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Abstract 
 In this paper, by considering dual geodesic trihedron (dual Darboux frame) we define dual 

Smarandache curves lying fully on dual unit sphere 2S�  and corresponding to ruled surfaces. 
We obtain the relationships between the elements of curvature of dual spherical curve (ruled 
surface) ( )sα�  and its dual Smarandache curve (Smarandache ruled surface) 1( )sα�  and we 

give an example for dual Smarandache curves of a dual spherical curve. 
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1. Introduction 
 In the Euclidean space 3E , an oriented line L  can be determined by a point p L∈  and a 

normalized direction vector a
�

 of L , i.e. 1a =
�

. The components of L  are obtained by the 

moment vector a p a
∗ = ×
� � �

 with respect to the origin in 3
E . The two vectors a

�
 and a

∗�  are not 

independent of one another; they satisfy the relationships , 1, , 0a a a a
∗= =

� � � �
. The pair 

( , )a a
∗� �

 of the vectors a
�

 and a∗� , which satisfies those relationships, is called dual unit 
vector[2]. The most important properties of real vector analysis are valid for the dual vectors. 
Since each dual unit vector corresponds to a line of 3E , there is a one-to-one correspondence 

between the points of a dual unit sphere 2
S�  and the oriented lines of 3E . This correspondence 

is known as E. Study Mapping[2]. As a sequence of that, a differentiable curve lying fully on 

dual unit sphere in dual space 3
D  represents a ruled surface which is a surface generated by 

moving of a line L  along a curve ( )sα  in 3
E  and has the parametrization 

( , ) ( ) ( )r s u s u l sα= +
���

, where ( )sα
�

 is called generating curve and ( )l s
�

, the direction of the 

line L , is called ruling. 
 In the study of the fundamental theory and the characterizations of space curves, the 
special curves are very interesting and an important problem. The most mathematicians 
studied the special curves such as Mannheim curves and Bertrand curves. Recently, a new 
special curve which is called Smarandache curve is defined by Turgut and Yılmaz in 
Minkowski space-time[6]. Then Ali have studied Smarandache curves in the Euclidean 3-
space 3

E [1].  
 Moreover, Önder has studied the Bertrand offsets of ruled surface according to the dual 
geodesic trihedron(Darboux frame) and given the relationships between the dual and real 
curvatures of a ruled surface and its offset surface[5]. 
 In this paper, we give Darboux approximation for dual Smarandache curves on dual unit 

sphere 2
S� . Firstly, we define the four types of dual Smarandache curves (Smarandache ruled 



 2 

surfaces) of a dual spherical curve(ruled surface). Then, we obtain the relationships between 
the dual curvatures of dual spherical curve ( )sα�  and its dual Smarandache curves. 

Furthermore, we show that dual Smarandache eg� � -curve of a dual curve is always its Bertrand 
offset. Finally, we give an example for Smarandache curves of an arbitrary curve on dual unit 

sphere 2
S� . 

 
2. Dual Numbers and Dual Vectors 

 Let { }( , ) : ,D IR IR a a a a a IR∗ ∗= × = = ∈  be the set of the pairs ( , )a a
∗ . For ( , )a a a

∗= , 

( , )b b b D
∗= ∈  the following operations are defined on D : 

  Equality:  ,a b a b a b
∗ ∗= ⇔ = =  

  Addition:  ( , )a b a b a b
∗ ∗+ = + +  

  Multiplication:  ( , )ab ab ab a b
∗ ∗= +  

The element (0,1) Dε = ∈  satisfies the relationships 

  0ε ≠ ,   2 0ε = ,  1 1ε ε ε= = .            (1)  
Let consider the element a D∈  of the form ( ,0)a a= . Then the mapping 

: , ( ,0)f D IR f a a→ =  is a isomorphism. So, we can write ( ,0)a a= . By the multiplication 
rule we have that  

  

( , )

( ,0) (0, )

( ,0) (0,1)( ,0)

a a a

a a

a a

a aε

∗

∗

∗

∗

=

= +

= +

= +

             (2) 

Then a a aε ∗= +  is called dual number and ε  is called dual unit. Thus the set of all dual 
numbers is given by 

  { }2: , , 0D a a a a a IRε ε∗ ∗= = + ∈ =             (3) 

The set D  forms a commutative group under addition. The associative laws hold for 
multiplication. Dual numbers are distributive and form a ring over the real number field[2,4]. 
 Dual function of dual number presents a mapping of a dual numbers space on itself. 
Properties of dual functions were thoroughly investigated by Dimentberg[3]. He derived the 
general expression for dual analytic (differentiable) function as follows 

  ( ) ( ) ( ) ( )f x f x x f x x f xε ε∗ ∗ ′= + = + ,          (4) 

where ( )f x′  is derivative of ( )f x  and ,x x IR
∗ ∈ .  

