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Abstract: Observation that lies outside the overall pattern of its distribution is called outlier. The 

presence of outliers in time series data will effects on the modelling and also forecasting. Among 

the various types of outliers that effects the behavioral of finance series is additive outliers. This 

situation occurred because of recording errors, measurement errors or external factor. Therefore, 

the intention of this research is to investigate the effectiveness of volatility financial model with the 

presence of additive outliers. The appropriate approach in this paper is Autoregressive Moving 

Average-Generalized Autoregressive Conditional Heteroscedasticity (ARMA-GARCH) model. In 

this paper, data was simulated using ARMA (1, 0)-GARCH (1, 2) model via Monte Carlo method. 

There are three different sample size used in simulation study which are 500, 1000 and 1400. The 

comparison of effectiveness ARMA-GARCH model are based on MAE, MSE, RMSE, AIC, SIC and 

HQIC. The results of the numerical simulation indicate that when sample size increase, the 

effectiveness of ARMA-GARCH model diminished in the presence of additive outliers. 
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Outlier is a very critical part in economy and 

business field. Its existence can give significant 

impact on volatility modelling and forecasting 

of financial series. Therefore, the sophisticated 

financial model that used among statisticians 

and economists is Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) 

model. The finding of this research will help to 

governmental, investors, stock market traders 

and researchers to get an efficient volatility 

financial model to analyze financial series that 

contain outlier. 

 

 

1. Introduction 

The financial volatility model has been investigated by many researchers using financial time 

series data. Generally the financial time series consist of daily, weekly, monthly or yearly data. The 

series can be analyze and modelled by using Autoregressive (AR) model, Moving Average (MA) 

model, Autoregressive Moving Average (ARMA) model, Autoregressive Conditional 

Heteroscedasticity (ARCH) model, Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) model and many other models. However, returns time series especially in economic, 

business and banking influenced by stylized facts. 
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There are two types of stylized facts that give significant impact on modelling which are 

volatility clustering and heavy-tails distribution. In statistics term, volatility clustering means 

unequal variance along the series. While the heavy-tails distribution occurred when the returns have 

excess kurtosis. This may cause by the existence of outliers. Over the past four decades the problem 

of outliers in the time series has begun identified by Fox (1972). Among the various types of outliers 

that effects to the behavioral of finance series is additive outliers (AO).  

Previous researches have reported that the existing of outliers can give negative impacts such as 

bias to the GARCH parameters estimation (Sakata & White, 1998; Melo Mendes, 2000; Charles, 2008), 

on identification and estimation of the GARCH-type models (Carnero et al., 2007, 2012), and also on 

forecasting (Franses & Ghijsels, 1999; Carnero et al., 2007; Charles, 2008). Therefore, in an attempt to 

attain efficiency of the volatility financial model, most scholars applied ARMA (m,n)/GARCH(p,q) 

model. 

Several studies have selected ARMA(m,n)-GARCH(p,q) model in modelling and forecasting 

such as in machine health condition (Pham & Yang, 2010) and stock exchange (Huq et al., 2013). While 

Behmiri and Manera (2015) used ARMA(p,q)-GARCH(2,2) model to estimate the persistence of 

volatility among metals. In another study, Liu and Shi (2013) and Sun et al. (2015) hybrid ARMA 

model with GARCH(-M) model in their research. 

In contrast, the study by Franses and Ghijsels (1999) indicated that when AO was corrected, the 

forecast of stock market volatility improved. After six years Charles and Darné (2005) extended this 

work to innovative outliers. Both studies was selected GARCH model in forecasting volatility and 

examine outlier’s effect. The analysis of AO and other types of outliers were carried out by Urooj and 

Asghar (2017) which preferred AR(1) model. Although there were many researches about outliers, 

few of them focus on AO. So it is necessary to do deep research on the effectiveness of volatility 

financial model in the presence of AO via simulation. 

The organization of this paper is organized as follows. In Section 2 the ARMA (m,n) model, 

GARCH(p,q) model and additive outlier (AO) are briefly described. The simulation study in order to 

evaluate the efficiency without AO and with AO performed in Section 3. The result and discussion 

of ARMA (1, 0)-GARCH (1, 2) model based on simulation study reported in Section 4. Finally, the 

conclusion are summarized in Section 5. 

