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Abstract

Progress in scientific knowledge discloses an increasingly paramount use of quantifiable properties in the description of states and
processes of the real-world physical systems. Through our encounters with the physical world, it reveals itself to us as systems
of uncertain quantifiable properties. One approach proved to be most fundamental and reliable in coping with quantifiable
uncertainties is interval mathematics. A main drawback of interval mathematics, though, is the persisting problem known as the
“interval dependency problem”. This, naturally, confronts us with the question: Formally, what is interval dependency? Is it a
‘meta-concept’ or an ‘object-ingredient’ of interval and fuzzy computations? In other words, what is the fundamental defining
properties that characterize the notion of interval dependency as a formal mathematical object? Since the early works on interval
mathematics by John Charles Burkill and Rosalind Cecily Young in the dawning of the twentieth century, this question has
never been touched upon and remained a question still today unanswered. Although the notion of interval dependency is widely
used in the interval and fuzzy literature, it is only illustrated by example, without explicit formalization, and no attempt has
been made to put on a systematic basis its meaning, that is, to indicate formally the criteria by which it is to be characterized.
Here, we attempt to answer this long-standing question. This article, therefore, is devoted to presenting a complete systematic
formalization of the notion of interval dependency, by means of the notions of Skolemization and quantification dependence. A
novelty of this formalization is the expression of interval dependency as a logical predicate (or relation) and thereby gaining the
advantage of deducing its fundamental properties in a merely logical manner. Moreover, on the strength of the generality of the
logical apparatus we adopt, the results of this article are not only about classical intervals, but they are meant to apply also to any
possible theory of interval arithmetic. That being so, our concern is to shed new light on some fundamental problems of interval
mathematics and to take one small step towards paving the way for developing alternate dependency-aware interval theories and
computational methods.
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In logic there is no such thing as a hidden connection. You can’t get behind the rules because
there isn’t any behind.

–Ludwig Wittgenstein (1889–1951)

1 Introduction

Acquiring scientific knowledge discloses an ever-increasing use of quantifiable features of real-world physical systems.
Many features of the physical world represent themselves to us as numerical values. Three farads capacitance, six
becquerels radioactivity, and nine metres depth are common examples of quantifiable properties. The numerical values
of quantifiable properties are established by means of measurement. Through our encounters with the physical world,
measurements cannot, nevertheless, provide perfect exactitude and measurable magnitudes are usually uncertain. In
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the effort to deal with quantifiable uncertainties, various theoretical approaches have been developed. Among these,
one can mention: probabilitization, fuzzification, and intervalization. One approach that proved to be subtle, reliable,
and most fundamental in all of mathematics of uncertainty is interval mathematics.

The term “interval arithmetic” is reasonably recent: it dates from the 1950s, when the works of Paul S. Dwyer,
Ramon Edgar Moore, Raymond E. Boche, Sidney Shayer, and others made the term popular (see, [30], [55], [7], and
[64]). But the idea of calculating with intervals is not completely new in mathematics: in the course of history, it
has been invented and re-invented several times, under different names, and never been abandoned or forgotten. The
concept has been known since the third century BC, when Archimedes used guaranteed lower and upper bounds to
compute his constant, π (see [38]).

Early in the twentieth century, the idea seemed to be rediscovered. A form of interval arithmetic perhaps first
appeared in 1924 by John Charles Burkill in his paper “Functions of Intervals” ([8]), and in 1931 by Rosalind Cecily
Young in her paper “The Algebra of Many-Valued Quantities” ([73]) that gives rules for calculating with intervals and
other sets of real numbers; then later in 1951 by Paul S. Dwyer in his book “Linear computations” ([30]) that discusses,
in a heuristic manner, certain methods for performing basic arithmetic operations on real intervals, and in 1958 by
Teruo Sunaga in his book “Theory of an Interval Algebra and its Application to Numerical Analysis” ([66]).

However, it was not until 1959 that new formulations of interval arithmetic were presented. Modern developments
of the interval theory began in 1959 with Moore’s technical report “Automatic Error Analysis in Digital Computation”
([55]) in which he developed a number system and an arithmetic dealing with closed real intervals. He called the
numbers “range numbers” and the arithmetic “range arithmetic” to be the first synonyms of “interval numbers” and
“interval arithmetic”. Then later in 1962, Moore developed a theory for exact or infinite precision interval arithmetic
in his very influential dissertation entitled “Interval Arithmetic and Automatic Error Analysis in Digital Computing”
([56]) in which he used a modified digital (rounded) interval arithmetic as the basis for automatic analysis of total error
in a digital computation. In his comprehensive book “Interval Analysis" ([57]), Moore was the first to define interval
analysis in its modern sense and recognize its practical power as a viable computational tool for bounding errors and
intervalizing uncertainty. Since then, thousands of research papers and numerous books have appeared on the subject.

By integrating the complementary powers of rigorous mathematics and scientific computing, interval arithmetic
is able to offer highly reliable accounts of uncertainty. Not surprisingly, therefore, that the interval theory has been
fruitfully applied in diverse areas that deal intensely with uncertain quantitative data (see, e.g., [17], [19], [29], [28],
[34], [45], [47], and [59]). In view of its computational power against error, machine realizations of interval arithmetic
are of great importance. As a matter of course, there are various software implementations of interval arithmetic.
As instances, we may mention INTLAB, Sollya, InCLosure and others (see, e.g., [63], [11], [18], and [53]). Fortunately,
computers are getting faster and most existing parallel processors provide a tremendous computing power. So, with
little extra hardware, it is very possible to make interval computations as fast as floating point computations (For further
reading about machine arithmetizations and hardware circuitries for interval arithmetic, see, e.g., [15], [19], [44], [43],
[48], [60], [40], and [41]).

Despite all of the above mentioned advantages of interval mathematics, it has its disadvantages as well. A main
drawback of interval mathematics is the persisting problem known as the “interval dependency problem”. This,
naturally, confronts us with the crucial question: Formally, what is interval dependency? Is it a meta-concept or an
object-ingredient of interval and fuzzy mathematics? In other words, what is the fundamental defining properties that
characterize the notion of interval dependency as a formal mathematical object? Since the early works on interval
mathematics by Burkill [8] and Young [73] in the dawning of the twentieth century, this question has never been
touched upon and remained a question still today unanswered. Although the notion of interval dependency is widely
used in the interval and fuzzy literature, it is only illustrated by example, without explicit formalization, and no attempt
has been made to put on a systematic basis its meaning, that is, to indicate formally the criteria by which it is to be
characterized. Here, we attempt to answer this long-standing question.

To reiterate, what exactly is the sense of saying that two intervals are dependent (independent)? and how does
the dependency of two intervals 2X and X differ from that of X2 and X? Our aim here is to propose a precise logical
characterization of the notion of interval dependency and to begin the development of a rigorous mathematical theory
which formally characterizes and explains the differences between all cases of interval dependency. That being so,
the problem to be dealt with in this text is that of the possibility and the scope of a symbolic formalization of interval
dependency. The indispensable role of symbolic formalizations can neither be ignored nor denigrated. Kleene, in [42],
best described this by saying:

“Anyone who doubts the advantages of symbols (in their proper place) is invited to solve the equation
x2 +3x−2 = 0 by completing the square (as taught in high school), but doing all the work in words. We
start him off by stating the equation in words: The square of the unknown, increased by three times the
unknown, and diminished by two, is equal to zero.”
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With an eye toward making the adopted formal approach clearly comprehensible, before moving on to the main
business of the text, we set the stage by fixing our formalized apparatus early in section 2. In section 3, we give a
characterization of the classical interval theory as a many-sorted algebra over the real field and deduce some of the
fundamental properties of interval numbers. Section 4 is devoted to providing a bit of perspective on the need for
interval mathematics to deal with quantifiable uncertainties, along with giving a description of the interval dependency
problem and the challenges thereof. The objective of section 5 is to justify a symbolic notation suitable for our
purpose and to delve into some important fundamentals concerning the logical formulation of the notion of functional
dependence and some related notions. In section 6, we attempt to answer the long-standing question concerning the
defining properties that characterize the notion of interval dependency as a formal mathematical object. We present a
complete systematization of the notion of interval dependency, by means of the logical notions of Skolemization and
quantification dependence. Finally, in section 7, we discuss briefly how to compute useful guaranteed enclosures of
real-valued functions under functional dependence. The numerical examples of section 7 are computed using version
2.0 of InCLosure. The InCLosure commands 1 to compute the results of the examples are described and an InCLosure
input file and its corresponding output containing, respectively, the code and results of the examples are also available
as a supplementary material to this text (see Supplementary Materials).

What is then the fundamental importance of a logical formalization of interval dependency? The authors believe
that such a formalization, hopefully, might have a worthwhile impact on both fundamental research and real world
applications. Effort in pursuit of this aim can have many fruitful consequences. A novelty of this formalization is the
expression of interval dependency as a logical predicate (or relation) and thereby gaining the advantage of deducing its
fundamental properties in a merely logical manner. The mathematical theory developed in the present article formally
characterizes and explains the differences between all cases of interval dependency, and thus sheds new light on many
fundamental problems of interval mathematics. Moreover, taking the passage from the informal treatments to the
formal technicalities of mathematical logic, a breakthrough behind our systematization of interval dependency is that it
paves the way and provides the systematic apparatus for developing alternate dependency-aware interval theories and
computational methods with mathematical constructions that better account for dependencies between the quantifiable
uncertainties of the real world. Noteworthy also is that on the strength of the generality of the logical apparatus we
adopt, the results of this article are not only about Moore’s classical intervals, but they are meant to apply also to any
possible theory of interval arithmetic.