 Let  3D D D D= × ×  be the set of all triples of dual numbers, i.e., 

{ }3
1 2 3( , , ) : , 1,2,3

i
D a a a a a D i= = ∈ =� ,          (5) 

Then the set 3D  is module together with addition and multiplication operations on the ring D  
and called dual space. The elements of 3

D  are called dual vectors. Similar to the dual 

numbers, a dual vector a�  may be expressed in the form ( , )a a a a aε ∗ ∗= + =
� � � �

� , where a
�

 and 

a∗�  are the vectors of 3
IR . Then for any vectors a a aε ∗= +

� �
�  and b b bε ∗= +

� �
�  of 3

D , the scalar 
product and the cross product are defined by 

( ), , , ,a b a b a b a bε ∗ ∗= + +
� � �� � ��� ,           (6) 

and 

( )*a b a b a b a bε ∗× = × + × + ×
� � �� � ��� ,           (7) 
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respectively, where ,a b
��

 and a b×
��

 are the inner product and the cross product of the 

vectors a
�

 and a∗�  in 3
IR , respectively. 

 The norm of a dual vector a�  is given by  

,
, ( 0)

a a
a a a

a
ε

∗

= + ≠

� �
� �

� � .           (8) 

 A dual vector a�  with norm 1 0ε+  is called unit dual vector. The set of all dual unit 
vectors is given by 

{ }2 3
1 2 3( , , ) : , 1 0S a a a a D a a ε= = ∈ = +� � � � ,          (9) 

and called dual unit sphere[2,4].  
 E. Study used dual numbers and dual vectors in his research on the geometry of lines and 
kinematics. He devoted special attention to the representation of directed lines by dual unit 
vectors and defined the mapping that is known by his name:  
 
Theorem2.1.(E. Study Mapping): There exists one-to-one correspondence between the 

vectors of dual unit sphere 
2

S�  and the directed lines of space of lines 
3
� [2,4].  

 
 By the aid of this correspondence, the properties of the spatial motion of a line can be 
derived. Hence, the geometry of the ruled surface is represented by the geometry of dual 
curves lying fully on the dual unit sphere in 3

D .  

 The angle *θ θ εθ= +  between two dual unit vectors ,a b��  is called dual angle and 
defined by  

  *, cos cos sina b θ θ εθ θ= = −�� . 

By considering The E. Study Mapping, the geometric interpretation of dual angle is that θ  is 

the real angle between lines 1 2,L L  corresponding to the dual unit vectors ,a b��  respectively, 

and *θ  is the shortest distance between those lines[2,4]. 
 
3. Dual Representation of Ruled Surfaces 
 In this section, we introduce dual representation of a ruled surface which is given by 
Veldkamp in [7] as follows: 

 Let k  be a dual curve represented by ( )x e u=� �  or ( ) ( )x x e u e uε ε∗ ∗+ = +
� � � �

. The real 

curve ( )x e u=  on the real unit sphere is called the (real) indicatrix of k ; we suppose 

throughout that it does not exist of a single point. We take as the parameter u  the arc-length 
s  on the real indicatrix and we denote differentiation with respect to s  by primes. Then 

( )x e s=� �  and , 1e e′ ′ =
� �

. The vector e t′ =
��

 is the unit vector parallel to the tangent at the 

indicatrix. It is well known that given dual curve k  may be represented by 
 ( )x e s e c eε= = + ×

� � �
� � ,           (10) 

where 

, 1 , , 1 , , 0e e e e c e′ ′ ′ ′= = =
� � � � � �

. 

We observe that c  is unambiguously determined by k . It follows from (10) that 

 ( )e t c t c eε′ ′= + × + ×
� �� � �

� .          (11) 

Hence by means of  ( )
,

0
x x

x x x
x

ε

∗

= + ≠

� �
� �

� � : 
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 ( )1 det , , 1e c e tε ε′ ′= + = + ∆
�� �

�          (12) 

where ( )det , ,c e t′∆ =
�� �

. Since c′
�

 as well as e
�

 is perpendicular to t
�

 we may write c e tµ′× =
�� �

; 

then we obtain ,c e t µ′∆ = × =
�� �

. Therefore c e t′× = ∆
�� �

 and we obtain in view of (11): 

 ( )e t c t tε′ = + × + ∆
� � ��

� .          (13) 

Let t�  be dual unit vector with the same sense as e′� ; then we find as a consequence of (12): 
(1 )e tε′ = + ∆ �� . This leads in view of (13) to: 

 t t c tε= + ×
� ��

� .            (14) 

Guided by elementary differential geometry of real curves we introduce the dual arc-length s  
of the dual curve k  by 

 
0 0 0

( ) (1 )
s s s

s e d d s dσ σ ε σ ε σ′= = + ∆ = + ∆∫ ∫ ∫� . 

