross-technology interference. Our
mechanism is based on the analysis of the error domain, i.e.
on the classification of error events and on the time intervals
between their occurrence. Statistics of these errors are widely
available on many WiFi commodity cards and can be easily
exploited to improve interference detection and troubleshoot-
ing algorithms of wireless networks. Although in this work
we focus on three interference sources, namely ZigBee, LTE
and microwave ovens, our solution does not depend on the
type of technology, but only requires a training phase based
on the events generated in presence of a controlled source
of interference. We then employ a hidden Markov chain to
identify the interference technology from the occurrence of the
generated error events. The idea is that the proposed approach



could be easily extended to any other type of interference.
After a brief review of some literature solutions (section

II), we provide necessary background information on the
competing technologies (section III) and we analyze the theo-
retical and experimental error rates caused by this interference
(sections IV-B and IV-C). The interference detection model is
introduced in section V, where we also present our implemen-
tation choices. Experimental results show that the approach is
promising and suitable for further extensions as described in
the concluding remarks.

II. RELATED WORK

Effects of cross-technology interference. Performance degra-
dation of WiFi networks in presence of cross-technology in-
terference has been widely studied in recent literature. Indeed,
since each technology implements different mechanisms and
protocols for reacting to interference, it is not obvious to
predict WiFi performance in case of coexistence with other
technologies. Several analytic and simulation models, as well
as experimental studies, have been proposed for character-
izing the cross-technology interference in ZigBee and WiFi
networks [6], [7]. While early studies mostly focus on the
analysis of ZigBee performance degradation in presence of
WiFi interference, it has been shown that significant through-
put reductions can also be observed in WiFi networks [6],
[8]. Surprisingly, WiFi vulnerabilities arise despite the fact
that many mechanisms have been included at the MAC and
PHY layer for guaranteeing robustness to interference. This
phenomenon has been justified by considering the higher time
resolution needed by ZigBee for detecting channel activity and
preventing collisions [9], [10].

LTE transmissions in unlicensed bands can have a deep
impact on WiFi performance, even when the listen-before-
talk mechanism is adopted [5]. Although most of the current
studies are based on simulations (see for example [11]),
preliminary empirical results show that WiFi performance can
be critically affected even when LTE links operate at the
minimum bandwidth of 1.4 MHz. This is due to the fact that
WiFi nodes are generally able to sense LTE nodes operating
in ISM bands and therefore are prevented from accessing the
medium in case of LTE transmissions. Solutions based on
duty-cycle muting or blank subframes [12] can be effective
for increasing WiFi throughput, byt they are unilaterally con-
trolled by LTE nodes. Advanced PHY solutions can also be
envisioned for improving coexistence. For example, in [13] a
mechanism to decode WiFi MIMO transmissions under strong
LTE interference is proposed using a GNU Radio testbed with
USRP devices.

Coordination strategies. A simple solution for improving
coexistence is introducing some forms of coordination mech-
anisms among technologies. Early solutions which detect
interference and simply choose a better channel to transmit
are becoming not viable because of the increasing number of
technologies and applications in the market. Other solutions
rely on complex and expensive radio transceivers to com-
municate with multiple protocols and different technologies
[14], or increase the robustness of the transmission with use

of error correction codes or multiple antennas [15]. Different
approaches have considered the possibility to introduce some
indirect forms of coordination between WiFi and ZigBee,
based on opportunistic exploitation of WiFi temporal spaces
[16], channel reservations [9] based on an additional ZigBee
channel for making the channel busy for WiFi stations, or
by means of simple forms of adaptive redundancy [10].
Regarding LTE, it has been proposed to improve coexistence
with WiFi by introducing a centralized controller and tune
LTE parameters based on WiFi traffic conditions [17], [18].
However, this requires a global authority which is difficult to
implement in practice.

Detection of cross-technology interference. Obviously, an
important component of any coordination strategy is detecting
the coexistence problem, i.e. identifying the presence of two
coexisting technologies. The monitoring of heterogeneous RF
signals on ISM bands has been specifically addressed in [19],
where it is proposed a design of a monitoring module for GNU
radio implementing multiple receivers able to quickly identify
the transmitting technology by simultaneously demodulating
the received signal according to different PHY specifications.
Other approaches which do not implement a complete per-
technology demodulator are based on cyclostationary signal
analysis and blind signal detection [20] or other spectrum
sensing techniques [21]. Although these approach are very
effective, they require specialized hardware (basically, a spec-
trum and signal analyzer). The possibility to detect ZigBee
and other interference sources by means of WiFi commodity
cards is explored in [3] by using an 802.11n PHY able to
read RSSI values at different sub-carriers. Complex feature
extraction algorithms are applied to the RSSI samples for
characterizing spectral, energy and pulse signals that are
mapped into a technology classification scheme. The approach
is very promising, although the extraction of some features
requires to monitor the interfering signals for some seconds.
Similarly to this solution, our solution is purely software and
works on measurements provided by commercial WiFi cards.
However, we propose a completely different (and complemen-
tary) approach: rather than characterizing the frequency and
time signatures of external interfering signals, we model the
internal behavior of the WiFi receiver under different inter-
fering sources on the basis of the error traces experienced in
presence of interference. The receiver model is then exploited
for classifying each interfering transmission. A preliminary
version of this work was first presented in [22], although
with a simplified model focused only on the identification of
interference bursts caused by ZigBee or microwave ovens. In
this paper, we extend the model to include inter-arrival timings
and for the detection of LTE-U interference.