2 A Bit of Formalism: Setting the Stage

In order to be able to give a complete systematic formalization of the notion of interval dependency and related notions,
we do need readily available a formal apparatus. So, the adaptation of a particular formal approach, other than that of
natural language, is of the utmost importance and has been forced on us by the pursuit of formulating the underlying
ideas in a strictly accurate manner that all the results of this work can be generated from clear and distinct elementary
concepts. Therefore, before moving on to the main business of this article, we begin in this section by specifying some
notational conventions and formalizing some purely logical and algebraic ingredients we shall need throughout this
text (For further details about the notions prescribed here, the reader may consult, e.g., [5], [22], [23], [26], [19], [28],
and [54]).

Most of our notions are characterized in terms of ordinals and ordinal tuples. So, we first define what an ordinal is.
An ordinal is the well-ordered set of all ordinals preceding it. That is, for each ordinal n, there exists an ordinal S (n)
called the successor of n such that

(∀n)(∀k)(k = S (n)⇔ (∀m)(m ∈ k⇔ m ∈ n∨m = n)) .

In other words, we have S (n) = n∪{n}. Accordingly, the first infinite (transfinite) ordinal is the set ω = {0,1,2, ...}.
All ordinals preceding ω (all elements of ω) are finite ordinals. The idea of transfinite counting (counting beyond the
finite) is due to Cantor (See [9]).

With the aid of ordinals, the notions of countably finite, countably infinite and uncountably infinite sets can be
characterized as follows. A set S is countably finite if there is a bijective mapping from S onto some finite ordinal
n ∈ ω . A set S is countably infinite (or denumerable) if there is a bijective mapping from S onto the infinite ordinal
ω . For example the set {a0,a1,a2} is countably finite because it can be bijectively mapped onto the finite ordinal
3 = {0,1,2}, while the set {a0,a1,a2, ...} is denumerable because it can be bijectively mapped onto the infinite ordinal
ω = {0,1,2, ...}. An uncountably infinite set is an infinite set which is not countably infinite. For example the set R of
real numbers is uncountably infinite.

The notion of an n-tuple is characterized in the following definition.

1InCLosure (Interval enCLosure) is a language and environment for reliable scientific computing, which is coded entirely in Lisp. Latest version of
InCLosure is available for free download via https://doi.org/10.5281/zenodo.2702404.

Online Mathematics, ISSN: 2672-7501 – 17 – OMJ, 01 (03): 15–36, 2019; doi:10.5281/zenodo.3234184

https://doi.org/10.5281/zenodo.2702404
http://doi.org/10.5281/zenodo.3234184


Hend Dawood and Yasser Dawood A Logical Formalization of the Notion of Interval Dependency

Definition 2.1 (Ordinal Tuple). For an ordinal n = S(k), an n-tuple (ordinal tuple) is any mapping τ whose domain is n.
A finite n-tuple is an n-tuple for some finite ordinal n. That is

τS(k) = 〈τ (0) ,τ (1) , ...,τ (k)〉
= 〈(0,τ (0)) ,(1,τ (1)) , ...,(k,τ (k))〉 .

If n = 0 =∅, then, for any set S, there is exactly one mapping (the empty mapping) τ∅ =∅ from ∅ into S.
An important definition we shall need is that of the Cartesian power of a set.

Definition 2.2 (Cartesian Power). Let ∅ denote the empty set. For a set S and an ordinal n, the n-th Cartesian power
of S is the set Sn of all mappings from n into S, that is

Sn =

{
{∅} n = 0,

the set of all n-tuples of elements of S n = 1∨1 ∈ n.

If S is the empty set ∅, then 2

∅n =

{
{∅} n = 0,
∅ n = 1∨1 ∈ n; and ∅∅n

=

{
∅ n = 0,
{∅} n = 1∨1 ∈ n.

In accordance with the preceding definitions, a set-theoretical relation is a particular type of sets. Let S2 be the
binary Cartesian power of a set S . A binary relation on S is a subset of S2. That is, a set ℜ is a binary relation on a set
S iff (∀r ∈ℜ)((∃x,y ∈ S)(r = (x,y)).

We will continue to follow the formal tradition of Suppes [67] and Tarski [69] in defining, within a set-theoretical
framework, the notion of a finitary relation and some related concepts. Let Un be the n-th Cartesian power of a set U .
A set ℜ⊆ Un is an n-ary relation on U iff ℜ is a binary relation from Un−1 to U . That is, for v = (x1, ...,xn−1) ∈ Un−1

and y ∈ U , an n-ary relation ℜ is defined to be ℜ⊆ Un = {(v,y) |v ∈ Un−1∧ y ∈ U}. In this sense, an n-ary relation
is a binary relation (or simply a relation); then its domain, range, field, and converse are defined to be, respectively
dom(ℜ) = {v ∈ Un−1|(∃y ∈ U)(vℜy)}, ran(ℜ) = {y ∈ U|

(
∃v ∈ Un−1

)
(vℜy)}, fld(ℜ) = dom(ℜ)∪ ran(ℜ), and

ℜ̂ = {(y,v) ∈ Un|vℜy}. It is thus obvious that yℜ̂v⇔ vℜy and
̂̂
ℜ = ℜ.

Two important notions, for the purpose at hand, are the image and preimage of a set, with respect to an n-ary
relation. These are defined as follows ([16] and [28]).

Definition 2.3 (Image and Preimage of a Relation). Let ℜ be an n-ary relation on a set U , and for (v,y) ∈ ℜ, let
v = (x1, ...,xn−1), with each xk is restricted to vary on a set Xk ⊂ U , that is, v is restricted to vary on a set V⊂ Un−1.
Then, the image of V (or the image of the sets Xk) with respect to ℜ, denoted Iℜ, is defined to be

Y = Iℜ (V) = Iℜ (X1, ...,Xn−1)

= {y ∈ U|(∃v ∈ V)(vℜy)}
= {y ∈ U|

(
∃n−1

k=1xk ∈ Xk
)
((x1, ...,xn−1)ℜy)},

where the set V, called the preimage of Y , is defined to be the image of Y with respect to the converse relation ℜ̂, that is

V = I
ℜ̂
(Y ) = {v ∈ Un−1|(∃y ∈ Y )

(
yℜ̂v

)
}.

In accordance with this definition and the fact that yℜ̂v⇔ vℜy, we obviously have Y = Iℜ (V)⇔ V = I
ℜ̂
(Y ).

Now for a mathematically satisfactory characterization of a finitary function. Within this set-theoretical framework,
a completely general definition of the notion of an n-ary function can be formulated. A set f is an n-ary function on a
set U iff f is an (n+1)-ary relation on U , and (∀v ∈ Un)(∀y,z ∈ U)(v f y∧v f z⇒ y = z). Thus, an n-ary function is a
many-one (n+1)-ary relation; that is, a relation, with respect to which, any element in its domain is related exactly to
one element in its range. Getting down from relations to the particular case of functions, we have at hand the standard
notation: y = f (v) in place of v f y. From the fact that an n-ary function is a special kind of relation, then all the
preceding definitions and results, concerning the domain, range, field, and converse of a relation, apply to functions as
well.

With some criteria satisfied, a function is called invertible. A function f has an inverse, denoted f−1, iff its converse
relation f̂ is a function, in which case f−1 = f̂ . In other words, f is invertible if, and only if, it is an injection from

2Amer in [3] used the n-th Cartesian power of ∅ to define empty structures, and axiomatized their first-order theory.
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its domain to its range, and obviously the inverse f−1 is unique, from the fact that the converse relation is always
definable and unique.

A formalized theory is characterized by two things; an object language in which the theory is formalized (the
symbolism of the theory), and a set of axioms. Let L be an object formal language. A formalized theory in L (or an
L-theory) is a set of L-sentences which is closed under its associated deductive apparatus. Let ΛT denote a finite set of
L-sentences, and let ϕ denote an L-sentence. The formalized L-theory T of the set ΛT is the deductive closure of ΛT

under logical consequence, that is

T= {ϕ ∈ L|ϕ is a consequence of ΛT}.

The set ΛT is called the set of axioms (or postulates) of T.
A model (or an interpretation) of a theory T is some particular (algebraic or relational) structure that satisfies every

formula of T. Finally, we close this section by characterizing some algebraic structures of particular importance to our
purpose (see [19] and [28]).

Definition 2.4 (Ringoid). A ringoid (or a ring-like structure) is a structure R = 〈R;+R,×R〉 with +R and ×R are
total binary operations on the universe setR. The operations +R and ×R are called respectively the addition and
multiplication operations of the ringoid R.

