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Abstract

Two-dimensional (2D) semiconductors are at the center of an intense research effort

aimed at developing the next generation of flexible, transparent, and energy-efficient

electronics. In these applications the carrier mobility, that is the ability of electrons and

holes to move rapidly in response to an external voltage, is a critical design parameter.

Here we show that the interlayer coupling between electronic wavefunctions in 2D

semiconductors can be used to drastically alter carrier mobility and dynamics. We

demonstrate this concept by performing state-of-the-art ab initio calculations for InSe,

a prototypical 2D semiconductor that is attracting considerable attention owing to its

exceptionally high electron mobility. We show that the electron mobility of InSe can be

increased from 100 to 1000 cm2V−1s−1 by exploiting the dimensional crossover of the

electronic density of states from 2D to 3D. By generalizing our results to the broader

class of layered materials, we discover that dimensionality plays a universal role in the

transport properties of 2D semiconductors.

Key words: Indium selenide, carrier mobility, electron-phonon interactions, two-dimensional

materials, interlayer interaction, dimensional crossover
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Owing to their extraordinary optoelectronic properties, 2D materials have become a

focal point of research in nanoelectronics and nanophotonics for the post-Moore Era.1–5

Among the properties of 2D materials that are essential to the operation of transistors and

light-emitting diodes, the carrier mobility occupies a special place, because it underpins

fundamental performance metrics such as switching frequency and power consumption. In

order to realize high-mobility transistors, it is paramount to understand the microscopic

mechanisms underlying carrier mobilities in 2D materials and how to control them.

Recently, 2D InSe has emerged as a prime candidate for post-silicon electronics.6 Indeed,

room-temperature electron mobilities as high as 1000 cm2V−1s−1 have been reported.6–8 This

value is much higher than in other gapped 2D semiconductors like MoS2,
9 and is compa-

rable to that of black phosphorous, with the added advantage that InSe exhibits superior

environmental stability.6 Intriguingly, the electron mobility of InSe appears to increase from

a trilayer sample to a six-layer sample, while data for the monolayer have not been reported

yet.6 These findings raise the question on what mobility one should expect for the monolayer,

and what is the role of dimensionality in the carrier mobility of 2D materials.

In this work we show that the measured layer-dependence of the electron mobility in InSe

and in other semiconductors such as MoS2
10,11 is a novel, intrinsic, and universal mechanism

related to the dimensional crossover of the electronic structure from 2D to 3D. In order

to illustrate this point, we begin by investigating the atomistic origin of carrier mobilities

and their layer dependence in InSe as a representative example, and then we generalize our

findings to a broader class of 2D materials by developing a tight-binding model that captures

the essential physics.

InSe is a chalcogenide semiconductor that can be exfoliated into individual layers.6 Each

layer consists of four atomic planes, two inner In planes and two outer Se planes, with the

atoms arranged in an hexagonal lattice (Figure 1A). In bulk InSe the individual layers are

separated by approximately 8 Å, and are held together by van der Waals forces. Bulk InSe

can exist in several polytypes, which differ by their stacking geometry, with the β and γ
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Figure 1: Atomistic models and ab initio carrier mobilities of InSe. (A–C)
Schematic representations of monolayer, bilayer, and bulk InSe, respectively. In (A) we
also show the side and top views of the basic trigonal-prismatic unit of monolayer InSe, in
a ball-stick model. (D and E) Temperature-dependent in-plane hole mobilities and electron
mobilities of monolayer, bilayer, and bulk InSe. The calculations are performed using the
ab initio Boltzmann transport equation, as described in the Methods. The insets show the
calculated room-temperature mobilities vs. the reciprocal of the number of layers, 1/N , for
N = 1, 2, ∞.

phases being the most commonly reported.12–14 The atomistic representations of monolayer,

bilayer, and bulk InSe are illustrated in Figure 1A–C, while the different polytypes are shown

in Supplementary Figure S1A and S1B. Despite the different stacking sequence, we find

that the electronic structure and transport properties of the two polytypes are very similar

(Supplementary Figure S1 and S2), therefore we focus on the β phase for definiteness.