III. BACKGROUND

In this section we briefly recall some key aspects of the
MAC/PHY layers in WiFi, ZigBee and LTE that affect the
power of cross-technology interference and the typical timings
of transmissions and channel idle intervals.

Interference power. Although all the technologies consid-
ered in this study work in the ISM bands, they differ in terms
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Fig. 1. Interference between technologies: temporal trace (RSSI samples) of WiFi-ZigBee (a) and WiFi-LTE collisions (b).

of available channels, operating bandwidth and transmission
power. While WiFi can work on both the 2.4 GHz and 5 GHz
bands of unlicensed spectrum, ZigBee works on the 2.4 GHz
spectrum only and LTE will likely operate on the less crowded
5 GHz spectrum. The interference power experienced by a
generic WiFi node depends on the transmission power of the
interference source, but also on the overlapping between the
bandwidth used by the interferer and the WiFi node.

WiFi and LTE transmissions are typically performed at a
maximum power of 15 or 20dBm, while ZigBee transmissions
can span in the range [−25, 0]dBm. LTE transmission power
is modulated because of power control mechanisms, which are
usually not implemented in WiFi and ZigBee. The interfering
power is a portion of the total transmission power roughly
given by the portion of transmission bandwidth which overlaps
with the WiFi receiver bandwidth. For identifying such a
portion, we remind that each WiFi channel is 20 MHz wide
and is spaced of 5 MHz from the adjacent ones. ZigBee
channels have only 2 MHz of bandwidth with 3 MHz of inter-
channel gap bands (i.e. the center frequencies maintain the
spacing of 5 MHz from the adjacent channels). It follows that
four ZigBee channels are entirely included in a WiFi channel.
LTE center frequencies in ISM bands coincide with WiFi ones,
with a typical bandwidth of 5 MHz (but bandwidths as smaller
as 1.4 MHz are possible).

Transmission times. Since the three technologies have been
defined for different applications, the frame size, the data rates
and the channel access units considered by the standards are
quite different.

For WiFi and ZigBee, channel access is performed on a
per-packet basis, i.e. transmission times correspond to the
time required for completing the transmission of a packet (or
an aggregation/fragmentation of packets). ZigBee packets are
small, with a maximum payload of only 127 bytes. Bytes
are organized into 4-bit symbols that are mapped into 16
pseudo-random sequences of 32-chip transmitted at 2 Mchip/s
(i.e. 250 Kbps), which correspond to a frame transmission
interval of about 4 ms for the maximum frame size. WiFi
frames are much longer, with a maximum frame size of 2358
bytes and multiple OFDM modulations and coding schemes
available (from 6 Mbps up to 54 Mbps, which lead respectively
to a maximum transmission time of about 3.2 ms and 0.37
ms). For LTE, the channel access is performed on the basis
of resource block allocations, which are organized into sub-
intervals lasting a fixed time of 1 ms within a frame of 10

ms. Packet transmissions are achieved by scheduling a given
set of resource blocks in one or multiple consecutive frames.
Although the total number of resource blocks used for each
packet depends on the employed data rate and multiple rates
are available (up to 25.2 Mbps for 5 MHz of bandwidth with
300 sub-carriers, 64-QAM modulation, and a symbol time of
71.4 µs), the channel occupancy time in each channel access
is fixed according to the LTE frame structure.

Intervals between transmissions. Different channel access
schemes are employed in WiFi, ZigBee and LTE for unli-
censed bands. WiFi and ZigBee are mostly based on random
access: each node senses the channel before transmitting and
randomly defers its transmission in case the channel is sensed
as busy. Although the rules for managing the deferral time
and sensing the medium are technology-specific, for both the
technologies the random access scheme implies a random
variability of the time between consecutive transmissions.
The deferral time unit, called backoff slot, is set to 320 µs
in ZigBee and 9 µs in WiFi. The difference is due to the
technology-specific granularity at which the channel sensing
is performed. During a backoff slot, ZigBee spends 128 µs
for detecting the channel activity and 192 µs to switch from
reception to transmission mode. If a WiFi transmission is
originated during this switching time, it cannot be detected
by the ZigBee node. Figure 1-a shows a channel occupancy
trace acquired by means of a USRP node in a network in
which a WiFi node coexist with a ZigBee one. In the figure
we clearly observe that each transmitter is characterized by a
specific RSSI value and frame transmission time: WiFi frames
occupy the channel for less than 1 ms with a RSSI value of
-65 dBm, while ZigBee frames last 4 ms with a RSSI value
of -72 dBm. The figure also shows that a ZigBee transmission
can overlap with WiFi, in case a WiFi frame is transmitted
during the time spend by ZigBee for switching from sensing
to transmission mode.