Definition 2.5 (S-Ringoid). An S-ringoid (or a subdistributive ringoid) is a ringoid that satisfies at least one of the
following subdistributive criteria.

(i) (∀x,y,z ∈R)(x×R (y+R z)⊆ x×R y+R x×R z),

(ii) (∀x,y,z ∈R)((y+R z)×R x⊆ y×R x+R z×R x).

Criteria (i) and (ii) in the preceding definition are called respectively left and right subdistributivity (or S-
distributivity).

Definition 2.6 (Semiring). Let R= 〈R;+R,×R〉 be a ringoid. R is said to be a semiring iff

(i) 〈R;+R〉 is a commutative monoid with identity element 0R,

(ii) 〈R;×R〉 is a monoid with identity element 1R,

(iii) Multiplication, ×R, left and right distributes over addition, +R,

(iv) 0R is an absorbing element for ×R.

A commutative semiring is one whose multiplication is commutative.

Definition 2.7 (S-Semiring). An S-semiring (or a subdistributive semiring) is an S-ringoid that satisfies criteria (i), (ii),
and (iv) in definition 2.6. A commutative S-semiring is one whose multiplication is commutative.

At this point, let us note that the notion of S-semiring is a generalization of the notion of a near-semiring; a
near-semiring is a ringoid that satisfies the criteria of a semiring except that it is either left or right distributive (For
detailed discussions of near-semirings and related concepts, the interested reader may consult, e.g., [71], [61], and [12]).

3 The Theory of Interval Algebra over the Real Field

With the formalized apparatus of section 2 at our disposal, the main business of this section is to give a formalized
characterization of the theory ThI of classical interval arithmetic over the real field. There are many theories of
interval arithmetic (see, e.g., [37], [48], [36], [51], [50], [40], [41], [15], [25], [21], and [28]). We are here interested in
characterizing classical interval arithmetic as introduced in, e.g., [55], [64], [59], [17], [19], and [27]. Notwithstanding,
on the strength of the generality of the logical apparatus we adopt in this work, the formalization of interval dependency
presented in the succeeding sections and the results thereof are not only about Moore’s classical intervals, but they are
meant to apply also to any possible theory of interval arithmetic.

Our adopted strategy to obtain a concrete system of classical interval numbers is to start with the field of real
numbers and to “intervalize” it, by defining new interval relations and operations. In other words, the theory ThI of
real intervals will be constructed as a definitional extension of the theory of real numbers. Hereafter and throughout
this work, the machinery used, and assumed priori, is the standard (classical) predicate calculus and axiomatic set
theory. Moreover, in all the proofs, elementary facts about operations and relations on the real numbers are usually
used without explicit reference.

A theory ThI of a real interval algebra (a classical interval algebra or an interval algebra over the real field) is
characterized in the following definition (see [17] and [19]).
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Definition 3.1 (Theory of Real Interval Algebra). Take σ = {+,×;−,−1 ;0,1} as a set of non-logical constants and let
R=

〈
R;σR

〉
be the totally ≤-ordered field of real numbers. The theory ThI of an interval algebra over the field R is

the theory of a two-sorted structure IR =
〈
IR;R;σIR

〉
prescribed by the following set of axioms.

(I1) (∀X ∈ IR)(X = {x ∈ R|(∃x ∈ R)(∃x ∈ R)(x≤R x≤R x)}),

(I2) (∀X ,Y ∈ IR)
(
◦ ∈ {+,×}⇒ X ◦IR Y = {z ∈ R|(∃x ∈ X)(∃y ∈ Y )(z = x◦R y)}

)
,

(I3) (∀X ∈ IR)
(
� ∈ {−}∨

(
� ∈ {−1}∧0IR 6⊆ X

)
⇒�IRX = {z ∈ R|(∃x ∈ X)(z = �Rx)}

)
.

The sentence (I1) of definition 3.1 characterizes what an interval number (or a closed R-interval) is. The sentences
(I2) and (I3) prescribe, respectively, the binary and unary operations for R-intervals. Hereafter, the upper-case Roman
letters X , Y , and Z (with or without subscripts), or equivalently [x,x],

[
y,y
]
, and [z,z], shall be employed as variable

symbols to denote real interval numbers. A point (singleton) interval number {x} shall be denoted by [x]. The letters A,
B, and C, or equivalently [a,a],

[
b,b
]
, and [c,c], shall be used to denote constants of IR. Also, we shall single out the

symbols 1I and 0I to denote, respectively, the singleton R-intervals {1R} and {0R}. For the purpose at hand, it is
convenient to define two proper subsets of IR: the sets of symmetric interval numbers and point interval numbers.
Respectively, these are defined and denoted by

IS = {X ∈ IR|(∃x ∈ R)(0≤ x∧X = [−x,x])},
I[x] = {X ∈ IR|(∃x ∈ R)(X = [x,x])}.

From the fact that real intervals are totally ≤R-ordered subsets of R, equality of R-intervals follows immediately
from the axiom of extensionality 3 of set theory. That is,

[x,x] =I
[
y,y
]
⇔ x =R y∧ x =R y.

Since R-intervals are ordered sets of real numbers, it follows that the next theorem is derivable from definition 3.1
(see [17] and [20]).

Theorem 3.1 (Interval Operations). For any two interval numbers [x,x] and
[
y,y
]
, the binary and unary interval

operations are formulated in terms of the intervals’ endpoints as follows.

(i) [x,x]+I
[
y,y
]
=
[
x+R y,x+R y

]
,

(ii) [x,x]×I
[
y,y
]
=
[
min{x×R y,x×R y,x×R y,x×R y},max{x×R y,x×R y,x×R y,x×R y}

]
,

(iii) −I [x,x] = [−Rx,−Rx],

(iv) 0I 6⊆ [x,x]⇒ [x,x]
−1I

=
[
x
−1R ,x

−1R
]
,

where min and max are respectively the ≤R-minimal and ≤R-maximal.

Wherever there is no confusion, we shall drop the subscripts I and R. It is obvious that all the interval operations,
except interval reciprocal, are total operations. The additional operations of interval subtraction and division can be
defined respectively as X−Y = X +(−Y ) and X÷Y = X×

(
Y
−1
)

.
Classical interval arithmetic has a number of peculiar algebraic properties: The point intervals 0I and 1I are identity

elements for addition and multiplication, respectively; interval addition and multiplication are both commutative
and associative; interval addition is cancellative; interval multiplication is cancellative only for zeroless intervals; an
interval number is invertible for addition (respectively, multiplication) if and only if it is a point interval (respectively, a
nonzero point interval); and interval multiplication left and right subdistributes over interval addition (see definition 2.5
of section 2). To sum up, according to definition 2.7, the structure 〈IR;+I ,×I ;0I ,1I〉 of classical interval numbers is
a commutative S-semiring ([17] and [19]).

Throughout this text, we shall employ the following theorem and its corollary (see, [16], and [17]).

Theorem 3.2 (Inclusion Monotonicity in Classical Intervals). Let X1, X2, Y1, and Y2 be interval numbers such that
X1 ⊆ Y1 and X2 ⊆ Y2. Then for any binary operation ◦ ∈ {+,×} and any definable unary operation � ∈ {−,−1 }, we
have

(i) X1 ◦I X2 ⊆ Y1 ◦I Y2,

3The axiom of extensionality asserts that two sets are equal if, and only if they have precisely the same elements, that is, for any two sets S and
T , S = T ⇔ (∀z)(z ∈ S⇔ z ∈ T ).
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(ii) �IX1 ⊆ �IY1.

In consequence of this theorem, from the fact that [x,x]⊆ X ⇔ x ∈ X , we have the following important special
case.

Corollary 3.1 (Membership Monotonicity for Classical Intervals). Let X and Y be real interval numbers with x ∈ X
and y ∈ Y . Then for any binary operation ◦ ∈ {+,×} and any definable unary operation � ∈ {−,−1 }, we have

(i) x◦R y ∈ X ◦c Y ,

(ii) �Rx ∈ �cX.

If we endow the classical interval algebra 〈IR;+I ,×I ;0I ,1I〉 with the compatible partial ordering ⊆, then we
have a partially-ordered commutative S-semiring. In addition to ordering intervals by the set inclusion relation ⊆,
there are many orders presented in the interval literature. Among these is Moore’s partial ordering which is defined
by [x,x]<M

[
y,y
]
⇔ x <R y. In contrast to the case for ⊆, Moore’s partial ordering <M is not compatible with the

algebraic operations on IR (see [17] and [24]).
Some numerical examples are shown below.

Example 3.1 (Classical Interval Operations). For three given interval numbers [1,2], [3,4], and [−2,2], we have

(i) [1,2]+ [3,4] = [4,6],

(ii) [1,2]× [3,4] = [3,8],

(iii) [1,2]
−1

= [1/2,1],

(iv) [−2,2]
2
= [−2,2]× [−2,2] = [−4,4].

Example 3.2 (Moore’s and Inclusion Orders). For four given interval numbers A = [1,2], B = [1,2], C = [1,3], and
D = [4,7], we have A = B <M D and A⊆ B⊆C.