We calculate the intrinsic, phonon-limited carrier mobility of monolayer, bilayer and bulk

InSe using the state-of-the-art ab initio Boltzmann transport formalism15 (see Methods).

The calculated in-plane electron and hole mobilities are shown in Figure 1D and E. We can

see that the mobilities decrease upon increasing temperature. This is expected since we are

considering only electron-phonon scattering processes. Furthermore, the electron mobility is
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Table 1: Carrier mobilities and effective mass of monolayer, bilayer, and bulk
InSe. Comparison between the calculated in-plane electron and hole mobilities and effective
masses of InSe at 300 K, as a function of the number of layers. In the case of holes in
monolayer and bilayer InSe, we report the 2D harmonic average of the anisotropic effective
mass tensor. Our calculations are in good agreement with available experimental data, as
shown in Table S1.6,17–19

Mobility Effective mass
(cm2V−1s−1) (m∗/me)

Electron Hole Electron Hole

Monolayer 120 0.5 0.16 3.4

Bilayer 220 3 0.14 1.6

Bulk 1060 21 0.10 2.6

two orders of magnitude higher than the hole mobility. Most importantly, both the electron

and hole mobilities are very sensitive to the number of layers (insets of Figure 1D and E ).

For example, at 300 K the electron mobility decreases from 1060 cm2V−1s−1 in the bulk

to 220 and 120 cm2V−1s−1 in the bilayer and monolayer, respectively. Similarly, the hole

mobility decreases from 21 to 3 to 0.5 cm2V−1s−1 from bulk to bilayer to monolayer.

While the results shown in Figure 1 are calculated entirely from first principles, it is

illuminating to rationalize these data using the elementary Drude model.16 In this model

the mobility µ of a carrier is related to its effective mass m∗ and lifetime τ via µ = eτ/m∗,

where e is the electron charge. In order to check whether the trends seen in Figure 1 may

be explained by the effective masses, in Table 1 we report the calculated band masses for

monolayer, bilayer, and bulk InSe, and compare with the corresponding room-temperature

mobilities. From this table we see that the increase in mobility from monolayer to bulk

and from holes to electrons are much more pronounced (between one and two orders of

magnitude) that the corresponding decrease in the effective masses. Therefore the differences

in the band masses cannot account for the trends seen in Figure 1, and we must direct our

attention to the other parameter appearing in the Drude model, the carrier lifetime.

In Figure 2A and B we compare the reciprocal of the carrier lifetimes, or scattering rates,
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Figure 2: Carrier scattering rates of monolayer and bulk InSe. (A and B) Hole
(left) and electron (right) scattering rate of monolayer InSe and bulk, at 300 K. Energies
are given with respect to the valence and conduction band edge, respectively. (C and D)
Electronic band structures of monolayer (left) and bulk (right) InSe, calculated using density
functional theory (DFT) along the reciprocal space path shown in (F). The corresponding
density of states (DOS) and its decomposition into atomic-orbital contributions are shown
alongside. The s, pz, and px/py orbitals are from both In and Se atoms. (E) Side and top
views of the 2D scattering rates of hole carriers in monolayer InSe. The rates are color-coded
on the band structure.

1/τ , in monolayer and bulk InSe, for energies within 100 meV from the band edges. The

scattering rates of bilayer InSe are shown in Supplementary Figure S3. Here we see that the

scattering rates in the monolayer are approximately one order of magnitude higher than in

the bulk, and that holes have scattering rates one order of magnitude higher than electrons.
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These observations are consistent with the calculated carrier mobilities in Table 1, and

indicate that the trends seen in Figure 1 originate primarily from differences in the carrier

lifetimes.