LTE transmissions in licensed bands are organized into
frames of 10 ms that start at regular time intervals. For oper-
ating in unlicensed bands, two different adaptations have been
envisioned: employing duty cycles for periodically suspending
frame transmissions, while keeping the synchronization of
time instants at which frame transmissions can start (LTE-U);
employing listen-before-talk before transmitting each frame
(LTE-LAA). In this second case, when the medium is sensed
as busy, the deferral time is given by a fixed time of 10
ms for maintaining the synchronization of frame starting



times (with the so called FBE mechanism) or it is given
by a random slotted deferral time compensated by a varying
channel occupancy time (with the so called LBE mechanism).
In our work, we emulate both the LTE-U and LTE-LAA
approach, by assuming that LTE frame transmissions can start
only at regular time intervals. Figure 1-b gives an example of
the interaction between an LTE-U transmission with 6 active
and 4 silent subframes (i.e. 6 ms on and 4 ms off) and a WiFi
station which tries to access the same channel: the figure shows
that WiFi packets can collide with LTE and that part of the
channel time is wasted due to the consequent backoff.

IV. ERROR ANALYSIS IN WIFI RECEIVERS

Our work is motivated by the observation that, in WiFi
receivers, the errors generated by exogenous RF signals (i.e.
non-WiFi modulated signals) exhibit significant differences,
in terms of occurrence probability and time intervals between
consecutive errors, from the ones generated by collisions with
other WiFi transmissions. Obviously, the receiver errors are
triggered only when the external RF signal is able to activate
the receiver. The receiver activation depends on the interfering
power and on the receiver sensitivity and settings (e.g. the
AGC gain). In some cases, even the background noise can
stimulate the receiver to perform a synchronization trial.

A. Error Occurrence Probability

In case of wide-band noise and exogenous interference
signals, WiFi receivers demodulate a sequence of completely
random bits and tries to interpret these bits according to
the format of WiFi frames. Being all the bits random, the
probability of having a specific error heavily depends on the
format of the expected frame.

Figure 2 summarizes the error probability observed when an
802.11g receiver is triggered by non-WiFi modulated signals.
Since the PLCP header has one bit only for parity checks, on
average one half of the frames should be classified as frames
with Bad PLCP. However, the receiver can rely also on the
RATE field of the header for detecting Bad PLCP errors: since
the RATE field is 4 bits long while only 8 modulation rates are
admitted (out of the 16 possible values), one half of frames
which randomly results in a correct parity check will contain
a wrong RATE value, thus increasing the Bad PCLP error
probability to 3/4.

When a Bad PLCP is not detected (25% of the times),
the receiver will leave the transceiver on and will continue
demodulating until another error is reached, i.e. Too Long,
Too Short or Bad FCS. In particular, the LENGTH field in
the PLCP header is 12 bits long (values between 0 and 4095),
while the length of a WiFi frame is generally between 14 and
2346 Bytes. Therefore, the frame will be considered Too Long
with probability 1 − 2346/4096 ≈ 0.43 and Too Short with
probability 14/4096. The FCS is 32 bits long which means
that the probability of having a random sequence with good
FCS is only 2−32 and therefore it is almost certain that a Bad
FCS error will appear when the frame is not Too Short or Too
Long (≈ 0.57). Finally, an Invalid MAC Header error occurs
when the 2 bits of the VERSION field in the MAC header are
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Fig. 3. Mapping between a real trace of receiver events and the time-slotted
vectors generated by the monitoring process.

not 0, which correspond to 3 configurations out of 4 possible
ones, i.e. to an occurrence probability of 3/4. In this case the
transceiver does not suspend the reception but continues until
another error is encountered.

When the errors detected by a WiFi station closely follow
these statistics, it is very likely that interference is generated by
non-WiFi modulated signals. For WiFi modulated signals error
statistics are very different from the previous ones and vary
during the frame reception as a function of the field length and
rate. For example, PLCP errors have much lower probability to
appear compared to bad FCS, because the PLCP transmission
is usually more robust and shorter than the rest of the frame.