4 Intervalization of Physical Uncertainties and the Dependency Problem

When modelling and predicting a real-world or physical phenomena, we often face the problem that, through our
encounters with the real-world phenomena, it reveals its present and future states to us as systems of uncertain
quantifiable properties. Tackling such uncertainties introduces two different problems: getting guaranteed bounds of
the exact value of a quantifiable property and computing an approximation of the value. The two problems are very
different. In many practical applications, the numerical approximations provided by machine real arithmetic are not
beneficial. In robotics and control applications, for example, it is important to have guaranteed inclusions of the exact
values in order to guarantee stability under uncertainty (see [17] and [28]). The two problems are not equivalent. The
implication

“getting guaranteed bounds”⇒ “computing approximations”,

is true, but the converse implication is not. Interval arithmetic provides us a reliable way to get guaranteed bounds when
modelling physical systems under uncertainty. An interval number (a real closed interval) is then a reliable enclosure of
an uncertain real-valued quantity, and an interval function is accordingly a reliable enclosure of an uncertain real-valued
function.

Error is a definiens of uncertainty in measurable magnitudes. To measure is to err and to acquire quantitative
knowledge about the world involves measurements. Quantitative uncertainty can then be defined to be the quantitative
estimation of errors present in measured data; all measurements contain some uncertainty generated through many
types of error. Error (“mistaken result”, or “mistaken outcome”) is common in all scientific practice, and is always a
serious threat to the search for a trustworthy scientific knowledge and to reliable epistemic foundations of science. In
1597, Sir Francis Bacon defined science as “the process used everyday to logically complete thoughts through inference
of facts determined by calculated experiments”. The epistemology of scientific knowledge, that is the study of how
scientific knowledge is acquired, tells us that in all scientific disciplines, our knowledge of real-world systems (which
can be physical, chemical, biological, economical, social, and so forth) is acquired through observing, experimenting,
measuring identifiable features, and formulating hypotheses with the aid of formal reasoning ([17] and [24]). In their
way to acquire this knowledge, scientists and engineers always perform one or both of the following two inquiries:

• Present-State Inquiry. To quantify an identifiable property ρ that provides some information about the present
state of the real-world system.
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• Future-State Inquiry. To quantify an identifiable property τ that provides some information about a future
state of the real-world system.

In most practical problems, the properties ρ and τ are not directly identifiable, that is, they are not quantifiable
by direct measurements or expert estimations. However, we usually know a present-state function (or algorithm) p
that relates the present property ρ to some quantifiable auxiliary properties x1, ...,xm, and a future-state function (or
algorithm) f that relates the future property τ to some quantifiable auxiliary properties y1, ...,yn. So, to quantify the
properties ρ and τ , we measure or estimate the related quantifiable auxiliary properties, and then apply the known
present-state and future-state functions

ρ = p(x1, ...,xm) ,
τ = f (y1, ...,yn) .

At this point the crucial question is: Do measurements or expert estimations provide reliable information about the
quantifiable properties? The answer is: “Unfortunately, no”. In practical situations, uncertainty naturally arises when
processing values which come from measurements or from expert estimations. From both the epistemological and
physical viewpoints, neither measurements nor expert estimations can be exact for the following reasons ([17] and
[46]):

• The actual value of the measured quantity is a real number; so, in general, we need infinitely many bits to
describe the exact value, while after every measurement, we gain only a finite number of bits of information
(e.g., a finite number of binary digits in the binary expansion of the number).

• There is always some difficult-to-delete noise which is mixed with the measurement results.

• Expert estimates cannot be absolutely exact, because an expert generates only a finite amount of information.

• Experts are usually even less accurate than are measuring instruments.

In addition to measurement and expert estimation errors, there are types of error that arise when doing compu-
tations with the measured or estimated values. There are usually three sources of error while performing numerical
computations with real numbers:

• Input Errors. Input errors usually arise from human mistakes. An input error is committed when a human inputs
to a machine a wrong value for the measured or estimated quantity.

• Truncation Errors. Truncation errors arise when replacing a continuous or infinite operation by a computable
discrete operation.

• Rounding Errors. Rounding errors arise when doing arithmetic on a machine. This error is the difference
between the result obtained using exact arithmetic and the result computed using finite precision arithmetic.

All of these uncertainties, generated through many types of error, threaten our inquiries about the world, and a
mistaken outcome is always a concern in scientific research. So, the question is: Is there a way out? Fortunately,
interval arithmetic recommends itself to us by its ability to keep track of all error types simultaneously, because an
interval arithmetic operation produces an interval of certainty within which the true real-valued result is guaranteed to
lie [17]. As an example, suppose two independent scientific measurements give different uncertain results for the same
quantity q. One measurement gives q = 1.4±0.2. The other gives q = 1.5±0.2. These uncertain values of q can be
represented as the interval numbers X = [1.2,1.6] and Y = [1.3,1.7], respectively. Since q lies in both, it certainly lies
in their intersection X ∩Y = [1.3,1.6]. So, if X ∩Y 6=∅, we can get a better (tighter) “interval of certainty”. If not, we
can be certain that at least one of the two measurements is wrong.

In order to further illustrate the power of the guaranteed enclosures of interval arithmetic, it is appropriate to provide
here a brief discussion of the limitations and loss of precision of machine real arithmetic. Machine real numbers have
finite decimal places of precision. The finite precision provided by modern computers is enough in many real life
applications, and there is scarcely a physical quantity which can be measured beyond the maximum representable
value of this precision. So when is the finite precision not enough? The problem arises when doing arithmetic. The
operation of “subtraction”, for example, results, in many situations, in an inevitable loss of precision. Consider, for
instance, the expression x− y, with x = 0.963 and y = 0.962. The exact result of x− y is 0.001, but when evaluating
this expression on a machine with 2 significant digits, the values of x and y are rounded downward to have the same
machine value 0.96, and the machine result of x− y becomes 0, which is a complete loss of precision. Instead, by
enclosing the exact values of x and y in interval numbers, with outward rounding, a guaranteed enclosure of the exact
result of x− y can be obtained easily by computing with machine interval numbers ([19] and [28]).
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This problem of machine subtraction has dangerous consequences in numerical computations. To illustrate, consider
the problem of calculating the derivative of a real-valued function f at a given point. The method of finite differences is
a numerical method which can be performed by a computer to approximate the derivative. For a differentiable function
f , the first derivative f (1) can be approximated by

f (1) ∼=
f (x+dx)− f (x)

dx
,

for a small nonzero value of dx. As dx approaches zero, the derivative is better approximated. But as dx gets smaller,
the rounding error increases because of the finite precision of machine real arithmetic, and we accordingly get the
problematic situation of f (x+dx)− f (x) = 0. That is, for small enough values of dx, the derivative will be always
computed as zero, regardless of the rule of the function f . Using interval enclosures of the function f instead, we can
find a way out of this problem, by virtue the infinite precision of machine interval arithmetic. For further details on
interval enclosures of derivatives, see, e.g., [17] and [29].

Another problem of finite precision arises when truncating an infinite operation by a computable finite operation.
For example, The exponential function ex may be written as a Taylor series

ex = 1+
x2

2!
+

x3

3!
+ ...=

∞

∑
n=0

xn

n!
.

In order to compute this infinite series on a machine, we have to truncate it to the partial sum

Sk =
k

∑
n=0

xn

n!
,

for some finite k, and the truncation error then is |ex−Sk|. Using interval bounds for this error term, machine interval
arithmetic can provide a guaranteed enclosure of the exact value of the exponential function ex.

In addition to the problematic situations described above, the loss of precision of machine real arithmetic can even
lead to fatal and costly disasters, for example, the failure of the Patriot anti-missile batteries during the Gulf War which
is due to round-off error in floating-point calculations. Another example is the explosion of the Ariane 5 rocket on June
4, 1996 (for further details, see [43]).

The preceding examples shed light on the fact that taking the passage from real arithmetic to interval arithmetic
opens the way to the rich technicalities and the infinite precision of interval computations. With the power of intervals
at our disposal, let us revisit the uncertainty problem that we discussed in the beginning of this section, that of acquiring
knowledge about the real world. When applying traditional numerical methods to estimate the error in the measurable
auxiliary properties x1, ...,xm and y1, ...,yn, we get approximate (non-guaranteed) bounds to the measurement errors
that are, in many cases, not sufficient. Moreover, we sometimes face situations in which the probability distribution for
the measurement errors cannot be determined, and consequently probabilitization is not valid. Furthermore, in some
practical situations, fuzzifying the problem suffers from many limitations, and therefore the efficacy of fuzzification, in
such situations, is questionable.

Now, let us intervalize the problems of inquiring the present and future states of a real-world system. We can
measure or estimate the quantifiable auxiliary properties x1, ...,xm and y1, ...,yn. With intervals at hand, we have
intervals of certainty Xi and Yk for the auxiliary properties xi and yk respectively. Knowing the present-state function p
and the future-state function f that relate the directly-unquantifiable present property ρ and future property τ to their
auxiliary properties xi and yk respectively, we need to compute the images of Xi and Yk with respect to the functions p
and f . These images are defined and denoted by

Ip (X1, ...,Xm) = {ρ ∈ R|(∃m
i=1xi ∈ Xi)(ρ = p(x1, ...,xm))},

I f (Y1, ...,Yn) = {τ ∈ R|(∃n
k=1yk ∈ Yk)(τ = f (y1, ...,yn))}.