Within time-dependent perturbation theory, the lifetimes can be obtained from Fermi

golden’s rule;20 in the simplest approximation they are proportional to the strength of the

electron-phonon coupling, |g|2, and to the density D(E) of final electronic states available

for scattering at the energy E, 1/τ ∝ |g|2D(E) (see Methods). Let us analyze each term

separately.

To investigate the impact of the electron-phonon coupling |g|2, in Supplementary Fig-

ure S4 we break down the scattering rates into contributions from each phonon mode. From

this decomposition we see that, at variance with earlier assumptions,17,21 the scattering rates

of electron carriers are dominated by the coupling to longitudinal-optical (LO) phonons, i.e.

the Fröhlich interaction. This is particularly evident from the abrupt increase of the scat-

tering rates at electron energies above 26 meV, i.e. above the threshold for the emission of

LO phonons (Figure 2B and Supplementary Figure S5). How does this Fröhlich interaction

depend on the number of layers? In Supplementary Figure S6 we compare the strength of

this coupling in the monolayer and in the bulk, and we find that the results are essentially

identical. This means that the electron-phonon matrix elements |g|2 cannot account for

the thickness dependent electron lifetimes seen in Figure 2B. In the case of hole carriers,

the dominant scattering mechanism in bulk InSe is also Fröhlich coupling (Supplementary

Figure S4C ), and for long-wavelength phonons the matrix elements |g|2 are the same as

for electron carriers.22 On the other hand, in the monolayer, hole carriers experience an

additional scattering mechanism, originating from coupling to longitudinal-acoustic (LA)

phonons (Supplementary Figure S4D). This new mechanism is responsible for the additional

peak in the hole carrier scattering rate of monolayer InSe at an energy around 9 meV in

Figure 2A, and is connected with the warped nature of the valence band top in mono-

layer InSe,23,24 as illustrated in Figure 2C and E. The corresponding displacement pattern
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Figure 3: Interlayer coupling and thickness-dependent electronic density of
states. (A and B) Calculated valence (left) and conduction (right) band DOS in the vicinity
of the band edges, for monolayer, bilayer, and bulk InSe. The energies are referred to the
respective band extrema. (C) Isosurfaces of the electron wavefunctions at the band edges
(Γ-point) for InSe monolayer. (D) Sensitivity of the band gap and band edge curvature of
bulk InSe to the interlayer separation d. The color-coded bands correspond to calculations
where the separation is increased to 150% of the bulk value d0 = 8.3 Å in steps of 10%. Each
color represents a different value of the interlayer separation, as given by the relative change
with respect to the bulk value, ∆d/d0 = (d−d0)/d0. For clarity we only show the projection
of the bands onto pz states. (E–G) Emergence of subbands in few-layer InSe along the Γ-K
path.

is shown in Supplemental Figure S4F. Yet, despite their different nature, the strength |g|2

of LA-phonon scattering is comparable or even smaller than that of Fröhlich coupling, see

Supplementary Figure S6C. Taken together, these results indicate that the electron-phonon

matrix elements |g|2 are relatively insensitive to the number of layers and to the carrier

type. Therefore the strong variations in the carrier mobilities seen in Figure 1D and E must

originate from the last remaining parameter, the density of states (DOS).

Figure 3A and B shows the DOS of monolayer, bilayer, and bulk InSe in the vicinity
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of the band edges. Here we note that the valence band DOS is approximately one order of

magnitude higher than the conduction band DOS, and that in both cases the DOS decreases

dramatically from monolayer to bulk (see also Supplementary Figure S7 and Supplementary

Figure S8). These two observations confirm that the change in D(E) is the dominant mech-

anism underlying the variation in carrier mobilities in Figure 1. What is the origin of such

large variations in the DOS from holes to electrons and from monolayer to bulk?