B. Monitoring Receiver Errors

Most commercial WiFi cards track the occurrence of differ-
ent receiver events, such as the start of a synchronization trial,
the detection of wrong PLCP, the end of a frame transmission,
etc., by means of specific counters implemented in internal
registers. As a reference WiFi receiver, we considered a WiFi
card (namely, Broadcom bcm4318) for which the card internal



WiFi ch11 WiFi ch10 WiFi ch8 ZigBee HighPW ZigBee LowPW LTE-U Microwave Model
Name Ev./s (%) Ev./s (%) Ev./s (%) Ev./s (%) Ev./s (%) Ev./s (%) Ev./s (%) (%)
Bad PLCP 6.5 (0.5) 455.8 (54.8) 1694.2 (75.7) 266.9 (69.1) 984.4 (72.9) 372.2 (80.0) 116.1 (73.6) (75.0)
Good PLCP 1110.0 (99.4) 375.8 (45.2) 542.9 (24.3) 119.6 (30.9) 366.0 (27.1) 121.9 (20.0) 41.7 (26.4) (25.0)
Invalid MAC Header 4.0 (0.4) 286.8 (76.3) 359.1 (66.1) 84.9 (71.0) 243.1 (66.4) 91.9 (75.1) 31.27 (74.9) (75.0)
Good FCS 1067.1 (96.1) 0 (0.0) 0 (0.0) 0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) (0.0)
Bad FCS 9.0 (0.8) 368.3 (98.0) 285.8 (52.6) 69.3 (58.2) 147.6 (40.3) 55.7 (45.7) 23.1 (55.4) (56.9)
Too Short 0.1 (0.0) 0 (0.0) 1.7 (0.3) 0.6 (0.5) 0.2 (0.0) 0.4 (0.0) 0 (0.0) (0.4)
Too Long 0.2 (0.0) 0.3 (0.1) 251.8 (46.4) 49.4 (41.3) 218.3 (59.5) 66.6 (54.3) 18.5 (44.6) (42.7)

TABLE I
EVENTS CAUSED ON WIFI CHANNEL 11 BY WIFI ON INTERFERING CHANNELS OR DURING ZIGBEE, LTE OR MICROWAVE INTERFERENCE (AND NO

WIFI TRANSMISSION).

Receiver Event Description
Too Long Frame longer than 2346 bytes
Too Short Frame shorter than 16 bytes
Invalid MAC Header Protocol Version is not 0
Bad FCS Checksum Failure on frame payload
Bad PLCP Parity Check Failure on PLCP Header
Good PLCP PLCP headers and Parity Check OK
Good FCS and RA match Correct FCS matching the

Receiver Address
Good FCS and not RA match Correct FCS not matching the

Receiver Address
TABLE II

RECEIVER EVENTS REPORTED BY BCM4318 CARDS.

registers are documented and an interface for reading the
register values is available [23]. Table II summarizes the
receiver events tracked by this card, from which it is possible
to derive the receiver errors discussed in the previous section.
For producing a temporal trace of the receiver events, storing
the ordered sequence of event type and occurrence time, we
implemented a monitoring process devised to sample at regular
intervals the receiver registers. Indeed, the event occurrence
cannot be detected by the card host as an interrupt signal, but
needs to be indirectly identified by comparing the state of the
receiver registers in consecutive sampling times.

We set a sampling interval equal to 250µs as a trade-
off between detection delay and tracking complexity, while
avoiding the overloading of the card to host interface. Because
of the periodic sampling, multiple receiver events can occur in
the same monitoring interval. Event samples are represented
by a vector of eight components, whose value represents
the counter of each different event type. We also sampled
another card register, called busy time register, which does
not track the occurrence of receiver events but rather the
cumulative time during which the receiver remains active. The
differences among consecutive values of the busy time register
can be mapped into a logical idle/busy state of the channel as
observed by the receiver.

Figure 3 shows the operation of our monitoring process:
a real trace of receiver errors is mapped into a time series
of event vectors, in which we can easily recognize consec-
utive error bursts due to the same interfering transmission.
Error bursts can be originated for many different reasons: for
example, a checksum failure can follow the detection of a
good PLCP, or multiple (failed or not) synchronization trials
are performed after a bad PLCP event. The total number of
receiver events in a burst depends on the duration of the in-
terfering transmission and on the receiver implementation, i.e.
on the reset time required by the demodulator for performing

consecutive synchronization trials. Each burst can be delimited
by observing the time interval elapsed from the previous and
next events, and/or by considering the channel transitions from
idle to busy and from busy to idle as delimitation times.

C. Experimental Results
In order to experimentally validate our findings on the error

occurrence in presence of interfering signals, we run some
experiments in our lab at the University of Palermo in different
hours of the day (i.e. under uncontrollable interference from
other WiFi networks), by placing a monitoring WiFi card
set on channel 11 in the same room with heterogeneous
interfering sources. Four different interfering sources have
been considered: a ZigBee transmitter, a LTE transmitter, a
WiFi transmitter and a microwave oven. All transmitting nodes
have been configured for working on different interfering and
non-interfering channels, while their reciprocal distance has
been set to a few meters.