2. Methodology 

2.1. Methods 

In this section, the time series models involves two models which are Autoregressive Moving 

Average (ARMA) model and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 

model. 

2.1.1. ARMA Model 

In 1976, Box and Jenkins proposed ARIMA (m,D,n) models where m is the number of 

autocorrelation terms, D is the number of differencing elements and n is the number of moving 

average terms. The letter “I” in ARIMA used to differentiate when the series are not stationary. 

However when the time series is stationary, we can model it using three classes of time series process: 

autoregressive (AR), moving-average (MA) and mixed autoregressive and moving-average (ARMA). 

An autoregressive model of order m, denoted as AR (m), can be expressed as 

tmtmttt u+++++= −−−  2211  (1) 

 
The moving average of order n which denoted as MA (n) can be expressed as 

ntntttt uuuu −−− +++++=  2211  (2) 
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where ( ),3 ,2 ,1  =tut  is a white noise disturbance term with ( ) 0=tuE  and ( ) 2var =tu . 

The combination of AR (m) model and MA (n) model formed of ARMA (m,n) model which 

expressed as 

tntnttmtmttt uuuu +++++++++= −−−−−−   22112211  (3) 

 
or in sigma notation 
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where ty  is the daily rubber SMR20 prices, C  is a constant term, i  are the parameter of the 

autoregressive component of order m , j  are the parameters of the moving average component of 

order n , and t  is the error term at time t . The order m  and n  are non-negative integers. 

2.1.2. GARCH Model 

The time varying heteroscedasticity model that popular among researchers is GARCH model. 

After four years an extension from ARCH model was developed by Bollerslev (1986) namely GARCH 

model. The GARCH model is more parsimonious (use fewer parameters) than ARCH model (Poon 

and Granger, 2003). There are two part that consist in GARCH model which are mean equation, ty ; 

see Equation (5) and variance equation 2
t ; see Equation (7). The general form for GARCH (p,q) 

model can be written as follows: 

tt Cy +=  (5) 

ttt z  =  (6) 
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where ty  is an observed data series, C  is a constant value, t  is the residual, tz  is the 

standardized residual with independently and identically distributed with mean equal to zero and 

variance equal to one and t  is the square root of the conditional variance with non-negative 

process,   is the long-run volatility with condition 0 , pii ,,1; 0 =  and 

qjj ,,1; 0 = .  

From the general form of GARCH (p,q) model, the GARCH(1,2) model can defined as 

2
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2
11
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11

2
−−− +++= tttt   (8) 

 
If 1+ ji  , then GARCH (p,q) model is covariance stationary. The volatility is called persistence 
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  is close to one. The unconditional variance of the error terms 
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2.1.3. Additive Outlier 

Additive outlier (AO) is a type of outlier that effect to data especially in financial series. The AO 

was identified by Fox (1972) in AR model. This outlier occurred because of recording errors, 

measurement errors or external factor. AO also defines as an external or exogenous change (Urooj & 

Asghar, 2017). 

From Equation (7), GARCH(p,q) model can be written as an ARMA(m,n) model for 2
t  

(Bollerslev, 1986) as follows: 
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with  qpr ,max=  and ntv ttt  ,,2 ,1;22 =−=   where 2
t  known as outlier free time series, 

while t  known as outlier-free residuals.  

The Equation (10) can be written as 
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According to Chen and Liu (1993), when AO presence in GARCH model becomes  

( ) ( )TLe tAOAOtt +=  22  (12) 

 
with  

2
te  is true series 2

t , 

AO  is the magnitude effect of AO, 

( )LAO  is the dynamic pattern of AO effect, 

( )Tt  is the indicator function which can explain the effect of AO as  

( )


 =

=
otherwise      0

1 Tt
Tt   

where T  is the location of AO occurring. 

