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Why binding affinity prediction Challenges
Accurate prediction of the interaction between a ligand and a protein relies on:
• Locating one or more favourable and relavant ligand interaction poses (docking).
• Dealing with flexibilty of the protein and ligand leading to the interaction.
• Accurate description of the physicochemical interaction space (force field).
• Correlating (simulation) descriptors to binding affinity (statistical modelling).

Our approach to these challenges relies on docking to sample ligand-binding 
conformations followed by short MD to retrieve binding free energies. 
Interaction dynamics is further accounted for by using multiple ligand binding 
poses in a Boltzmann-weighting scheme. Binding affinity regression models are 
trained using a semi-autonomous learning method introduced here • that 
uses iterative Linear Interaction Energy (iLIE) thereom3,4.

Method LIE prediction workflow

Gcalc = Wi
i

N

Vlig surr
vdW

bound,i
Vlig surr

vdW

free( )+

Wi
i

N

Vlig surr
el

bound,i
Vlig surr

el

free( ) +
Wi =

e Gcalc,i /kBT

e Gcalc,i /kBT

i

N

• LIE equation with support for multiple ligand poses • Boltzmann weighting 
function for multi-pose
LIE equation3
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Molecular Dynamics

Protein-ligand binding free energy prediction extends the ‘docking problem’ with the 
requirement of an accurate understanding of the chemical space leading to 
interactions and their relation to binding affinity. Powerful in-silico methods able to 
predict favourable interaction to the target protein and unwanted binding to 
off-target proteins during early-stage drug development can help to prevent failures 
and waste of resources during later stages. 

Modelling

PLANTS1 docking.
Flexible ligand and 
side-chains

Multiple predictions or
model training all at once

Support for multiple
protein conformations

ChemPLP
scoring1

FFT smoothing and spline fitting. Ensures stable 
energy averages. Filters for ligand conformational 
transitions

Normal distribution filtering
with support for multiple
distributions using Expectation
Maximization

Stochastic search
of regression model
space using Bayesian 
statistics and iRLS
regression

Use interaction profiles to
cluster ligands and seed the
stochastic search 

Select representative poses using 
k-means clustering from a cross-cor-
relation derived similarity matrix 
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Interaction profiling. Contact frequency for different interaction types as horizontally stacked bars02
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Robust LIE regression models.   Correlation plots (units in kJ mol-1)01
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The LIE workflow was applied to a set of 132 structurally diverse aromatase (CYP19A1) inhibitors with known binding 
affinties derived from an industrial screening study. The high structural diversity in the dataset makes it unlikely for one 
model to explain the full dataset. Our semi-autonomous learning method is designed to explain as much as possible of 
the dataset in one or multiple models within a predefined statistical space taking into account the ligand interaction 
space.

Results LIE workflow applied to CYP19A1 aromatase

3 automatically resolved regression
models. 1 unique, 2 partly 
overlapping

86% of the dataset
explained

1 model with steroid based 
aromatase inhibitors (SAI)

The semi-autonomous learning 
method identified three unique 
to partially overlapping robust 
LIE regression models.

Interaction profiles provided the 
applicability domain of the three 
models in terms of the type of 
interactions the ligands have with 
the four interaction “hotspots”

2 models with non-steroid 
based aromatase inhibitors
(NSAI)

Our LIE workflow provides bind-
ing affinity prediction with de-
tailed structural information while 
keeping CPU costs tractable. 
Extensive statistical modelling and 
interaction profiling provides 
models that explain a maximum 
of the dataset with accompanying 
applicability domain and distribu-
tion confidence information.
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