Two types of ZigBee nodes where used in our testbed.
Commercial Zolertia Z1 motes, based on Texas Instruments
CC2420 transceiver, and two custom-made nodes based on Mi-
crochip MRF24J40 transceiver. Both transceivers are 802.15.4
compatible and, in the experiments, they both generated the
same sequence of errors. For ease of presentation, the results
shown in the paper are based on the MRF24J40 transceiver
only. The ZigBee frames are transmitted at 250kbps with a
length of 127 bytes. WiFi transmitter has been implemented
by using the same Broadcom card used by the WiFi monitoring
node, with a frame length of 1500 bytes transmitted at 24 or
36 Mbps. The LTE-U transmitter, instead, was implemented
on a SDR platform based on USRP B-210 and the srsLTE
framework [24]. We considered a downlink interfering stream
with 5 MHz of bandwidth and 300 sub-carriers, centered on
channel 11. Following the standard, the whole frame allocation
time is 10ms composed of 10 sub-frames. The frame structure
has been organized introducing silent intervals and a fixed sub-
frame pattern, with mask [1,1,1,1,1,1,0,0,0,0] where 1 indicate
transmission allowed and 0 transmission denied.

1) Statistical Analysis: We run different experiments by
activating a single interference source in each experiment:
a WiFi interfering link at channel 11, 10 or 8; a ZigBee
interfering link with different transmission powers (0 dBm and
-23 dBm); an LTE interfering link with a transmission power
of 15 dBm; a Microwave oven. In case of WiFi link on channel
11, all the frames are detected with good PLCP and almost
all the frames have also a correct checksum. When the link
is moved on the adjacent channel 10, the monitoring station



5 10 15 20 25 30 35

Time (ms)

0

1

2

3

4

5

6
E

ve
nt

s

0 5 10 15 20 25 30 35

Time (ms)

0

1

2

3

4

5

6

7

E
ve

nt
s

Low Power

High Power

Fig. 4. Bursts of receiver events corresponding to the reception of ZigBee
frames at high and low power.

is able to correctly synchronize about one half of the frames
(50% of the PLCP headers pass the parity check and have good
rate values) which deterministically result in a failed FCS.
Moving the link to channel 8, that is 15 MHz apart from the
monitoring channel, significantly increases the detection of bad
PLCP errors which reach over 1700 errors/s. This is due to the
fact that when the receiver is not able to correctly synchronize
the frame preamble, consecutive trials can be performed during
the reception of the same frame and an higher number of error
events can be generated for the same frame. Now, the error
rates follow the statistics of non-WiFi modulated signals and
Too Long errors appear.

Similar statistics are observed for ZigBee, LTE and Mi-
crowave interference. For the ZigBee case, the transmission
power has an evident effect on the behavior of the WiFi
receiver. The total number of events triggered by the receiver
(the sum of Bad and Good PLCP events) increases from about
400 events/s to 1350 events/s with the same total number of
interfering transmissions. This requires to further investigate
on the receiver behavior, by observing the temporal trace of
receiver events.

2) Temporal Analysis: In order to identify the bursts of
errors generated by the same interfering transmission, we
performed a temporal analysis of the error traces collected
by our monitoring process. Figure 4 shows two exemplary
temporal traces of receiver events in both the cases of high
power and low power ZigBee transmissions with maximum
payload size. When the interfering signal is high, the receiver
employed in the Broadcom card is reset every 1ms for retrying
to synchronize a preamble. At each reset, a good or bad PCLP
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event occurs with probability 1/4 and 3/4. This implies that
during the reception of the ZigBee frame and corresponding
acknowledgment (if any), the receiver generates a burst of
events whose duration is about 4ms (for unacknowledged
frames) or 4.5ms (for acknowledged frames). For example,
in the top of figure 4, it is possible to easily recognize four
consecutive ZigBee frames, with errors spaced about 1ms
from each other. In case of low power transmissions (bottom
of figure 4), the demodulator reset is no more regular and more
receiver events are generated during each frame transmission,
as already evident from the observation of the total number
of receiver events in table I. The figure also shows the busy
time intervals measured by the internal registers of the WiFi
receiver. In principle, the transitions from idle to busy and
from busy to idle should allow to easily identify each ZigBee
interfering transmission. However, since the card implements
both the actual and virtual carrier sense mechanism, in case
of good PLCP events with valid headers, the card will assume
that the channel will be busy for a time interval corresponding
to: i) a frame length uniformly extracted in the range 14-4096
bytes, and ii) a transmission rate selected with equal probabil-
ity (namely, 1/8) among the available ones. Specifically, the
virtual duration is computed as the number of bytes indicated
in the LENGTH field divided by the rate indicated in the RATE
field. This explains why, when a good PLCP is raised during
the reception of a ZigBee frame, the actual busy time (i.e. the
maximum between the frame duration and the virtual busy
time generated by the random bits) can exceed 4.5ms.

Figure 5 shows a temporal trace of receiver events in case
of interference due to a Microwave oven. The oven switches



periodically on and off as most Microwave ovens. During
the radiation intervals, the WiFi monitoring node senses the
channel as busy, as evident from the alternating busy and idle
intervals plotted in the figure (whose length is 10 ms). Event
sequences are pretty different from the ones observed in case
of ZigBee transmissions: synchronization trials are performed
only at the beginning and at the end of the radiation interval
(rather than being continuously repeated). This can be due to
the power-on and power-down ramp of the Microwave, being
the demodulator unable to work when the radiation power is
stable.