The functions p and f are usually continuous, and therefore the images are in turn real closed intervals. That is, there
are intervals of certainty

[
ρ,ρ

]
and [τ,τ] within which the desirable values of the properties ρ and τ are guaranteed to

lie respectively.
It is thus natural to think of extending the ordinary arithmetic on real-valued quantities to interval-valued quantities

in such a way that we can do arithmetic on the intervals Xi and Yk to get, respectively, the intervals
[
ρ,ρ

]
and [τ,τ] as

results. So, the uncertainty problem of inquiring about real-world systems is now the problem of interval enclosures of
images of real-valued functions. Now the question is that to what extent interval enclosures can be useful. Toward
answering this, we conclude the present section with a peculiarity of interval arithmetic that seems quite strange at first.
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Note that the set-theoretic characterization of the interval operations (definition 3.1) implies that interval arithmetic
considers all instances of variables as independent. Accordingly, for two interval variables X and Y assigned the same
interval constant A, both the interval operations X ◦I X and X ◦I Y are equal and they are the same as the image of
the multivariate real function find (x,y) = x◦R y, with x ∈ A and y ∈ A. In fact, this is one of the strengths of interval
mathematics: since images of real functions are inclusion monotonic (see, e.g., [16], [28], and [62]), it follows that
the image of the function find is an enclosure of the image of a unary real function fdep (x) = x◦R x, with x ∈ A, and
therefore X ◦I X = X ◦I Y is a guaranteed enclosure of the image of fdep. However, in many situations, this enclosure
might be too wide to be useful. This phenomenon is known as the interval dependency problem. The notion of interval
dependency and the problems thereof will be logically characterized in the succeeding sections.

5 From Quantifiers and Skolemizations to Functional Dependence

In order to be able to formalize the notion of interval dependency using elementary logical concepts, it is imperative to
justify a symbolic notation suitable for the precise expression of ideas and for carrying out proofs in a merely logical
manner. An early locus where the indispensability of a symbolic apparatus is emphasized is Frege’s “Begriffsschrift”
[33]. In the spirit of the quote from Wittgenstein given in the beginning of this article, Frege opened his “Begriffsschrift”
by saying:

“The most reliable way of carrying out a proof, obviously, is to follow pure logic, a way that,
disregarding the particular characteristics of objects, depends solely on those laws upon which all
knowledge rests.”

Our goal here is thus to fix a symbolic apparatus suitable and adequate for the purpose at hand. Plainly, we
mean to reduce the notion of functional dependence to the pure logical concepts of Skolemization and quantification
dependence.

Before getting down to particulars, it is apt to commence this section with historic and epistemic generalities at
which level the concept of dependence is framed. The notion of dependency is one of the most fundamental ingredients
that underlie mathematical reasoning and scientific reasoning in general. The notion of dependency comes from the
notion of a function. Not surprisingly, therefore, there is scarcely a mathematical theory which does not involve the
notion of a function (See, e.g., [16] and [28]). In ancient mathematics the idea of functional dependence was not
expressed explicitly and was not an independent object of research, although a wide range of specific functional
relations were known and were studied systematically. The concept of a function appears in a rudimentary form in
the works of scholars in the Middle Ages, but only in the work of mathematicians in the 17th century, and primarily
in those of Pierre de Fermat, Rene Descartes, Isaac Newton, and Gottfried Leibniz, did it begin to take shape as an
independent concept. Later, in the 18th century, Euler had a more general approach to the concept of a function as
“dependence of one variable quantity on another” [31]. By the year 1834, Lobachevskii was writing: “The general
concept of a function requires that a function of x is a number which is given for each x and gradually changes with x.
The value of a function can be given either by an analytic expression or by a condition which gives a means of testing
all numbers and choosing one of them; or finally a dependence can exist and remain unknown” [49].

On the epistemic side, when scientists observe the world to formulate the defining properties of some physical
phenomenon, these defining properties figure as attributes (variables) depending on some other attributes. Translating
this dependence into a formal mathematical language, gives rise to the notion of functional dependence: “a variable
y is absolutely determined by some given variables x1, ...,xn”, or “a variable y is a function of some given variables
x1, ...,xn”, symbolically y = f (x1, ...,xn). In some cases, such a translation can deterministically result in a certain rule
for the function f , for instance y = x1 + ...+ xn. In other cases, we have an approximate rule for f , or we know that a
dependence exist but the rule cannot be determined, in which case we write the general usual notation y = f (x1, ...,xn),
without specifying explicitly a rule for the function f . So, in mathematics, a dependence is formally a function (For
further exhaustive details about the notion of dependence, from the logical and epistemological viewpoints, see, e.g.,
[4], [39], [70], [15], [22], and [28]).

In the theory of real closed intervals, the notion of interval dependency naturally comes from the idea of functional
dependence of real variables. Despite the fact that dependency is an essential and useful notion of real variables, interval
dependency is the main unsolved problem of the classical theory of interval arithmetic and its modern generalizations
(see [17], and [28]). So, a first step in our way to solve (or to cope with) the dependency problem is to answer the
question: Formally, what is interval dependency? or, in other words, what is the fundamental defining properties that
characterize the notion of interval dependency as a formal mathematical object? Providing an answer for this question
is the main business of the succeeding section. For now, we will delve deep into some semantical and syntactical
fundamentals concerning the logical formulation of the notion of functional dependence and some related notions.
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Two pure logical notions we shall need are those of a quantification matrix and a prenex sentence. A quantification
matrixQ is a sequence (Q1x1) ...(Qnxn), where x1, ...,xn are variable symbols and each Qi is ∀ or ∃. A prenex sentence
is a sentence of the form Qϕ , where Q is a quantification matrix and ϕ is a quantifier-free formula.

As is well known, the most fundamental part of all mathematical sciences is formal logic. So, getting down to the
most elementary fundamentals, it can be clarified that in all mathematical theories, any type of dependence can be
reduced to the following simple logical definition (see, e.g., [16] and [28]).

Definition 5.1 (Quantification Dependence). Let Q be a quantification matrix and let ϕ (x1, ...,xm;y1, ...,yn) be a
quantifier-free formula. For any universal quantification (∀xi) and any existential quantification (∃y j) in Q, the
variable y j is dependent on the variable xi in the prenex sentence Qϕ iff (∃y j) is in the scope of (∀xi) in Q. Otherwise
xi and y j are independent.

That is, the order of quantifiers in a quantification matrix determines the mutual dependence between the variables
in a sentence.

Let us illustrate this by the following two examples.

Example 5.1. Consider the prenex sentence

(∃x)(∀y)(∃z)(y = x◦ y∧ x = z◦ y) ,

which asserts that there exists an identity element x, for the operation ◦, with respect to which every element possesses
an inverse z.

According to the order in which quantifiers are written, the variable z depends only on y, while there is no
dependency between x and y or between x and z.

Example 5.2. In the prenex sentence
(∀x)(∃y)(∀z)(∃u)ϕ (x,y,z,u) ,

the variable y depends on x, and the variable u depends on both x and z.

By means of a Skolem equivalent form or a Skolemization 4, a quantification dependence is translated into a
functional dependence. The notion of a Skolem equivalent form is characterized in the following definition (see, e.g.,
[28], [32], and [70]).

Definition 5.2 (Skolem Equivalent Form). Let σ be a sentence that takes the prenex form

(∀m
i=1xi)

(
∃n

j=1y j
)

ϕ (x1, ...,xm;y1, ...,yn) .

where ϕ is a quantifier-free formula.
The Skolem equivalent form of σ is defined to be(

∃n
j=1 f j

)
(∀m

i=1xi)ϕ (x1, ...,xm; f1, ..., fn) ,

where f j (x1, ...,xm) = y j are the dependency functions of y j upon x1, ...,xm, for i ∈ {1, ...,m} and j ∈ {1, ...,n}.

It comes therefore as no surprise that in all mathematics, any instance of a dependence is, in fact, a functional
dependence.

In order to clarify the matters, let us consider the following example.

Example 5.3 (Skolemization of a Sentence). Let a sentence σ take the prenex form

(∀x)(∃y)(∀z)(∃u)ϕ (x,y,z,u) .

The Skolem equivalent form of σ is

(∃ f )(∃g)(∀x)(∀z)ϕ (x, f (x) ,z,g(x,z)) .

4Skolemization is named after the Norwegian logician Thoralf Skolem (1887–1963), who first presented the notion in [65].
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6 What Interval Dependency Formally is: Putting on a Systematic Basis All Together

Now we are proposing to study interval dependency, and indeed by the formal apparatus we fixed in the preceding
sections. With the logical and set-theoretical fundamentals of sections 2 and 5 at our disposal, this section, is devoted
to presenting a formalized treatment of the notion of interval dependency, that is, putting on a systematic basis its
meaning, and thus gaining the advantage of indicating formally the criteria by which it is to be characterized and,
accordingly, deducing its fundamental properties in a merely logical manner. On the strength of the generality of the
logical apparatus we adopt, the results of this section are not only about Moore’s classical intervals, but they are meant
to apply also to any possible theory of interval arithmetic.