Then 1s ε′ = + ∆ . We define furthermore: 
de e

ds s

′
=

′

� �
; hence 

de
e

ds
ε′= + ∆

�
�  and therefore 

 
de

t
ds

=
�
� .            (15) 

Introducing the dual unit vector e t g g gε ∗× = = +
� �

�� �  we observe e t g× =
�� �

; hence by means of 
(10) and (14): 
 g g c gε= + ×

� � �
� .           (16) 

Then the dual frame { }, ,e t g�� �  is called dual geodesic trihedron( or dual Darboux frame) of the 

ruled surface corresponding to dual curve e� . Thus, the derivative formulae of this frame are 
given as follows,  

 , ,
de dt dg

t g e t
ds ds ds

γ γ= = − = −
�� �

� �� �          (17) 

where γ  is called dual spherical curvature and given by 

 ( )γ γ ε δ γ= + − ∆ ;           (18) 

and ,c eδ ′=
� �

, ,g tγ ′= −
��

. From (17) introducing the dual Darboux vector d e gγ= +� � �  we 

have 

, ,
de dt dg

d e d t d g
ds ds ds

= × = × = ×
�� �� � ��� � .         (19) 

(See [8]). 
 Analogous to common differential geometry the dual radius of curvature R  of the dual 
curve ( )x e s=� �  is given by 

 

3

2

2

de

ds
R

de d e

ds ds

=

×

�

� �
 . 

Then from (15) and (17), 

  ( )
1/ 221R γ

−

= + .                      (20) 

The unit vector 0d�  with the same sense as the Darboux vector d e gγ= +� � �  is given by 

  0 2 2

1

1 1
d e g

γ

γ γ
= +

+ +

� � � .                     (21) 
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The dual angle ρ  between 0d�  and e�  satisfies therefore: 

  
2 2

1
cos , sin

1 1

γ
ρ ρ

γ γ
= =

+ +
. 

Hence: 

  sin , cotR ρ γ ρ= = .                     (22) 

The point M  on the dual unit sphere indicated by 0d�  is called the dual spherical centre of 

curvature of k  at the point Q  given by the parameter value s , whereas ρ  is the dual 

spherical radius of curvature[7]. 
 
5. Dual Smarandache curves and Smarandache Ruled Surfaces 
 From E. Study Mapping, it is well-known that dual curves lying on dual unit sphere 
correspond to ruled surfaces of the line space 3

IR . Thus, by defining the dual smarandache 
curves lying fully on dual unit sphere, we also define the smarandache ruled surfaces. Then, 
the differential geometry of smarandache ruled surfaces can be investigated by considering 
the corresponding dual smarandache curves on dual unit sphere.  
 In this section, we first define the four different types of the dual smarandache curves on 
dual unit sphere. Then by the aid of dual geodesic trihedron(Dual Darboux frame), we give 
the characterizations of these dual curves(or ruled surfaces). 
 
5.1. Dual Smarandache et�� -curve of a unit dual spherical curve(ruled surface) 
 In this section, we define the first type of dual Smarandache curves as dual Smarandache 
et�� -curve. Then, we give the relationships between the dual curve and its dual Smarandache 
et�� -curve. Using the found results and relationships we study the developable of the 
corresponding ruled surface and its Smaranadache ruled surface.  
 
Definition 5.1. Let ( )sα α=� �  be a unit speed regular dual curve lying fully on dual unit 

sphere 2�S  and { }, ,e t g�� �  be its moving dual Darboux frame. The dual curve 1α�  defined by 

( )1

1

2
e tα = + �� �            (23) 

is called the dual Smarandache et�� -curve of α�  and fully lies on 2�S . Then the ruled surface 
corresponding to 1α�  is called the Smarandache 

��
et -ruled surface of the surface corresponding 

to dual curve α� . 
 Now we can give the relationships between α�  and its dual Smarandache et�� -curve 1α�  as 

follows.  
 

Theorem 5.1. Let ( )sα α=� �  be a unit speed regular dual curve lying on dual unit sphere 
2�S . 

Then the relationships between the dual Darboux frames of α�  and its dual Smarandache et�� -

curve 1α�  are given by  



 6 

 
1

1 2 2 2

1

2 2 2

1 1
0

2 2

1 1

2 2 2

2

4 2 4 2 2

e e

t t

g g

γ

γ γ γ

γ γ

γ γ γ

 
 
 
    

    
= −    

+ + +       
 
 −
 + + + 

� �

� �

� �

       (24) 

where γ  is as given in (18). 

Proof. Let us investigate the dual Darboux frame fields of dual Smarandache et�� -curve 
according to ( )sα α=� � . Since 1 1eα =� � , we have 

( )1

1

2
e e t= + �� �                        (25) 

Differentiating (25) with respect to s , we get 

( )1 1 1 1
1

1

1

2

de de ds ds
t e t g

ds ds ds ds
γ= ⋅ = ⋅ = − + +

� �
� �� �          

and hence 

( )
1 22

e t g
t

γ

γ

− + +
=

+

�� �
�            (26)  

where 
2

1 2

2

ds

ds

γ+
= .            

Thus, since 1 1 1g e t= × �� � , we have 

1 2 2 2

2

4 2 4 2 2
g e t g

γ γ

γ γ γ
= − +

+ + +
�� � � .        (27) 

From (25)-(27) we have (24). 
 