3. Simulation Study 

To achieve the objective in this research, we conduct a Monte Carlo simulation. The simulation 

of time series was written and generated using statistical package R version 3.5.1 that developed by 

R Core Team (2018). During this process, the GARCH modelled using tseries package (Trapletti & 

Hornik, 2018) and fGarch package (Wuertz et al., 2017) which consist of garchSpec, garchSim and 

garchFit in R software. There are two situations involves in this simulation: contaminated with 0% 



                          JoMOR 2019, VOL 1, NO 9 5 of 10 

 

 

AO (also known as without AO) and contaminated with 10% AO (also known as with AO). The 

sample size used are 500, 1000 and 1400. The general algorithm conducted as follows: 

 

1. The ARMA(1,0)-GARCH(1,2) model specified using garchSpec function with set the true value 

of parameters: mu= 0.043, ar= -0.312, omega= 0.011, alpha1= 0.224, alpha2= -0.136 and beta= 0.913.  

2. The GARCH process simulated 500 observations with mean=0 and standard deviation=1 using 

garchSim. 

3. The parameters of the ARMA(1,0)-GARCH(1,2) model fitted using garchFit function in normal 

error distribution. 

4. The efficiency of ARMA(1,0)-GARCH(1,2) model in 0% AO was evaluated. 

5. About 10% from sample size contaminated as AO. The locations and magnitudes of AO are 

identified. 

6. After contaminated data, the parameters of the ARMA(1,0)-GARCH(1,2) model fitted in normal 

error distribution.  

7. The efficiency of ARMA(1,0)-GARCH(1,2) model in 10% AO was evaluated. 

8. Steps (1) to (6) then repeated for different sample size, n=1000 and 1400. 

3.1. Model Selection 

When comparing among different sample size for different situations of ARMA(1,0)-

GARCH(1,2) model, then we select an appropriate model based on Akaike Information Criterion 

(AIC) (Akaike, 1974), Schwarz’s Information Criterion (SIC) (Schwarz, 1978) and Hannan-Quinn 

Information Criterion (HQIC) (Hannan & Quinn, 1979). 

The AIC, SIC and HQIC can be computed as 

( ) kL 2ln2AIC +−=  (13) 

( ) ( )kNL lnln2SIC +−=  (14) 

( ) ( )( )kNL lnln2ln2HQIC +−=  (15) 

 
where L  is the value of the likelihood function evaluated at the parameter estimates, N  is the 

number of observations, and k  is the number of estimated parameters. The minimum value of AIC, 

SIC and HQIC was selected as the better model when comparing among models. 

3.2. Model Evaluations 

The performance of ARMA(1,0)-GARCH(1,2) model are evaluated using three measures which 

are Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Mean Square Error (RMSE). 
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where T  is the number of total observations and 1T  is the first observation in out-of-sample. The 
2
t  and 2ˆt  is the actual and predicted conditional variance at time t , respectively. When 
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comparing among different sample size for different situations of ARMA-GARCH models, the 

smallest value of MAE, MSE and RMSE are chosen as the best accurate model. 

4. Results and Discussions 

The results begin with the plot of returns for ARMA (1,0)-GARCH(1,2) model which simulates 

using garchSim function. The plot of returns without AO for sample size 500 is shown in Figure 1(a). 

When contaminated with 10% AO, we can see that there are large negative values especially on 

observation 407 which is -17.483.  

Figure 1. Plot of returns for sample size, n=500 

 

(a) 

 

(b) 

(a) Simulation without additive outlier; (b) Simulation with additive outlier 

Figure 2(a) and Figure 2(b) illustrates the plot of simulation without AO and with AO for sample 

size 1000, respectively. From the Figure 2(b), it is apparent that on observation 668 there are large 

negative values compared to Figure 2(a) which is -20.6930. 

 

Figure 2. Plot of returns for sample size, n=1000 

 
(a) 

 
(b) 

(a) Simulation without additive outlier; (b) Simulation with additive outlier 

The plot of returns without AO and with AO for 1400 observations depicted in Figure 3(a) and 

Figure 3(b), respectively. It appears from Figure 3(b) that, there are large negative values of returns 

especially on observation 937 which is -27.4280. 