Before we proceed, it is convenient here to introduce some notational conventions. By a finitary real-valued
function in real arguments (in short, a real function or R-function), we understand a function fR : DR ⊆ Rn 7→ R,
and by an interval function (or I-function) we understand a function fI :DI ⊆ In 7→ I. The R-subscripted letters
fR, gR, hR shall be employed to denote real-valued functions, while the I-subscripted letters fI , gI , hI shall be
employed to denote interval-valued functions. If the type of function is clear from its arguments, and if confusion is
not likely to ensue, we shall usually drop the subscripts “R” and “I”. Thus, we may, for instance, write f (x1, ...,xn)
and f (X1, ...,Xn) for, respectively, a real-valued function and an interval-valued function, which are both defined by
the same rule.

An important notion we shall need is that of the image set of real closed intervals, under an n-ary real-valued
function. This notion is a special case of that of the corresponding (n+1)-ary relation on R. More precisely, we have
the following definition.

Definition 6.1 (Image of Real Closed Intervals). Let f be an n-ary function on R, and for (v,y) ∈ f , let v = (x1, ...,xn),
with each xk is restricted to vary on a real closed interval Xk ⊂ R, that is, v is restricted to vary on a set V⊂ Rn. Then,
the image of the closed intervals Xk with respect to f , denoted I f , is defined to be

Y = I f (V) = I f (X1, ...,Xn)

= {y ∈ R|(∃v ∈ V)(v f y)}
= {y ∈ R|(∃n

k=1xk ∈ Xk)(y = f (x1, ...,xn))} ⊆ R,

where the set V, called the preimage 5 of Y , is defined to be the image of Y with respect to the converse relation f̂ , that
is

V = I f̂ (Y ) = {v ∈ Rn|(∃y ∈ Y )
(

y f̂ v
)
}.

The fact formulated in the following theorem is well-known (see, e.g., [16] and [28]).

Theorem 6.1 (Extreme Value Theorem). Let Xk be real closed intervals and let f (x1, ...,xn) be an n-ary real-valued
function with xk ∈ Xk. If f is continuous in Xk, in symbols Cont( f ,Xk), then f must attain its minimum and maximum
value, that is

(∀ f )(Cont( f ,Xk)⇒ (∃n
k=1ak ∈ Xk)(∃n

k=1bk ∈ Xk)(∀n
k=1xk ∈ Xk)

( f (a1, ...,an)≤ f (x1, ...,xn)≤ f (b1, ...,bn))),

where min
xk∈Xk

f = f (a1, ...,an) and max
xk∈Xk

f = f (b1, ...,bn) are respectively the minimum and maximum of f .

An immediate consequence of definition 6.1 and theorem 6.1, is the following important property [28].

Theorem 6.2 (Main Theorem of Image Evaluation). Let an n-ary real-valued function f be continuous in the real closed
intervals Xk. The (accurate) image I f (X1, ...,Xn), of Xk, is in turn a real closed interval such that

I f (X1, ...,Xn) =

[
min
xk∈Xk

f (x1, ...,xn) , max
xk∈Xk

f (x1, ...,xn)

]
.

A cornerstone result from the above theorem, that should be stressed at once, is that the best way to evaluate the
accurate image of a continuous real-valued function is to apply minimization and maximization directly to determine
the exact lower and upper endpoints of the image. For rational 6 real-valued functions, this optimization problem is,

5From the fact that the converse relation f̂ is always definable, the preimage of a function f is always definable, regardless of the definability of
the inverse function f−1.

6A rational real-valued function is a function obtained by means of a finite number of the basic real algebraic operations ◦R ∈ {+,×} and
�R ∈ {−,−1 }.
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in general, computationally solvable, by applying Tarski’s algorithm, which is also known as Tarski’s real quantifier
elimination (see, e.g., [10] and [68]). For algebraic 7 real-valued functions, the problem is computable, by applying the
cylindrical algebraic decomposition algorithm (CAD algorithm, or Collins’ algorithm) 8, which is a more effective
version of Tarski’s algorithm (see, e.g., [13] and [52]).

Before turning to the notion of interval dependency, we first prove the following indispensable result.

Theorem 6.3 (Image Inclusions in Prenex Sentences). Let σ1 and σ2 be the two prenex sentences such that

σ1⇔ (∀m
i=1xi ∈ Xi)

(
∃n

j=1y j ∈ Yj
)
(∃z)(z = f (x1, ...,xm;y1, ...,yn)) ,

σ2⇔ (∀m
i=1xi ∈ Xi)

(
∀n

j=1y j ∈ Yj
)
(∃z)(z = f (x1, ...,xm;y1, ...,yn)) ,

where Xi and Yj are real closed intervals, and f is a continuous real-valued function with xi ∈ Xi and y j ∈ Yj.
If Iσ1

f and Iσ2
f are the images of f , respectively, in σ1 and σ2, then Iσ1

f ⊆ Iσ2
f .

Proof. According to definition 5.1, in the sentence σ1, all y j are dependent upon all xi, and in the sentence σ2, all xi
and y j are pairwise independent.

By definition 5.2, there are some functions g j (x1, ...,xm) such that σ1 has the Skolem equivalent form(
∃n

j=1g j
)
(∀m

i=1xi ∈ Xi)(∃z)(z = f (x1, ...,xm;g1, ...,gn)) .

Finally, employing theorem 6.2, we therefore have Iσ1
f ⊆ Iσ2

f .

From the fact that existential quantification over a nonempty set S defines a set T such that T ⊆ S, the previous
theorem entails, as a special case, the following important result of “real analysis”.

Corollary 6.1 (Inclusion Monotonicity of Real Images). Let VX = (X1, ...,Xi, ...,Xn) and VY = (Y1, ...,Yi, ...,Yn) be two
preimages of a continuous real-valued function f . Then, the image I f is inclusion monotonic. That is

(∀n
i=1Xi,Yi)

(
Xi ⊆ Yi⇒ I f (VX )⊆ I f (VY )

)
.

The following example makes the statement of theorem 6.3 clear.

Example 6.1 (Image Inclusion in Two Prenex Sentences). Let σ1 and σ2 be the two prenex sentences such that

σ1⇔ (∀x ∈ [1,2]) (∃y ∈ [1,2]) (∃z ∈ R)(z = f (x,y) = y− x) ,

σ2⇔ (∀x ∈ [1,2]) (∀y ∈ [1,2]) (∃z ∈ R)(z = f (x,y) = y− x) .

In the sentence σ1, the variable y depends on x, and therefore there is some function g(x) such that σ1 has the
Skolem equivalent form

(∃g)(∀x ∈ [1,2]) (∃z ∈ R)(z = f (x,g(x)) = g(x)− x) .

Let g be the identity function. Consequently, the image of f in σ1 is Iσ1
f = {0}.

Obviously, the image of f in σ2 is Iσ2
f = [−1,1], and therefore Iσ1

f ⊆ Iσ2
f .

Next we define the notion of an exact (or generalized) interval operation.

Definition 6.2 (Exact Interval Operation). Let ◦R ∈ {+,×} be a binary real operation, and let I f = I
σDep
f ∨ I f = IσInd

f ,

where I
σDep
f and IσInd

f are the images of a function f for two real closed intervals X and Y in, respectively, two prenex
sentences σDep and σInd such that

σDep⇔ (∀x ∈ X)(∃y ∈ Y )(∃z ∈ R)(z = f (x,y) = x◦R y) ,

σInd⇔ (∀x ∈ X)(∀y ∈ Y )(∃z ∈ R)(z = f (x,y) = x◦R y) .

Then, an exact interval operation ◦J ∈ {+,×} is defined by

X ◦J Y = I f (X ,Y ) .

We have then the following obvious result for the classical interval operations.

7An algebraic function is a function that satisfies a polynomial equation whose coefficients are polynomials with rational coefficients.
8The CAD algorithm is efficient enough for being one of the most important optimization algorithms of computational real algebraic geometry

(see, e.g., [6]).
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Theorem 6.4 (Inexactness of Classical Interval Operations). The value of a classical interval operation X ◦I Y is exact
only when the real variables x ∈ X and y ∈ Y are independent, that is

X ◦I Y = IσInd
f (X ,Y ) .

Proof. The theorem is immediate from definition 3.1 of the classical interval algebra.

With the help of the preceding notions and the deductions from them, we are now ready to pass to our formal
characterization of the notion of interval dependency.

Definition 6.3 (Interval Dependency Relation). Let S1, ...,Sm be some arbitrary real closed intervals. For two interval
variables X and Y , we say that Y is dependent on X, in symbols YDX, iff there is some given real-valued function f
such that Y is the image of (X ;S1, ...,Sm) with respect to f . That is

YDX ⇔ Y = I f (X ;S1, ...,Sm) ,

where f is called the dependency function of Y on X. Otherwise Y is not dependent on X, in symbols Y ℑX, that is

Y ℑX ⇔¬YDX ⇔¬Y = I f (X ;S1, ...,Sm) .