In the case of hole carriers, the valence band top of monolayer InSe exhibits a Mexican-

hat shape (Figure 2E ). This band warping gives rise to a 2D van Hove singularity that is

visible as a sharp low-energy peak in the DOS. The warping tends to disappear when the

InSe layers are stacked as in bulk InSe (Figure 2D), and the DOS decreases accordingly,

as can be seen in Figure 3A. A similar sensitivity of the DOS to the interlayer distance is

also observed in the case of the conduction band (Figure 3B). Such a sensitivity hints at

a possible hidden role of the interlayer coupling in the carrier mobilities. We investigate

this aspect in greater detail by focusing on the conduction band edge, since electron carriers

exhibit the highest mobilities.

Figure 3C shows representative wavefunctions for states near the conduction band edge.

These states derive primarily from In and Se s and pz orbitals (Supplementary Figure S9 and

S10). In multilayer stacks, the pz orbitals interact with their counterparts from neighbouring

layers, leading to significant out-of-plane dispersion of the bands as well as small effective

masses (m∗z/me = 0.025). In InSe this interaction is particularly strong, in fact the band gap

is reduced by nearly 1 eV upon bringing individual monolayers together in the bulk structure

(Figure 3D). This is also shown in Figure 3E–G, where we see the emergence of subbands

with an energy separation of several hundred meV’s when going from monolayer InSe to a

trilayer. In order to conceptualize these results we devise a minimal tight-binding model.

We consider a one-orbital, nearest-neighbor tight-binding model as illustrated in Fig-

ure 4A. The orbitals of this model are meant to represent the hybrid s/pz states at the band

edges, and occupy the site of a 2D hexagonal lattice with nearest-neighbour hopping matrix
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Figure 4: Dimensional crossover in the mobility of InSe and 2D materials. (A)
Schematic of the tight-binding model used to describe the thickness dependence of the DOS
of InSe. (B) Low-energy electronic band structures and the corresponding DOS per site from
the tight-binding model, illustrated for monolayer, bilayer, and trilayer, respectively. (C)
Inverse DOS as a function of the number of layers N within the tight-binding model. The
blue dashed line represents the bulk limit, the gray dashed line is the linear approximation
at low N . The intersection between these two lines identifies the 2D to 3D crossover N∗.
(D) Summary map of the electron mobilities in InSe, including experimental data for three-
and six-layer samples,6 calculations based on the ab initio Boltzmann equation, and the
tight-binding model.

elements −txy. The 2D layers are then stacked vertically, with interlayer hopping −tz. The

band structures of this model are readily obtained, as discussed in Supplementary Note S1.

In the monolayer, the DOS per site is D1 =
√

3/6πtxy, independent of energy. When we

consider multiple layers, the interlayer hopping leads to the formation of subbands, and the

DOS per site exhibits a stepwise decrease towards the band bottom, as shown in Figure 4B

(see also Supplementary Figure S11 and S12). For a N -layer system the DOS at the band

bottom is easily seen to be D1/N . By combining this result with the Drude model we can

expect that the mobility will increase linearly with the number of layers.
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In order to place this reasoning on quantitative ground, we calculate explicitly the average

reciprocal DOS that enters the calculations of mobilities, 〈D−1〉, and determine the interlayer

hopping by comparing the tight-binding band structure of the bilayer with our ab initio cal-

culations (tz = 0.38 eV, Supplementary Figure S13 and Supplementary Note S2). Figure 4C

shows 〈D−1〉 as a function of N , calculated at room temperature. We see that this quantity

exhibits indeed a linear increase for the few-layer system, but it saturates to a constant value

towards the bulk. This behavior is a manifestation of the dimensionality crossover from a

2D system, for which D(E) = const, to its 3D counterpart, for which D(E) ∝ E1/2. The

crossover thickness is controlled by the interlayer hopping tz, and corresponds to N∗ = 10

in the case of InSe. Based on this analysis we predict that the electron mobility of InSe will

increase almost linearly with the number of layers up to N ∼ 10, equivalent of thickness

d ∼ 8 nm, and saturate beyond this thickness.