Finally, figure 6 shows the receiver events in presence of
LTE transmissions. Under this interference source, the WiFi
receiver behavior resembles the case of high-power ZigBee in-
terference with the granularity of consecutive synchronization
trials equal to regular intervals of 1 ms. However, occasionally,
some events are closer to each other. We also observed, the
occurrence of the first synchronization trial is not always
synchronized with the the activation of the channel busy
register: for example, in the figure at time 20 ms the busy
channel state switches to 1, while the first event vector with
non-null components (namely, three Bad PLCP events) are
revealed after 2 ms.

V. INTERFERENCE DETECTION

The experimental results presented in the previous section
show that, although all non-WiFi interfering signals gener-
ate errors with similar statistics, their temporal analysis can
be exploited for discriminating among different interfering
sources. From the qualitative description of figures 4, 5 and
6 it clearly emerges that several features can be exploited for
such a discrimination, such as:

1) the number of simultaneous events read by the mon-
itoring process in the same sampling interval, which
depends on the interfering power, with an higher number
of synchronization trials performed in case of low power
signals;

2) the length of the error burst, delimited by means of the
correlation between the error vectors and the channel
busy register, which depends on the transmission time
of the interfering source;

3) the specific sequence of error vectors, which is affected
by the variability of the interfering power during the
same transmission (as in the case of Microwave ovens
and LTE frames) and exhibits completely different oc-
currence probabilities in case of WiFi modulated signals;

4) the time interval between consecutive error bursts due to
interfering transmissions, which depends on the typical
activation timings of the interference source.

We therefore propose to classify different interference sources
by analyzing the sequence of error vectors sampled at regular
time intervals by the reference WiFi receiver. To this purpose,
we modeled the receiver behavior under each interference
source with a hidden Markov chain, whose state-dependent
outputs are given by the sequence of observable error vectors.
Indeed, the receiver behavior in consecutive sampling intervals
exhibits some memory effects due to the power ramp of the

Fig. 7. Generalized state model of the receiver behavior: transition probabil-
ities depend on the interference source.

interfering source at the beginning and at the end of the
interfering transmission, and to the occurrence of a random
good preamble, that can be modeled in terms of receiver
internal states. Interference detection is then performed by
selecting the model for which the posterior probability to
obtain a given error sequence is maximized.

A. General receiver model

We propose to model the receiver behavior by means of
a Hidden Markov Model (HMM), whose discrete evolution
times correspond to the regular sampling intervals of our
monitoring process. Although at a given time it is not possible
to directly know which operations are performed by the
receiver, such as a synchronization trial, the demodulation
of a frame field, the gain adjustment, etc., the error vectors
generated by our monitoring process can be considered as
indirect observations of the receiver state. Being observations
generated at discrete times, we assume that model evolutions
are performed at the same time instants.

The adoption of a Markov chain is motivated by the need
of modeling the memory effects described in the temporal
analysis of the error vectors. Indeed, in case of high interfering
power, due for example to a microwave oven, non-null error
vectors are generated only at the beginning and at the end
of the interfering signal. Moreover, some specific error events
related to the non-valid frame formats (such as too long or too
short frames) are triggered only after the detection of a valid
preamble. Figure 7 shows our receiver model with five possible
states: the IDLE state corresponds to the time during which the
receiver is not active; the START and END states identifies the
initial and final stage of the receiver activation; the SYNC state
identifies the receiver operation after the synchronization of a
valid preamble; the NO SYNC state characterizes the multiple
synchronization trials performed when a valid preamble is not
detected.

The probability of switching from one state to another
depends on the errors detected by the receiver and on their
typical timings. The probability to observe a given error
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Fig. 8. Emission Probabilities of most significant observations for different
experiments (from top to bottom: WiFi, ZigBee, LTE-U and Microwave).

vector, also called emission probability, mostly depends on
the receiver internal state. The interfering source can affect the
emission probability, because multiple synchronization trials in
the same sampling interval can be performed in case of low
power signals. Moreover, the statistics of interference inter-
arrivals and durations are also incorporated into the receiver
model, being these time intervals related to the typical timings
of each technology. It follows that a different receiver model,
specified in terms of transition and emission probabilities,
can be used for characterizing the receiver behavior under
specific interference conditions. Interfering signals which do
not trigger the activation of the WiFi receiver are not detected
by our scheme.

B. Model training under different interfering sources

For describing the receiver model in presence of a given
interference source, we need to specify the transition probabil-
ity matrix governing the state evolution process, and emission
probability matrix characterizing the probability to observe
different error vectors from each state. To this purpose, we
collected a trace of error vectors (i.e. observations) acquired
in presence of a single interference source and tried to map
the sequence of observations into a known state path. While
the number of possible events summarized in table II is eight,
the overall number of possible error vectors is higher because
multiple events can be triggered during the sampling interval
of the card registers. However, in most cases error vectors have
a single non-null component and can be directly mapped into
an event.