From now on, and throughout the text, the following notational convention shall be adopted. We write YD f X (with
the subscript f ) to mean that Y is dependent on X by some given dependency function f , and we write ℑ(X ,Y ) to
mean that X and Y are mutually independent. In general, the notation ℑ(X1, ...,Xn) shall be employed to mean “all
X1, ...,Xn are pairwise mutually independent”. Hereafter, for simplicity of the language, we shall always make use of
the following abbreviation.

ℑ
n
k=1 (Xk)⇔ ℑ(X1, ...,Xn).

So, to say that an interval variable Y is dependent on an interval variable X , we must be given some real-valued
function f such that Y is the image of X under f . This characterization of interval dependency is completely compatible
with the concept of functional dependence of real variables: for two real variables x and y, the variable y is functionally
dependent on x if there is some given function f such that y = f (x), and to keep the dependency information, between
x and y, in an algebraic expression x ◦R y, it suffices to write x ◦R f (x). If x and y are mutually dependent by an
idempotence y = f (x) and x = g(y), then, to keep the dependency information, it suffices to write either x◦R f (x) or
g(y)◦R y. In case there is neither such a given function f nor such a given function g, then it is obvious that the real
variables x and y are not functionally dependent. Definition 6.3 extends this concept to the set of real closed intervals.

The preceding definition, along with two deductions that we shall presently make (theorem 6.5 and corollary 6.2),
touches the notion of interval dependency in a way which copes with all possible cases. Noteworthy also is that the
dependency relation characterized in definition 6.3 is a meta-concept, not an object-ingredient of the numerous interval
(and fuzzy) theories heretofore presented in the literature. In other words, on the strength of the generality of the
logical apparatus we adopt, the results of our formalization of interval dependency are not only about Moore’s classical
intervals, but they are meant to apply also to any possible theory of interval arithmetic.

To illustrate, let us give the following example.

Example 6.2 (Dependency Relation for Two Variables). Let X and Y be two interval variables that both are assigned
the same individual constant [0,1]. Then, we may have one of the following cases.

(i) Y is not dependent on X (there is no given dependency function).

(ii) Y is dependent on X, by the identity function y = f (x) = x.

(iii) Y is dependent on X, by the square function y = f (x) = x2.

This example shows that if two interval variables X and Y both are assigned the same individual constant (both
have the same value), it does not necessarily follow that X and Y are identical, unless they are dependent by the
identity function 9. Thereupon, for an interval theory to be dependency-aware, it must incorporate in its symbolism the
dependency relation as an object-ingredient in such a way that two intervals are equal iff they are “one and the same”.

9The notions of identity and equality are commonly confused and treated as synonyms. However, they are two distinct logical concepts. Despite
the fact that equality implies identity in the theory of real numbers, this is not always the case. Two line halves are equal but not identical (one and
the same). Every line equals infinitely many other lines, but no line is (identical to) any other line (see [14] and [69]). Identity, which is the most
fundamental ingredient of any mathematical theory, is characterized by Leibniz’s principle of the identity of indiscernibles which states that two
entities x and y are identical iff any property of x is also a property of y and vice versa.
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This fact itself calls for a new characterization of the equality relation for interval numbers: Two interval variables X
and Y are equal (identical) iff they are dependent by identity, that is

X = Y ⇔ XDIdY .

In consequence of this definition, in a possible dependency-aware interval theory, for any two interval variables [x,x]
and

[
y,y
]
, it should be the case that

[x,x] =
[
y,y
]
⇔ x = y∧ x = y∧ (∀x ∈ [x,x])

(
∃y ∈

[
y,y
])
(y = Id(x)) .

In any case, the formalization proposed here provides a tool for investigating the dependency problem rigorously.
As a consequence of our characterization of interval dependency, we have the next immediate theorem that establishes
that the interval dependency relation is a quasi-ordering relation.

Theorem 6.5 (Quasi-Orderness of the Dependency Relation). The interval dependency relation is a quasi-ordering
relation on the set of real closed intervals. That is, for any three interval variables X, Y , and Z, the following statements
are true:

(i) D is reflexive, in symbols (XDX),

(ii) D is transitive, in symbols (XDY ∧YDZ⇒ XDZ).

In accordance with this theorem and definition 6.2, we also have the following corollary.

Corollary 6.2 (Dependency Relation Properties). For any interval operation ◦J , and for any three interval variables
X, Y , and Z, the following two assertions are true:

(i) (X ◦J Y )DX,

(ii) (X ◦J Y )DY .

The interval dependency problem can now be formulated in the following theorem.

Theorem 6.6 (Dependency Problem). Let Xk be real closed intervals and let f (x1, ...,xn) be a continuous real-valued
function with xk ∈ Xk. Evaluating the accurate image of f for the interval numbers Xk, using classical interval
arithmetic, is not always possible if there exist Xi and X j such that X jDXi for i 6= j. That is,

(i) (∃ f )
(
I f (X1, ...,Xn) 6= f (X1, ...,Xn)

)
.

In general,

(ii) (∀ f )
(
I f (X1, ...,Xn)⊆ f (X1, ...,Xn)

)
.

Proof. For (i), it suffices to give a counterexample.
For two interval variables X1 and X2 that both are assigned the same individual constant [−a,a], let f be a function

defined by the rule f (x1,x2) = x1x2 with x1 ∈X1 and x2 ∈X2. If X2DgX1, with g is the identity function x2 = g(x1) = x1,
then f has the equivalent rule f (x) = x2, with x ∈ [−a,a].

According to theorem 6.2, the (accurate) image of [−a,a] under the real-valued function f is

I f ([−a,a]) =
[

min
x∈[−a,a]

x2, max
x∈[−a,a]

x2
]
=
[
0,a2] .

If we evaluate the image of [−a,a] using classical interval arithmetic, by theorem 3.1, we obtain the interval-valued
function,

f ([−a,a]) = [−a,a]× [−a,a]

=
[
−a2,a2] ,

which is not the actual image of [−a,a] under f , that is, there is some function f , for which

I f (X1, ...,Xn) 6= f (X1, ...,Xn) ,

and therefore evaluating the accurate image of real-valued functions is not always possible, using classical interval
arithmetic.
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Toward proving (ii), let

I f (X1, ...,Xn) = Iσ1
f (X1, ...,Xn)∨ I f (X1, ...,Xn) = Iσ2

f (X1, ...,Xn) ,

where Iσ1
f and Iσ2

f are the images of f , respectively, in two prenex sentences σ1 and σ2 such that in σ1, there exist Xi

and X j such that X jDXi for i 6= j, and in σ2, all Xk are pairwise independent, that is ℑn
k=1 (Xk). Employing theorem 6.3,

We accordingly have
Iσ1

f (X1, ...,Xn)⊆ Iσ2
f (X1, ...,Xn) .

According to definition 3.1, of the classical interval algebra, all interval variables are assumed to be independent.
We consequently have

f (X1, ...,Xn) = Iσ2
f (X1, ...,Xn) .

Thus
(∀ f )

(
I f (X1, ...,Xn)⊆ f (X1, ...,Xn)

)
,

and therefore (ii) is verified.

Obviously, the result
[
−a2,a2

]
, obtained using classical interval arithmetic, has an overestimation of∣∣w([−a2,a2])−w

([
0,a2])∣∣= a2,

where w is the width of the interval. This overestimated result is due to the fact that the classical interval theory
assumes independence of all interval variables, even when dependencies exist.

A numerical example is shown below.

Example 6.3 (Overestimation due to Dependency). Consider the real-valued function

f (x) = x(x−1) ,

with x ∈ [0,1].
The actual image of [0,1] under f is [−1/4,0]. Evaluating the image using classical interval arithmetic, we get

f ([0,1]) = [0,1]× ([0,1]−1) = [−1,0] ,

which has an overestimation of
|w([−1,0])−w([−1/4,0])|= 3/4.

Finally, in consequence of theorem 6.6, we are led to the following immediate result.

Theorem 6.7 (Occurrences of Variables and Dependency). Let f (x) and g(x) be two real functions of different rules
such that f (x) = g(x), and let f (X) and g(X) be the interval extensions of f (x) and g(x) respectively. Define O f (X)
and Og (X) to be the numbers of occurrences of the variable X in f and g respectively. Then

O f (X)≤ Og (X)⇒ f (X)⊆ g(X) .

Due to interval dependency, classical interval arithmetic has a number of peculiar properties. For example, we have
subdistributive inverses (or S-inverses) with respect to interval addition and multiplication. Precisely

(∀X)(0I ⊆ X−X) ,
(∀X)(0I 6⊆ X ⇒ 1I ⊆ X/X) .

In general, for two interval numbers X and Y , if X ∩Y 6=∅, then

(0I ⊆ X−Y )∧ (0I ⊆ Y −X) ,
(0I 6⊆ Y )⇒ (1I ⊆ X/Y ) .
(0I 6⊆ X)⇒ (1I ⊆ Y/X) .