In Figure 4D we test the predictions of our simplified model against our brute-force

ab-initio calculations of mobilities of monolayer, bilayer, and bulk InSe, as well as experi-

mental values for three-layer and six-layer samples.6 We see that both ab initio calculations

and experiments nicely agree with our simplified model. The small deviations from linearity

are likely due to the simplifying assumptions used in our model, as well as the effect of

free carrier and substrate-induced screening in the experimental samples, which is known

to enhance carrier mobilities by weakening Fröhlich interactions.25 Apart from these small

corrections, the present analysis unambiguously demonstrates that materials dimensionality

plays a central role in the transport properties of InSe.

To the best of our knowledge, the possibility of controlling carrier mobilities in 2D ma-

terials via dimensionality, and the existence of a dimensional crossover from 2D to 3D, have

never been pointed out before. It is therefore natural to ask whether this novel effect is

unique to InSe, or it is a general feature of 2D semiconductors. To answer this question, we

perform a systematic investigation of the carrier mobilities as a function of thickness and

interlayer hopping using our tight-binding model. Supplementary Figure S14 shows that
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dimensionality plays an important role even when the interlayer coupling is as small as a

few tens of meV’s. Thus, even in systems with weak interlayer coupling, the mobility of

multilayers could be several times higher than in the monolayer.

Our findings suggest that the dimensional crossover identified in this work could occur

in a wide range of 2D semiconductors, from transition metal dichalcogenides,26 to phospho-

rene,27 and monochalcogenides.3 Indeed, the key feature that is essential to the conclusions

drawn from our model is the formation of subbands with parabolic band edges in multilayer

systems. These subbands originate from the interlayer coupling, and lead to a DOS which

depends on the number of layers. We checked that this feature is also present in the band-

structure evolution of MoS2 and phosphorene multilayers (see Supplementary Figure S15

and Figure S16). In line with our findings, experimental evidence suggested that the inter-

layer coupling in phosphorene is comparable to InSe,27 and the formation of narrowly-spaced

subbands was observed theoretically in a broad class of transition metal dichalcogenides.28

Furthermore, recent experiments reported thickness-dependent carrier mobilities in few-layer

MoS2, but the origin of this effect has remained elusive thus far.10 Based on our work, we

can anticipate that the layer-dependent mobilities in MoS2 could also originate from a di-

mensionality effect, although this will certainly warrant a separate investigation.

While our work reveals the crucial role of band-edge DOS in the dimensional crossover

of the intrinsic carrier mobility of 2D semiconductors, we emphasize that our model focuses

on gapped semiconductors with parabolic band edges and with effective masses weakly-

dependent on the number of layers. Hence, our model should not be used for systems like

graphene, which is a semimetal with linear band dispersion near the Fermi level. Unlike the

gapped 2D semiconductors discussed in the present work, the change from linear to parabolic

dispersion from monolayer to bilayer graphene (Supplementary Figure S17) results in the

reduction of carrier mobilities.29,30 Having identified the band-edge DOS as a key driver of the

dimensionality crossover in the mobility of 2D materials, it will be interesting to investigate

experimentally if the layer-dependent intrinsic carrier mobilities of 2D semiconductors could
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all fit into the simple description provided by our model.

In conclusion, we found that materials dimensionality modulates the intrinsic carrier

mobility of InSe and other layered materials over an extremely wide range. We demonstrated

that this novel, intrinsic effect originates from the evolution of the electronic structure from

2D to 3D with thickness, and that below a critical thickness it is responsible for a linear

increase of the electron mobility with the number of atomic layers. By providing a simple

conceptual framework to rationalize transport measurements on InSe, our work will serve as

a blueprint for the development of 2D electronics based on this new semiconductor. More

generally, as quantum-mechanical coupling between the wavefunctions of adjacent layers

is ubiquitous in 2D semiconductors and their heterostructures, the dimensionality effect

discovered in this work opens intriguing new opportunities for controlling carrier transport

at the nanoscale via van der Waals epitaxy.