For deriving a known state path, we implemented the
following approach. On the basis of the busy channel reg-
ister, we organized the error vector trace into alternating idle
and activity intervals of the receiver. During idle intervals,
observations are given by the null vectors (i.e. no event is
triggered) and the receiver remains in IDLE state. Conversely,
activity intervals are generally characterized by a burst of non-
null error vectors (although null vectors can appear within the
burst). For example, in the top of figure 4 there are four activity

intervals, with a last interval equal to the event sequence {Bad
PLCP, Bad PLCP, Bad PLCP, Good PLCP, Too Long}. The
state path corresponding to each activity interval can be easily
derived by considering that the first and last observations are
always performed from the START and END state, while all
the others depend on the last preamble synchronization.

We collected three different event traces of 10s under WiFi
traffic, ZigBee, LTE-U and Microwave interference. By using
each trace and corresponding state path, we obtained the
maximum likelihood estimates of the emission and transition
probabilities from each state, devised to characterize the re-
ceiver behavior in presence of different signals. The derivation
is based on the Baum-Welch algorithm. Figure 8 visualizes the
emission probabilities of the most significant observations for
different interference models. It is interesting to observe how
the figure quantifies our previous qualitative considerations.

For the WiFi model, most observations result in a syn-
chronized preamble followed by a correct checksum (that can
be sampled into the same observation interval or into two
consecutive observation intervals due to the short duration
of WiFi frames). Packet duration is equal to about 350 µs,
because we used frames with 1500 bytes transmitted at 36
Mbps. For the ZigBee model, bad preambles are generated
very often: about 70% of error bursts start with such an
event, while the other bad preambles are revealed during
the intermediate model states. Checksum failures, too long
frames or invalid MAC occur at the edge states or when
the receiver is synchronized. For the Microwave oven, bad
preambles are generated in the START and END states and
the no event probability is higher than the previous ones (being
the interference interval equal to 10 ms and the demodulator
active only during the power ramp). Finally, the LTE-U model
falls somehow in between the ZigBee and the microwave
model, with a slightly higher number of error events triggered.

Although the specific emission probabilities may depend on
the receiver implementation, and in particular on the reaction
times to synchronization errors and sensitivity to narrow-
band signals, the approach for training the hidden Markov
chain is general and can be applied to different receiver
implementations (provided that they can track the internal error
events).

C. Classification schemes

As a result of the training phase, we define four different
HMM models characterizing the receiver behavior in presence
of WiFi, ZigBee, Microwave and LTE-U interference. The
number of hidden states in the general receiver model, as
depicted in figure 7, is equal to 5. The number of possible
error vectors is higher than the total number of possible
events (which in our implementation is equal to 8), because
multiple events can be triggered during the same sampling
interval. However, being such a maximum number limited,
the total number of possible configurations is limited too
(in our experiments we found a maximum number of 40
different vectors). Let n be the generic number of states
and m be the total number of error vectors with non-null
occurrence probability. The receiver model in presence of the



k-th interference source is given by the transition probability
matrix Pn×n

k and emission probability matrix En×m
k found

by the training mechanism described in the previous section.
We propose two different approaches for classifying the

interference sources acting on the target WiFi receiver. The
first approach is based on the classification of the receiver
behavior in a fixed time interval corresponding to N samples
of the error vectors. The classification interval is small enough
(e.g. a few tens of ms) so that error bursts belonging to the
same interval are likely generated by the same interference
source. The second approach is based on the classification
of the receiver behavior during a given error burst delimited
by the channel busy register (i.e. a single frame or a single
microwave radiation period). In this case, idle times between
consecutive error bursts are not considered for the classifica-
tion.

Time-based classification. For a given sequence of error
vectors e = e1, e2, · · · eN , our classification scheme works
by selecting the interference model which maximizes the
probability of obtaining the sequence e, i.e. the interfering
source is k = argmaxk Pr{e|Pk, Ek}. Since the state path
which generated the sequence is not known, the probability
Pr{e|Pk, Ek} can be obtained by deriving the state proba-
bility at each sampling interval i = 1, · · ·N of the sequence,
and by weighting accordingly the emission probability of each
observation ei from each state. A critical design parameter
is choosing N : too short intervals could not include error
bursts and inter-burst typical timings (on which classification is
based), but as the observation interval increases, error bursts
and idle times in the same sequence could be given by the
overlapping of heterogeneous interference sources.