 If we represent the dual Darboux frames of α�  and 1α�  by the dual matrixes E�  and 1E� , 

respectively, then (24) can be written as follows 

  1E AE= �� �  

where 

  
2 2 2

2 2 2

1 1
0

2 2

1 1

2 2 2

2

4 2 4 2 2

A
γ

γ γ γ

γ γ

γ γ γ

 
 
 
 
 

= − 
+ + + 

 
 −
 + + + 

� .      (28) 

It is easily seen that det( ) 1A =�  and T T
AA A A I= =� � � �  where I  is the 3 3×  unitary matrix. It 

means that A�  is a dual orthogonal matrix. Then we can give the following corollary. 
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Corollary 5.1. The relationship between Darboux frames of the dual curves(ruled surfaces) 

α�  and 1α�  is given by a dual orthogonal matrix defined in (28). 

  
Theorem 5.2. The relationship between the dual Darboux formulae of dual Smarandache et�� -

curve 1α�  and dual Darboux frame of  α�  is as follows  

( ) ( ) ( )

( ) ( ) ( )

1
2 2 2

1

2 2 2 2 2
1

2 2 22 2 2
1

3 3 4 21

2 2 21 2 2 2

1 1

2 2 2

2 2 2 2 2 2(1 )(2 ) 2( )(2 ) 2

2 2 2

2 2 2 2 2 2

2 2 2

de

ds
e

dt
t

ds
g

dg

ds

γ

γ γ γ

γγ γ γγ γ γ γ γ γ γ γ

γ γ γ

γ γ γ γ γ γ γ γ γγ

γ γ γ

 
−  

   + + +
   
   ′ ′ ′ ′− − − − + + + + − 

=    
 + + + 

  
′ ′ ′+ + − − − − − −  

    + + + 

�

�
�

�

�
�





 


(29) 
Proof. Differentiating (25), (26) and (27) with respect to s , we have the desired equation 
(29). 
 
Theorem 5.3. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the dual curvatures of α�  and its dual Smarandache et�� -curve 1α�  is 

given by 

 

( )

3

1 3
2 2

2 2

2

γ γ γ
γ

γ

′+ +
=

+

.           (30) 

Proof. Since 1
1 1

1

dg
t

ds
γ= −

�
� , from (26) and (28), we get dual curvature of the curve 1 1( )sα�  as 

follows 

( )

3

1 3
2 2

2 2

2

γ γ γ
γ

γ

′+ +
=

+

.                      

 
Corollary 5.2. If the dual curvature γ  of α�  is zero, then the dual curvature 1γ  of dual 

Smarandache et�� -curve 1α�  is zero.  

 
Corollary 5.3. The Darboux instantaneous vector of dual Smarandache et�� -curve is given by 

 

( )

3 2
1 3

2 2

1
(2 2 4 ) 2 (2 4)

2 2

d e t gγ γ γ γ γ

γ

′ ′ = + + + + + 
+

� �� � .   (31)   

Proof: It is known that the dual Darboux instantaneous vector of dual Smarandache et�� -curve  

is  1 1 1 1d e gγ= +� � � . Then, from (24) and (30) we have (31). 

 
Theorem 5.4. Let ( )sα α=� �  be a unit speed regular dual curve on dual unit sphere and 1α�  be 

its dual Smarandache et�� -curve. If the ruled surface corresponding to dual curve α�  is 

developable then the ruled surface corresponding to dual curve 1α�  is also developable if and 

only if 
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( ) ( )

2 3

1 3 5
2 22 2

3 2 2 3 ( 2 2 )

2 2

δγ δ δ δγ γ γ γ
δ

γ γ

′ ′+ + + +
= −

+ +

 

Proof. From (18) we have 

 
( )

( )1 1 1 1 1

γ γ ε δ γ

γ γ ε δ γ

= + − ∆

= + − ∆
 

Then substituting these equalities into to equation (30), we have 

 

( ) ( )

2 3

1 1 1 3 5
2 22 2

(3 2)( ) 2 2 2 3 ( )( 2 2 )

2 2

γ δ γ δ γ γ γ δ γ γ γ γ
δ γ

γ γ

′ ′ ′ ′+ − ∆ + − ∆ − ∆ − ∆ + +
− ∆ = −

+ +

. 

Since the ruled surface corresponding to dual curve α�  is developable, 0∆ = . Hence, 

 

( ) ( )

2 3
1

1 3 5
2 21 2 2

1 1

(3 2) 2 3 ( 2 2 )

2 2

δ γ δ δ γδ γ γ γ

γ
γ γ γ γ

′ ′+ + + +
∆ = − +

+ +

. 

Thus, the ruled surface corresponding to dual curve 1α�  is developable if and only if 

 

( ) ( )

2 3

1 3 5
2 22 2

3 2 2 3 ( 2 2 )

2 2

δγ δ δ δγ γ γ γ
δ

γ γ

′ ′+ + + +
= −

+ +

. 

 
Theorem 5.5. The relationship between the radius of dual curvature of dual Smarandache 

et�� -curve 1α�  and the dual curvature of α�  is given by 

( )
3

2 2

1 6 4 2 3 2

2

2 14 12 4 8 4
R

γ

γ γ γ γ γ γγ γ

+
=

′ ′ ′+ + + + +
.       (32) 

Proof. From (20), 
( )

1 22
1

1

1
R

γ
=

+
. Then from (30), the radius of dual curvature is 

 

( )
( )

( )
3

2 2

1 2 6 4 2 3 23

32

21

2 14 12 4 8 42 2
1

2

R
γ

γ γ γ γ γ γγ γγ γ γ

γ

+
= =

′ ′ ′+ + + + +′+ +
+

+

. 