Figure 3. Plot of returns for sample size, n=1400 
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(a) 

 
(b) 

(a) Simulation without additive outlier; (b) Simulation with additive outlier 

The descriptive statistics of the simulation without AO are presented in Table 1. Data from this 

table provides the value of kurtosis in situation without AO are between the normal value, 

33 − x . This shows that the heavy tail does not exist in the simulation data for sample size 500, 

1000 and 1400. However in situation with AO, the kurtosis value for sample size 500, 1000 and 1400 

are 15.594292, 19.835252 and 23.1385, respectively. Therefore there is excess kurtosis in simulation 

which are larger than the normal value of 3. This can explain that when data is 10% contaminated, 

there exist heavier tails and distributed as leptokurtic. 

Table 1. Descriptive Statistics for simulation without AO and with AO. 

 n=500 n=1000 n=1400 

Without AO 

Mean 0.031453 0.017099 -0.001947 

Variance 1.065112 0.989746 0.978074 

Standard 

deviation 

1.032043 0.994860 0.988976 

Kurtosis -0.110890 -0.076448 -0.072850 

Skewness 0.080195 -0.007068 -0.011625 

With AO 

Mean -0.033656 -0.051505 0.016678 

Variance 6.411266 7.906186 10.983996 

Standard 

deviation 

2.532048 2.811794 3.314211 

Kurtosis 15.594292 19.835252 23.138500 

Skewness -0.252945 -0.780921 0.133900 

Source: Author’s calculation using R software. 

As illustrated in Table 2, the different sample size for both situations (without AO and with AO) 

was compared based on AIC, SIC and HQIC. In situation without AO, the value of AIC and SIC 

shows decrease of 3.43% and 3.42%, respectively from sample size 500 to 1400. However, for HQIC 

criteria there was an increase of 10.75% from sample size 500 to 1400 in situation with AO.  

From the Table 2, it is apparent that when the sample size increase, the AIC, SIC and HQIC value 

in ARMA(1,0)-GARCH(1,2) model without AO is smaller than in ARMA(1,0)-GARCH(1,2) model 

with AO. 

Table 2. Comparison Sample Size of Selection Criteria. 

Criteria Sample size (n) Without AO With AO 

AIC 500 2.9228250 4.7116980 
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1000 2.8364160 4.9163730 

1400 2.8226750 5.2316980 

SIC 500 2.9225420 4.7114140 

1000 2.8363440 4.9163020 

1400 2.8226380 5.2316620 

HQIC 500 2.9426710 4.7315440 

1000 2.8476070 4.9275650 

1400 2.8310770 5.2401000 

Source: Author’s calculation using R software. 

Table 3 provides the result of comparison of different sample size and model evaluation for 

different situation (without AO and with AO). For MAE criteria, there was a decrease of 3.14% from 

sample size 500 to 1400 in situation without AO. While in situation with AO, the value of MSE and 

RMSE shows an increase of 72.39% and 31.3%, respectively from sample size 500 to 1400. 

From Table 3, it is obvious that the value of MAE, MSE and RMSE in ARMA(1,0)-GARCH(1,2) 

model with AO is larger than in ARMA(1,0)-GARCH(1,2) model without AO. 

Table 3. Comparison Sample Size of Model Evaluation. 

Criteria Sample size (n) Without AO With AO 

MAE 500 0.8148005 1.3348890 

1000 0.7968617 1.3820510 

1400 0.7891958 1.5145180 

MSE 500 1.0628440 6.3589060 

1000 0.9871511 7.8971140 

1400 0.9767424 10.9622200 

RMSE 500 1.0309430 2.5216870 

1000 0.9935548 2.8101800 

1400 0.9883028 3.3109250 

Source: Author’s calculation using R software. 

5. Conclusions 

In this paper, the aim was to assess the effectiveness of ARMA(1,0)-GARCH(1,2) model with the 

presence of AO via simulation. The most obvious finding emerged from this paper is that whenever 

sample size increase, the efficiency of ARMA(1,0)-GARCH(1,2) model diminished in the presence of 

10% AO. These findings enhance our understanding of the effects of contamination by outliers 

especially AO towards model estimation and model evaluation in forecasting. Further research might 

explore the other types of outliers that effects on the behavioral finance series such as innovative 

outliers, level shift outliers and temporary change outliers based on different specification of 

ARMA(m,n)-GARCH(p,q) model. 
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