Methods. Ground-state calculations. Ab initio calculations of bulk β-InSe (space group

P63/mmc) were carried out using the experimental lattice parameters a = 4.005 Å and

c = 16.660 Å.12 We used DFT within the local density gradient approximation of Perdew and

Wang.31 The core-valence interaction was described using Troullier-Martins norm-conserving

pseudopotentials,32 with the semicore In-4d states explicitly taken into account. Electronic

wavefunctions were expanded in a plane-wave basis set with kinetic energy cutoff of 100

Ry, which is sufficient to converge the total energy within 2 meV per atom. The Brillouin

zone was sampled using a 12 × 12 × 4 Monkhorst-Pack mesh shifted along the c-axis. The

atomic positions were relaxed with a force convergence criterion of 10−5 Ry/Bohr. Dielectric

and lattice-dynamical properties were calculated using density functional perturbation the-

ory (DFPT). For the calculation of the Fröhlich electron-phonon matrix elements we used

the converged dielectric tensors and Born effective charges obtained using a 31 × 31 × 31

Monkhorst-Pack mesh.

Monolayer and bilayer InSe were described using a vacuum-slab model. The in-plane

lattice constants were fixed to be the same as those in the bulk. The dimensions of the cells
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in the out-of-plane direction were 20 Å and 25 Å for monolayer and bilayer respectively; we

checked that this is enough to make interlayer electronic interaction negligible. A slightly

higher planewaves cut-off of 120 Ry was used in this case, in order to ensure the convergence

of lattice dynamical properties. For the monolayer and bilayer we sampled the Brillouin zone

using a 12× 12× 1 unshifted Monkhorst-Pack mesh.

The calculated dielectric tensors and Born effective charges of monolayer and bulk InSe

are shown in Supplementary Figure S18 and Table S2. All DFT and DFPT calculations

were performed using the Quantum ESPRESSO package.33

Electron-phonon coupling. Calculations of electron-phonon couplings and carrier mobili-

ties were performed using the EPW code.34,35 For bulk β-InSe, the electron-phonon matrix

elements were initially computed on a 8 × 8 × 4 electronic grid and a 4 × 4 × 4 phonon

grid, which were subsequently interpolated onto fine grids with ab initio accuracy, using

maximally-localised Wannier functions.36 The Fröhlich electron-phonon matrix elements

were calculated using the method of ref.22 In order to obtain accurate carrier mobilities,

we used quasi-random fine grids with Cauchy distributions centered at Γ. The weight of

each point in these grids is given by the corresponding Voronoi volume in the Brillouin zone.

A finite broadening of 1 meV was used to evaluate the Dirac delta functions in Eq. (2) below.

Detailed convergence tests are reported in Supplementary Figure S19.

For monolayer and bilayer, the use of slab model means that these systems are effectively

described as three-dimensional InSe/vacuum superlattices. For these systems, the analytic

expression for Fröhlich electron-phonon matrix elements of ref.22 is strictly valid only in the

long-wavelength limit (q→ 0). To address this point, before interpolation we computed the

electron-phonon matrix elements on a coarse 12 × 12 × 2 k grid and a 12 × 12 × 2 q grid.

We found that these grids were sufficient to achieve excellent accuracy in the interpolation

of electron-phonon matrix-elements over the whole Brillouin zone (as compared to explicit

DFPT calculations). For bilayer InSe, due to computational cost, the coarse q grid was

reduced to 6 × 6 × 2. In the case of monolayer InSe this trimming changes the carrier
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mobilities by less than five percent, therefore we consider 5% to be our error bar in the

mobilities of the bilayer. We also checked that the calculated mobilities are not sensitive

to the vacuum size used in the calculations. Complete tests are reported in Supplementary

Figure S20.