 
Theorem 5.6. The relationship between the radius of dual spherical curvature of dual 

Smarandache et�� -curve 1α�  and the elements of dual curvature of α�  is, 

( )
3

2 2

1 6 4 2 3 2

2
arcsin

2 14 12 4 8 4

γ
ρ

γ γ γ γ γ γγ γ

 
+ 

=  
′ ′ ′+ + + + + 

 

                 (33) 

Proof. Let 1ρ  be the radius of dual spherical curvature and 1R  be the radius of dual curvature 

of 1α� . From equation (22) we have 

 1 1sin Rρ =  

Thus, we get radius of dual spherical curvature 
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( )
3

2 2

1 6 4 2 3 2

2
arcsin

2 14 12 4 8 4

γ
ρ

γ γ γ γ γ γγ γ

 
+ 

=  
′ ′ ′+ + + + + 

 

. 

In the following sections we define dual Smarandache eg� � , tg��  and etg�� �  curves. The 
proofs of the theorems and corollaries of these sections can be given by using the similar way 
used in previous section. 

 
5.2. Dual Smarandache eg� � -curve of a unit dual spherical curve(ruled surface) 
 In this section, we define the second type of dual Smarandache curves as dual 
Smarandache eg� � -curve. Then, we give the relationships between the dual curve and its dual 

Smarandache eg� � -curve. Using obtained results and relationships we study the developable of 
the corresponding ruled surface and its Smarandache ruled surface.  
 
Definition 5.2. Let ( )sα α=� �  be a unit speed regular dual curve lying fully on dual unit 

sphere and { }, ,e t g�� � be its moving Darboux frame. The dual curve 2α�  defined by 

( )2

1

2
e gα = +� � � .                      (34) 

is called the dual Smarandache  eg� � -curve of α�  and fully lies on 2�S . Then the ruled surface 

corresponding to 2α�  is called the Smarandache eg
��

-ruled surface of the surface corresponding 

to dual curve α� . 
 Now we can give the relationships between α�  and its dual smarandache eg� � -curve 2α�  as 

follows.  
 

Theorem 5.7. Let ( )sα α=� �  be a unit speed regular dual curve lying on dual unit sphere 2�S . 

Then the relationships between the dual Darboux frames of α�  and its dual Smarandache eg� � -

curve 2α�  are given by  

 
2

2

2

1 1
0

2 2

0 1 0

1 1
0

2 2

e e

t t

g g

 
    
    

=     
    −     
 

� �

� �

� �

.           (35) 

From (35) we have 2t t=� � , i.e, 2α�  is a Bertrand offset of α� [5].  

 In [5], Önder has given the relationship between the geodesic frames of Bertrand surface 
offsets as follows  

  
2

2

2

cos 0 sin

0 1 0

sin 0 cos

e e

t t

g g

θ θ

θ θ

 −   
    

=     
        

� �

� �

� �

          

where θ θ εθ ∗= + , (0 , )θ π θ ∗≤ ≤ ∈�  is the dual angle between the generators e�  and 2e�  of 

Bertrand ruled surface eϕ  and 
2eϕ . The angle θ  is called the offset angle and θ ∗  is called the 

offset distance[5]. Then from (35) we have that offset angle is / 4θ π=  and offset distance is 

0θ ∗ = . Then we have the following corollary. 
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Corollary 5.4. The dual Smarandache eg� � -curve of a dual curve α�  is always its Bertrand 

offset with dual offset angle  / 4 0θ π ε= + . 

  

Theorem 5.8. Let ( )sα α=� �  be a unit speed regular dual curve on dual unit sphere 
2�S . Then 

according to dual Darboux frame of α� , the dual Darboux formulae of dual Smarandache 

eg� � -curve  2α�  are as follows 

 

2

2

2

2

2

2

0 1 0

2 2
0

1 1

1
0 0

1

de

ds
e

dt
t

ds
g

dg

ds

γ

γ γ

γ

γ

   
   
    
   −  

=    − −    
    +

−   
−  

�

�
�

�

�
�

        (36) 

 
Theorem 5.9. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the dual curvatures of α�  and its dual Smarandache eg� � -curve 2α�  is 

given by 

 2

1

1

γ
γ

γ

+
=

−
  .  

 
Corollary 5.5. The dual curvature γ  of α�  is zero if and only if the dual curvature 2γ  of dual 

Smarandache et�� -curve 1α�  is 1. 

 
Corollary 5.6. The Darboux instantaneous vector of dual Smarandache eg� � -curve  is given by 

 2

2 2

1 1
d e g

γ

γ γ
= +

− −
� � �   . 

 
Theorem 5.10. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere and 2α�  be the 

dual Smarandache eg� � -curve of α� . If the ruled surface corresponding to the dual curve α�  is 

developable then the ruled surface corresponding to dual curve 2α�  is developable if and only 

if 

( )2
21 2 0γ δ δ− − = . 