Burst-based classification. In this case, the sequence of
error vectors e has a variable length L and corresponds to
a single error burst. The burst is delimited by using the busy
channel register. Classification is still based on the selection
of the interference model which maximizes the probability
of obtaining the sequence e, but the state path is partially
known because it is delimited by the known START and END
state, whose occurrence probability are equal to 1, respectively,
at time 1 and time L of the burst. Moreover, transitions to
IDLE, START and END states are not possible during the
intermediate sampling intervals of the sequence, which cor-
responds to update the transition probabilities by considering
these conditioning considerations. Since classification works
on each error burst, consecutive bursts can be generated by
heterogeneous sources and the scheme works as long as no
collision occurs among interfering sources.

D. Performance results

For assessing the performance of our classification schemes,
we considered the case when a single interference source is
active. Figures 9 and 10 visualize the classification results
obtained by the time-based and burst-based classification
in presence of ZigBee interference. The figure shows the
logarithm of the occurrence probability of each sequence
e computed according to the four interfering models: for
the time-based approach the sequence lasts 50 ms (i.e. 200
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Fig. 9. Comparison between the time-based receiver models for a sequence
of errors vectors due to ZigBee transmissions (N = 200).
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Fig. 10. Comparison between the burst-based receiver models for a sequence
of error bursts due to ZigBee transmissions.

error vectors), while for the burst-based approach the average
duration is 4.5 ms (i.e. 18 error vectors). From the figure it is
evident that the highest probability corresponds to the ZigBee
interference source in almost all the cases. Moreover, in figure
10 the results provided by the WiFi model are very far from
the other models, while in figure 9 they are not shown because
outside the plotted range. Similar results were obtained also
with the other interference sources.

The classification accuracy can be defined as the ratio
between the total number of correct decisions (in which the
highest occurrence probability of a given sequence has been
given by the correct model) and the total number of processed
sequences. For the time-based approach, it is evident that the
accuracy may depend on the length of the observation interval.
Figure 11 shows the accuracy results obtained for different
lengths of the observation interval (from 20 ms to 200 ms)
and for different interference sources. From the figure it is
clear that in many cases the accuracy is above 95%, with the
worst results given by the microwave oven, for which longer
observation intervals can help. Table III shows the overall
confusion matrix of our time-based classifier for N = 200 (i.e.
50 ms): indeed, microwave interference can be confused with
LTE interference because of the periodic activity intervals.

Although the time-based classification works on longer
sequences which include information on idle times between
consecutive transmissions, the classification accuracy achieved
by the burst-based scheme is comparable with the one obtained
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WiFi ZigBee Microwave LTE-U
WiFi 100.0 0.0 0.0 0.0
ZigBee 0.0 98.0 1.8 0.2
Microwave 0.0 1.7 86.6 11.7
LTE-U 0.0 0.0 0.3 99.7

TABLE III
CONFUSION MATRIX WITH TIME-BASED DECISIONS (N=200).

by the time-based approach. This consideration is quantified
in table IV: the accuracy is on average close to 90% and
never lower than 80%. It follows that, if the busy channel
register is reliable for correctly identifying the bursts, this
approach should be considered the most valuable approach
for working in general scenarios where multiple interference
sources are active. Classification of independent bursts (gen-
erates by different technologies) should work as in the case
of single interference sources, apart from the case when the
burst is generated by collisions between multiple interference
sources. This type of combined interference, in principle,
can be modeled for introducing more advanced interference
detection schemes (able for example to recognize WiFi/ZigBee
collisions). However, the identification of such events is of
little interest and is out of the scope of this paper.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we investigated on the possibility to detect Zig-
Bee, LTE-U or microwave interference by using commodity
WiFi cards. Differently from previous solutions, our approach
is based on the analysis of the error signals generated by
WiFi receivers when triggered by non-WiFi modulated signals.
We prove that the statistics of these signals and the temporal
sequences of the error events can be effectively correlated for
detecting the presence of non-WiFi signals and identifying the
interfering technology. In particular, the length of the error
burst and the timing between consecutive bursts depend on the
duration and access times typical of the interfering technology,

WiFi ZigBee Microwave LTE-U
WiFi 100.0 0.0 0.0 0.0
ZigBee 0.0 90.0 4.6 5.4
Microwave 0.2 1.7 89.6 8.5
LTE-U 0.0 4.9 13.0 82.2

TABLE IV
CONFUSION MATRIX WITH BURST-BASED DECISIONS.

while the number of error events generated in a sampling
interval depends on the interfering power.

Starting from these observations, we propose to monitor the
receiver events in consecutive sampling intervals for classify-
ing the active interference sources. In particular, we defined
a classifier based on a simple Hidden Markov Model, able
to characterize the receiver behavior in presence of different
interference sources. A methodology for training the model
and segment the sequence of consecutive events in order to
take run-time decisions has been designed and evaluated. Our
experimental results show that the accuracy is on average over
90% even with the burst-based, per-packet analysis.

Although in this work we focused on interference detection
from WiFi receivers, we expect that our methodology can be
extended for working with other error types and receivers in
ISM bands, such as commodity ZigBee receivers. We are also
considering alternative approaches for classification, based for
example on neural networks.
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