The problem of computing the image I f (X1, ...,Xn), using interval arithmetic, is the main problem of interval
computations. This problem is, in general, NP-hard 10 (see, e.g., [35], [46], and [62]). That is, for the classical interval
theory, there is no efficient algorithm to make the identity

(∀ f )
(
I f (X1, ...,Xn) = f (X1, ...,Xn)

)
,

10In principle, this result is not necessarily applicable to other theories of interval arithmetic (present or future) because each theory has its
peculiar set of algorithms, where each algorithm is a sequence of elementary relations and functions of the foundational level of the theory.

Online Mathematics, ISSN: 2672-7501 – 30 – OMJ, 01 (03): 15–36, 2019; doi:10.5281/zenodo.3234184

http://doi.org/10.5281/zenodo.3234184


Hend Dawood and Yasser Dawood A Logical Formalization of the Notion of Interval Dependency

always hold unless NP = P, which is widely believed to be false. However, a considerable scientific effort is put into
finding a way out from the interval dependency problem. There are many special methods and algorithms, based on
the classical interval theory, that successfully compute useful narrow bounds to the desirable accurate image. In the
succeeding section, we shall give a bit of perspective on how to compute useful guaranteed interval enclosures under
functional dependence.

Beyond the techniques based on the classical interval theory, various proposals for possible alternate theories of
interval arithmetic were introduced to reduce the dependency effect or to enrich the algebraic structure of interval
numbers. Among these alternate theories of intervals, we can mention as examples: Hansen’s generalized intervals,
Kulisch’s complete intervals, directed intervals, modal intervals, parametric intervals, universal intervals, and others
(see, e.g., [37], [48], [51], [36], [50], [16], [27], and [28]).

7 Guaranteed Enclosures Under Interval Dependency

In this section, we shall discuss briefly how to compute useful guaranteed enclosures of real-valued functions
under functional dependence. The numerical examples of this section are computed using version 2.0 of InCLosure.
The InCLosure commands to compute the results of the examples are described and an InCLosure input file and its
corresponding output containing, respectively, the code and results of the examples are also available as a supplementary
material to this text (see Supplementary Materials).

As mentioned in the preceding section, there are many special methods and algorithms, based on the classical
interval theory, that provide a way out of the dependency problem to get narrower enclosures. With a knowledge of
regions of monotonicity, most elementary interval functions can be defined to be the exact images of the corresponding
real functions. As instances, for an interval number X = [x,x] and a nonnegative integer n, we can define

eX =
[
ex,ex] , ln(X) = [ln(x) , ln(x)] if x > 0;

√
X =

[√
x,
√

x
]

if x≥ 0, sin(X) =

[
min
x∈X

(sin(x)) ,max
x∈X

(sin(x))
]

;

Xn =

 [xn,xn] iff x > 0 or n is odd,
[xn,xn] iff x < 0 and n is even,
[0, |X |n] iff 0 ∈ X and n is even;

where |X |= max{|x| , |x|} is the absolute value of the interval number X .
Applying the naive (pure) interval operations on these exact evaluations, we can get better (narrower) enclosures of

the images of the algebraic combinations of the corresponding real functions. Moreover, many techniques are used
to improve the results obtained from the naive method by reducing the width of the resulting interval. Among these
techniques centered forms, generalized centered forms, circular complex centered forms, Hansen’s method, remainder
forms, the subdivision method, and many others (see, e.g., [17], [28], [57], [58], [62], [48], [1], and [2]). For instance,
we can get arbitrarily narrower enclosures of images of real functions using the subdivision method, which is due to
Moore (see, e.g., [57] and [58]). This method can be described as follows. Let X = [x,x] be an interval number and let
w(X) = x− x be the width of X . First, we subdivide the interval X into n subintervals Xi such that

Xi = [x+(i−1)w(X)/n,x+(i)w(X)/n] ,

where w(Xi) = w(X)/n. Hence X = ∪n
i=1Xi. Then, we evaluate the interval-valued function f for each subinterval Xi,

f (Xi). Accordingly, we have [28]
I f (X)⊆ ∪n

i=1 f (Xi)⊆ f (X) .

That is, the subdivision method produces better enclosures than the naive method. Moreover, the larger the number of
subintervals n, the narrower the enclosure of the image I f (X). Next, we shall describe how to make use of the interval
capability of InCLosure to get arbitrarily better enclosures of the images of real functions.

Example 7.1 (Interval Subdivision in InCLosure). Consider the interval function

f (X) = X9−X6−X3−369.

InCLosure provides arbitrarily narrower interval results which are limited only by the computational power of the
host machine. We can compute the value of the above interval function at the interval [−3,6], f ([−3,6]), using the
following InCLosure command.

EvalInt "X^9-X^6-X^3-369" "X=[-3,6]" 1 30
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This will result in
[−66924.0,1.0077354E7].

The last parameter, “30”, in the previous command, is the precision of the result (default is 20). The parameter “1”
indicates the number of subintervals if the subdivision method is applied (the number “1” means no subdivision of the
interval). To get narrower intervals, the number of subintervals can be increased arbitrarily. Table 1 shows InCLosure
results obtained for no subdivision, subdivision with 10, 50, 100, 500, and 1000 subintervals of [−3,6].

Number of subintervals InCLosure result f ([−3,6])

1 (no subdivision) [−66924.0,1.0077354E7]

10 [−20771.739,1.0059598061199E7]

50 [−20758.574232,1.0038266720770032576E7]

100 [−20756.357829,1.0034509264991644959E7]

500 [−20754.483089832,1.0031290472751452950435776E7]

1000 [−20754.242271729,1.0030874303048468185232559E7]

Table 1. InCLosure Result for Different Numbers of Subdivisions

The exact image of the corresponding real function f (x) = x9 − x6 − x3 − 369 on [−3,6] is ‘approximately’
[−20754,10030455] according to Wolfram Mathematica [72]. All the results of table 1 are guaranteed enclosures of the
exact image, and example 7.1 clearly shows that classical interval arithmetic with the arbitrarily narrower interval
results of InCLosure so markedly surpasses the ordinary numerical methods.

8 Conclusion

One approach that proved to be subtle, reliable, and most fundamental in all of mathematics of uncertainty is interval
mathematics. By integrating the complementary powers of rigorous mathematics and scientific computing, interval
arithmetic is able to offer highly reliable accounts of uncertainty. Despite all of advantages of interval mathematics
detailed in the introduction and elsewhere, it has its disadvantages as well. A main drawback of interval mathematics is
the persisting problem known as the “interval dependency problem”. This, naturally, confronts us with the crucial
question: Formally, what is interval dependency? Is it a meta-concept or an object-ingredient of interval and fuzzy
mathematics? In other words, what is the fundamental defining properties that characterize the notion of interval
dependency as a formal mathematical object? what exactly is the sense of saying that two intervals are dependent? and
how does the dependency of two intervals 2X and X differ from that of X2 and X? Since the early works on interval
mathematics by Burkill and Young in the dawning of the twentieth century, this question has never heretofore been
touched upon and remained a question still today unanswered. Although the notion of interval dependency is widely
used in the interval and fuzzy literature, it is only illustrated by example, without explicit formalization, and no attempt
has been made to put on a systematic basis its meaning, that is, to indicate formally the criteria by which it is to be
characterized. This article has been devoted to answering this long-standing question, and, that being so, the problem
dealt with in this text is that of the possibility and the scope of a symbolic formalization of interval dependency.
We proposed a precise metatheoretic characterization of the notion of interval dependency, deduced its fundamental
properties in a merely logical manner, and thereupon we developed a rigorous mathematical theory thereof which
formally characterizes and explains the differences between all cases of interval dependency.

We would also remark that, by virtue of our formalization, many nice consequences of real and interval analysis
come for free, for example: it has been shown that for an interval theory to be dependency-aware, it must incorporate
in its symbolism the dependency relation as an object-ingredient in such a way that two intervals are equal iff they are
one and the same and a new definition of the equality relation for interval numbers is proposed accordingly, the main
theorem of image evaluation and the inclusion monotonicity of real images follow immediately from a generalized
theorem about image inclusions in prenex sentences, and a generalized theorem concerning the dependency problem is
easily established.

To sum up, what is so important about a logical formalization of interval dependency? In fact, effort in pursuit of
this aim has many fruitful consequences. A novelty of this formalization is the expression of interval dependency as
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a logical predicate (or relation) and thus gaining the advantage of deducing its fundamental properties in a merely
logical manner. Taking the passage from the informal treatments to the formal technicalities of mathematical logic,
this result sheds new light on many fundamental problems of interval mathematics. Moreover, a breakthrough behind
our formalization of interval dependency is that it paves the way and provides the systematic apparatus for developing
alternate dependency-aware interval theories and computational methods with mathematical constructions that better
account for dependencies between the quantifiable uncertainties of the real world. Noteworthy also is that on the
strength of the generality of the logical apparatus we adopt, the results of this article are not only about Moore’s
classical intervals, but they are meant to apply also to any possible theory of interval arithmetic.

Supplementary Materials

To reproduce the results of the calculations in this article, latest version of InCLosure is available for free download via
https://doi.org/10.5281/zenodo.2702404. An InCLosure input file and its corresponding output containing, respectively,
the code and results of the examples are also available as a supplementary material to this article, via http://doi.org/10.
5281/zenodo.3466032.
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