 
Theorem 5.11. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the radius of dual curvature of dual Smarandache eg� � -curve 2α�  and the 

dual curvature of ( )sα α=� �  is, 

2 2

1

2 2
R

γ

γ

−
=

+
. 

 
Theorem 5.12. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the radius of dual spherical curvature of dual Smarandache eg� � -curve 

2α�  and the elements of dual curvature of α�  is, 
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( )
2 2 3

2 2

2

1
arcsin

2 2 1
2 1 cos arcsin

2 2

γ γ γγ
ρ ε

γ γ
γ

γ

∗ ∗ − +
 = −
    + −   +  

  +  

. 

 
5.3. Dual Smarandache tg�� -curve of a unit dual spherical curve(ruled surface) 
 In this section, we define the second type of dual Smarandache curves as dual 
Smarandache tg�� -curve. Then, we give the relationships between the dual curve and its dual 

smarandache tg�� -curve. Using the found results and relationships we study the developable of 
the corresponding ruled surface and its Smaranadache ruled surface. 
 
Definition 5.3. Let ( )sα α=� �  be a unit speed regular dual curve lying fully on dual unit 

sphere and { }, ,e t g�� � be its moving Darboux frame. The dual curve 3α�  defined by 

( )3

1

2
t gα = +�� �  

is called the dual Smarandache  tg�� -curve of α�  and fully lies on 2�S . Then the ruled surface 

corresponding to 3α�  is called the Smarandache tg
��

-ruled surface of the surface corresponding 

to dual curve α� . 
 Now we can give the relationships between α�  and its dual Smarandache tg�� -curve 3α�  

as follows. 
 

Theorem 5.13. Let ( )sα α=� �  be a unit speed regular dual curve lying on dual unit sphere 
2�S . 

Then the relationships between the dual Darboux frames of α�  and its dual Smarandache tg�� -

curve 3α� are given by  

 
3

3 2 2 2

3

2 2 2

1 1
0

2 2

1

1 2 1 2 1 2

2 1 1

2 4 2 4 2 4

e e

t t

g g

γ γ

γ γ γ

γ

γ γ γ

 
 
 

    
− −    =    + + +   

    
− 

 
+ + + 

� �

� �

� �

.       (37) 

 

 If we represent the dual darboux frames of α�  and 3α�  by the dual matrixes E�  and 1E� , 

respectively, then (37) can be written as follows 

  1E AE= �� �  

where 
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2 2 2

2 2 2

1 1
0

2 2

1

1 2 1 2 1 2

2 1 1

2 4 2 4 2 4

A
γ γ

γ γ γ

γ

γ γ γ

 
 
 
 

− − =
 + + +
 

− 
 

+ + + 

� .        (38) 

It is easily seen that det( ) 1A =�  and T T
AA A A I= =� � � �  where I  is the 3 3×  unitary matrix. It 

means that A�  is a dual orthogonal matrix. Then we can give the following corollary. 
 
Corollary 5.7. The relationship between the Darboux frames of the dual curves(ruled 

surfaces) α�  and 3α�  is given by a dual orthogonal matrix defined by (38). 

 
Theorem 5.14. The relationship between the dual Darboux formulae of dual Smarandache 

tg�� -curve 3α�  and dual Darboux frame of  α�  is given by 

( )
( )

( ) ( )
( )

( )( )
( )

( ) ( )
( )

( )
( )

( )
( )

3
2 2 2

3
2 2 2 2 2 2 2

3
2 2 22 2 2

3

2 2 2 23

3 2 2 22 2 2

1

1 2 1 2 1 2

2 2 2 1 2 2 2 2 1 1 2 2 2 2 1 2

1 2 1 2 1 2

16 4 2 2 4 8 2 2 4 8 2 2 4

1 2 1 2 1 2

de

ds

dt

ds

dg

ds

γ γ

γ γ γ

γγ γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ

γ γ γ γ γγ γ γ γγ γ γ

γ γ γ


− − 

  + + + 
 ′ ′ ′ ′ ′− + − + + + − + − + 
= 

+ + + 
 

′ ′ ′ ′− + + + + + − − +  
 

+ + +

�

�

�

e

t

g





 
 
   

  
 
 
 



�

�

�

.              (39) 
 
Theorem 5.15. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the dual curvatures of α�  and its dual Smarandache tg�� -curve 3α�  is 

given by 

( )

2

3 3
2 2

4 2 4 2 2 2

2 4

γγ γ
γ

γ

′ + +
=

+

. 

 
Corollary 5.8. If the dual curvature γ  of α�  is zero, the dual curvature 3γ  of dual 

Smarandache et�� -curve 3α�  is 1. 

 
Corollary 5.9. The Darboux instantaneous vector of dual Smarandache tg�� -curve is given by

 

( ) ( )

2

3 3 32
2 22 2

2 4 4 8 4

2 4 2 4 2 4

d e t g
γ γγ γγ γ

γ γ γ

′ ′ + +
= + +

+ + +

� �� � . 