The carrier concentration for computing the mobilities was set at 1013 cm−3 for all sys-

tems. For monolayer and few-layer systems, when computing volume and carrier concentra-

tion, the dimension in the out-of-plane direction is taken to be the bulk interlayer distance

multiplied by the number of layers. In our calculations we found that the intrinsic carrier

density of InSe does not exceed 1013 cm−3 up to 500 K, the highest temperature considered in

this work. We have also calculated the mobilities for carrier densities ranging from 1011 cm−3

to 1015 cm−3. As shown in the Supplementary Figure S21, the calculated intrinsic carrier

mobilities are essentially independent of carrier density within (and below) this range. We

note that in our calculations free-carrier screening37 and electron-plasmon scattering38 are

not included, since these effects are negligible in the limit of intrinsic carrier density.

Spin-orbit coupling and many-body quasiparticle corrections. Previous work pointed out

that spin-orbit coupling (SOC) and many-body quasiparticle corrections affect the calculated

carrier mobility mainly through the change in the effective mass.15 To test these effects, in

Supplementary Figure S22 we compare the electronic band structures of bulk and monolayer

InSe with and without SOC. The effects of SOC on the band structure is found to be small.

In particular, SOC does not change the electron effective mass of monolayer, and only slightly

reduces the effective masses of bulk InSe. Recent GW calculations of the band structures

of InSe indicated that quasi-particle corrections also have a small effect on the in-plane

effective masses of InSe.39 We therefore expect that the calculated carrier mobilities will not

change significantly upon including SOC and many-body quasiparticle corrections. This is

supported by the good agreement of our calculated effective masses and carrier mobilities

with available experimental data.

Carrier scattering rates and mobilities. Carrier mobilities were computed using the ab
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initio Boltzmann transport equation in the self-energy relaxation time approximation.15 In

this framework, the electron mobility µe is given by:

µe,αβ =
−e
neΩ

∑
n∈CB

∫
dk

ΩBZ

∂fnk
∂εnk

vnk,αvnk,βτnk, (1)

where α and β denote Cartesian coordinates, ne is the carrier concentration, and Ω denotes

the volume of the crystalline unit cell. The summation is over the band index n, and

the integral is over the electron wavevectors k in the first Brillouin zone, whose volume is

ΩBZ. εnk and fnk represent the Kohn-Sham energies and occupation numbers, respectively,

and vnk is the band velocity. The carrier lifetime τnk are computed within the Fan-Migdal

approximation:40

1

τnk
=

2π

~
∑
mν

∫
dq

ΩBZ

|gmnν(k,q)|2

× [(1− fmk+q + nqν)δ(εnk − εmk+q − ~ωqν)

+ (fmk+q + nqν)δ(εnk − εmk+q + ~ωqν)] ,

(2)

where q is a phonon wavevector, and the summation is over the electron band index m and

phonon branch index ν. The phonon energies and the corresponding occupation numbers

are denoted by ~ωqν and nqν , respectively. The electron-phonon matrix element gmnν(k,q)

represent the probability amplitude of an electron scattering from a Bloch state nk to another

state labelled by m and k+q, due to the emission or absorption of a phonon with indices qν.

The Dirac delta functions reflect the conservation of energy during the scattering process.

The above formula is consistent with Fermi’s Golden Rule.

As the phonon energy scale is typically much smaller than that of electrons, the above

equation indicates that the electron-phonon scattering rate scales with the electron phonon
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matrix elements |gmnν(k,q)|2 and with the electronic density of states:

D(ε) =
∑
m

∫
dk

ΩBZ

δ(ε− εmk). (3)

This definition of the DOS yields the number of states per energy per unit cell. In order to

compare DOS and matrix elements between monolayer, bilayer, and bulk InSe, we introduce

nf , which represents the number of chemical formula units per unit cell. The density of

states is then scaled as D(ε)/nf , and the matrix elements are scaled as nf |gmnν(k,q)|2. This

scaling allows us to compare DOS and matrix elements across different number of layers and

cell sizes, while leaving unchanged physical observables such as carrier scattering rates and

mobilities.
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