 

Theorem 5.16. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere and 3α�  be the 

dual Smarandache tg�� -curve of α� . If the ruled surface corresponding to the dual curve α�  is 

developable then the ruled surface corresponding to dual curve 3α�  is developable if and only 

if 
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( ) ( )

2

1 3 5
2 22 2

4 2 4 2 8 2 12 (4 2 4 2 2 2)

2 2

δγ γδ δγ δγ γγ γ
δ

γ γ

′ ′ ′+ + + +
= +

+ +

. 

 

Theorem 5.17. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the radius of dual curvature of dual Smarandache tg�� -curve 3α�  and the 

dual curvature of ( )sα α=� �  is, 

( )
3

2 2

3
2 3 2 2

2 4

(2 4 ) (4 2 4 2 2 2)
R

γ

γ γγ γ

+
=

′+ + + +
. 

 

Theorem 5.18. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the radius of dual spherical curvature of dual Smarandache tg�� -curve 

3α�  and the elements of dual curvature of α�  is, 

( )
3

2 2

3
2 3 2 2

2 4
arcsin

(2 4 ) (4 2 4 2 2 2)

γ
ρ

γ γγ γ

 
+ 

=  
′+ + + + 

 

. 

 
5.4. Dual Smarandache etg�� � -curve of a unit dual spherical curve(ruled surface) 
 In this section, we define the second type of dual Smarandache curves as dual 
Smarandache etg�� � -curve. Then, we give the relationships between the dual curve and its dual 

smarandache etg�� � -curve. Using the found results and relationships we study the developable 
of the corresponding ruled surface and its Smaranadache ruled surface. 
 
Definition 5.4. Let ( )sα α=� �  be a unit speed regular dual curve lying fully on dual unit 

sphere and { }, ,e t g�� � be its moving Darboux frame. The dual curve 4α�  defined by 

( )4

1

3
e t gα = + +�� � �  

is called the dual Smarandache  etg�� � -curve of α�  and fully lies on 2�S . Then the ruled surface 

corresponding to 4α�  is called the Smarandache etg
�� �

-ruled surface of the surface 

corresponding to dual curve α� . 
 Now we can give the relationships between α�  and its dual smarandache etg�� � -curve 4α�  

as follows. 
 

Theorem 5.19. Let ( )sα α=� �  be a unit speed regular dual curve lying on dual unit sphere 2�S . 

Then the relationships between the dual Darboux frames of α�  and its dual Smarandache 

etg�� � -curve 4α� are given by  
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( )

4

4 2 2 2

4

2 2 2

1 1 1

3 3 3

1 1

2 2 2 2 2 2 2 2 2

12 1 2

6 1 6 1 6 1

e e

t t

g g

γ γ

γ γ γ γ γ γ

γγ γ

γ γ γ γ γ γ

 
 
 

    
− −    =    − + − + − +       

 − +− −
  − + − + − + 

� �
� �

� �

� �

.     (40) 

 

 If we represent the dual darboux frames of α�  and 4α�  by the dual matrixes E�  and 1E� , 

respectively, then (40) can be written as follows 

  1E AE= �� �  

where 

  

( )

2 2 2

2 2 2

1 1 1

3 3 3

1 1

2 2 2 2 2 2 2 2 2

12 1 2

6 1 6 1 6 1

A
γ γ

γ γ γ γ γ γ

γγ γ

γ γ γ γ γ γ

 
 
 
 

− − =
 − + − + − +
 
 − +− −
  − + − + − + 

� �
� .    (41) 

It is easily seen that det( ) 1A =�  and T T
AA A A I= =� � � �  where I  is the 3 3×  unitary matrix. It 

means that A�  is a dual orthogonal matrix. Then we can give the following corollary. 
 
Corollary 5.10. The relationship between the Darboux frames of the dual curves(ruled 

surfaces) α�  and 4α�  is given by a dual orthogonal matrix defined by (41). 

 
Theorem 5.20. The relationship between the dual Darboux formulae of dual Smarandache 

etg�� � -curve 4α�  and dual Darboux frame of  α�  is given by 

( ) ( )( )
( )

( )( ) ( )( )

( )
( )( ) ( )

( )
( ) ( ) ( ) ( )

4 2 2 2

4
2 2 22 2 2 2 2 2

4
3 3 32 2 2

4

24

4

1 1

2 2 2 2 2 2 2 2 2

3 2 1 3 1 2 2 2 3 2 2 2 3 1 2 3 2 2 2 3 2

2 2 2 2 2 2 2 2 2

4 2 2 1 2 1 2

4

de

ds

dt

ds

dg

ds

γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γγ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γγ γ

γ

− −
 

− + − + − + 
 

′ ′ ′ ′ ′ ′− + − − + − + − + − − − + − − + − − 
= 

− + − + − + 
 

′ ′ ′+ + − + − − − 
 

�

�

�

( )
( )( ) ( )( )

( )
( ) ( ) ( ) ( )

( )

2 2 2 2

2 2 22 2 2

2 2 2 1 1 2 2 2 2 1 2 2

1 4 1 4 1

e

t

g

γ γ γ γ γ γγ γ γ γ γ γ γ γγ γ

γ γ γ γ γ

 
 
 
 

  
  
   

  
 ′ ′ ′ ′ ′ ′− + − − + + + − − − − − + + − −
 
 − + − + − + 

�

�

�

.              (42) 
 
Theorem 5.21. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the dual curvatures of α�  and its dual Smarandache etg�� � -curve 4α�  is 

given by 

( )

3

4 3
2 2

3 2 2

2 2 1

γ γ
γ

γ γ

′ + +
=

− +

. 
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Corollary 5.11. If the dual curvature γ  of α�  is zero, then the dual curvature 4γ  of dual 

Smarandache etg�� � -curve 4α�  is 
1

2
. 

 
Corollary 5.12. The Darboux instantaneous vector of dual Smarandache etg�� � -curve is given 

by 

 

( ) ( ) ( )

3 2 2

4 3 3 3
2 2 22 2 2

3 6 6 6 3 3 6 6 6

2 6 1 2 6 1 2 6 1

d e t g
γ γ γ γ γ γ γ γ

γ γ γ γ γ γ

′ ′ ′+ − + + − +
= + +

− + − + − +

� �� �  

 

Theorem 5.22. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere and 4α�  be the 

dual Smarandache etg�� � -curve of α� . If the ruled surface corresponding to the dual curve α�  is 

developable then the ruled surface corresponding to dual curve 4α�  is developable if and only 

if 

( )

( )( )

( )

32

4 3 5
2 22 2

3 2 1 3 2 26 3

2 2 1 4 2 1

δ γ γ γγ δ δ
δ

γ γ γ γ

′− + +′+
= −

− + − +

. 

 

Theorem 5.23. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the radius of dual curvature of dual Smarandache etg�� � -curve 4α�  and the 

dual curvature of ( )sα α=� �  is, 

( )

( ) ( )

3
2 2

4 3 22 3

2 2 1

8 1 3 2 2
R

γ γ

γ γ γ γ

− +
=

′− + + + +

. 

 

Theorem 5.24. Let ( )sα α=� �  be a unit speed regular curve on dual unit sphere. Then the 

relationship between the radius of dual spherical curvature of dual Smarandache etg�� � -curve 

4α�  and the elements of dual curvature of α�  is, 

 ( )

( ) ( )

3
2 2

4 3 22 3

2 2 1
arcsin

8 1 3 2 2

γ γ
ρ

γ γ γ γ

 
− + 

=  
′ − + + + +

 

. 

 
Example 1. Let consider the dual spherical curve ( )sα�  given by the parametrization 

 ( ) ( )( ) cos ,sin ,0 sin , cos ,0s s s s s s sα ε= + −� . 

The curve ( )sα�  represents the ruled surface 

 ( )( , ) cos , sin ,r s v v s v s s=  

which is a helicoids surface rendered in Fig. 1. Then the dual Darboux frame of α�  is obtained 
as follows, 

 

( ) ( )

( ) ( )

( )

( ) cos ,sin ,0 sin , cos ,0

( ) sin ,cos ,0 cos , sin ,0

( ) 0,0,1

e s s s s s s s

t s s s s s s s

g s

ε

ε

= + −

= − + − −

=

�

�

�

 

The Smarandache et�� , eg� � , tg�� , and etg�� �  curves of the dual curve α�  are given by  
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( ) ( )

( ) ( )

( ) ( )

( )

1

2

3

4

1
( ) cos sin ,cos sin ,0 cos sin , cos sin ,0

2

1
( ) cos ,sin ,1 sin , cos ,0

2

1
( ) sin ,cos ,1 cos , sin ,0

2

1
( ) cos sin ,cos sin ,1 cos sin , cos sin

3

s s s s s s s s s s s s s

s s s s s s s

s s s s s s s

s s s s s s s s s s s s s

α ε

α ε

α ε

α ε

= − + + − − −  

= + −  

= − + − −  

= − + + − − −

�

�

�

� ( ),0  

 

respectively. From E. Study mapping, these dual spherical curves correspond to the following 
ruled surfaces 

 

( )

( )

( )

( )

1

2

3

4

1 1 1 1
( , ) 0,0, cos sin , cos sin ,0

2 2 2 2

1 1 1
( , ) 0,0, cos , sin ,

2 2 2

1 1 1
( , ) 0,0, sin , cos ,

2 2 2

1 1 1 1 1
( , ) 0,0, cos sin , cos sin ,

3 3 3 3 3

r s v s v s s s s

r s v s v s s

r s v s v s s

r s v s v s s s s

 
= + − + 

 

 
= +  

 

 
= + − 

 

 
= + − + 

 

 

respectively. These surfaces are rendered in Fig.2, Fig. 3, Fig. 4 and Fig. 5, respectively.  
 

 
Figure 1. Helicoid surface corresponding to dual curve α�  
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Figure 2. Smarandache et��  ruled surface               Figure 3. Smarandache eg� �  ruled surface 
 

 

          
Figure 4. Smarandache tg��  ruled surface                  Figure 5. Smarandache etg�� �  ruled surface 
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