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Abstract: Performance deterioration in turbomachinery is an unwanted phenomenon that
changes the behaviour of the system. It can be described by a degradation indicator based
on deviations from expected values of process variables. Existing models assume that the
degradation is strictly increasing with fixed convexity and that there are no additional changes
during the considered operating period. This work proposes the use of an exponential trend
approximation with shape adaptation and apply it in a moving window framework. The
suggested method of adjustment makes it possible for the model to follow the evolution of
the indicator over time. The approximation method is then applied for monitoring purposes,
to predict future degradation. The influence of the tuning parameters on the accuracy of the
algorithm is investigated and recommendations for the values are derived. Finally, directions for
further work are proposed.
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1. INTRODUCTION

Turbomachinery degradation is a complex process. Ac-
cording to Tarabrin et al. (1996), the loss of performance
is mostly due to fouling, i.e. forming the deposits on the
blades and influencing the flow path. In industrial appli-
cations, degradation is measured using an indicator based
on deviations from expected values of process variables
(Tarabrin et al., 1996; Li and Nilkitsaranont, 2009). Mon-
itoring of these phenomena provides an insight into the
condition of the equipment, and is used, e.g., for mainte-
nace planning (Xenos et al., 2016). The available models
assume that the degradation is a monotonic function of
time, and that the convexity is fixed, i.e. the geometric
properties related to the graph of the function (Davidson
and Donsig, 2009) are constant. For the purpose of this
work, this graphic interpretation is described as the shape
of a function. As shown by Madsen and Bakken (2014), the
assumptions about the shape of the degradation indicator
are not always fulfilled. This work presents a modelling
approach that captures the observed behaviour of the
degradation indicator. The proposed framework is then
used for monitoring to predict changes of the trend of the
indicator.

⋆ Financial support is gratefully acknowledged from the Marie Curie
Horizon 2020 EID-ITN project ”PROcess NeTwork Optimization
for efficient and sustainable operation of Europe’s process industries
taking machinery condition and process performance into account
PRONTO”, Grant agreement No 675215.

The changes of the shape of the degradation indicator
might have multiple origins. Maintenance activities are one
of the main causes that influence the curvature (Madsen
and Bakken, 2014). As the timings of the maintenance
works are known, it is possible to analyse the degradation
indicator in a given operating period, as described by
Cicciotti (2015) or by Hanachi et al. (2017), especially for
steady state operation. A similar approach was adopted by
Salamat (2012), but for a wider range of operating points.
Their moving window approaches assume that degradation
starts immediately after the maintenance period. However,
as indicated by Li and Nilkitsaranont (2009), the degrada-
tion curvature might change during the operating period,
not necessarily because of the maintenance. They proposed
a moving window approach where the approximating trend
is switched between linear and quadratic functions of time.
Nevertheless, they assumed that the monotonicity and
convexity stayed the same during the operation period,
and that there was only one transition moment. The ap-
proach proposed in the current work is able to capture the
behaviour of the degradation by adaptation of the shape
of the trend, and to adapt to the unknown timings of the
transitions.

The remainder of the paper is structured as follows. The
degradation of centrifugal compressors is introduced, in-
cluding a description of degradation models and their ap-
proximation. Section 3 describes the trend approximation
with moving window and shape adaptation. The algorithm
is then applied to prediction and evaluated for monitoring
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Fig. 1. Compressor efficiency as a function of time. If there
is no degradation, healthy value of η is constant (solid
black line). If the compressor degrades, then after a
certain time η attains a new, degraded value (black
dotted line). The transient ηD 6= const (dash-dotted
black line)

purposes in Section 4. Finally, conclusions and directions
for future research complete the paper.

2. TURBOMACHINERY DEGRADATION

The degradation of rotating equipment, such as centrifugal
compressors or turbines, is usually associated with fouling
(Tarabrin et al., 1996). During steady-state operation,
degradation can be measured by the deviation of the
process variables from the expected, healthy values as
described, e.g., by Loboda et al. (2007):

d =
Y − YD

Y
(1)

where Y denotes the healthy value, and YD is the value in
degraded state.

Usually, the undegraded value Y is delivered by the
manufacturer of the compressor, whereas YD is estimated
from thermodynamic relationships (Cicciotti, 2015) and
shows the actual performance of the system. The ability
to predict the value of YD would provide an insight into
the future behaviour of the system. It could be estimated
from (1), if the degradation indicator d was known, as:

YD = (1 − d) · Y (2)

Therefore, the question of modelling and predicting the
degradation indicator d is considered, as it would pro-
vide knowledge on the degraded state of the system. It
is usually assumed that the degradation is a function of
only time in operation, d = d(t) (Tarabrin et al. (1996),
Jasmani et al. (2013)). This approach is justified in com-
pressors working at the same operating point for the whole
period.

Typically, the variables used for the degradation of turbo-
machinery are the head or the efficiency (Tarabrin et al.,
1996). Figure 1 shows the behaviour of a compressor effi-
ciency, Y = η, going from the healthy value η (solid line)
to a certain degraded value (dotted line), usually after up
to 2000 hours of operation (Tarabrin et al., 1996). The
transient curve (dash-dotted line) shows the efficiency ηD
as a function of time, ηD(t) = (1− d(t)) · η.

2.1 Degradation modelling

One of the possible approaches to predict the behaviour of
the degradation indicator is based on trend analysis. The
efficiency ηD of the degraded compressor is assumed to be a

strictly monotonic, bounded function of time (decreasing),
as depicted in Fig. 1. In consequence, the degradation
indicator d calculated according to Eq. (1) would also be a
strictly monotonic (increasing), function of time stabilising
at a certain level.

Such behaviour suggests using an exponential function of
time for approximation of d(t), e.g. in form described by
Tarabrin et al. (1996):

f(t, β) = β1 − β2 exp(−β3(t− T0)) (3)

where t denotes time, and T0 is the beginning of the
degradation. It is usually assumed that T0 is known,
but not necessarily that T0 = 0 (Cicciotti, 2015). Then
β = [βi], i = 1, . . . , 3 is a vector of constant parameters.

2.2 Degradation approximation

Exponential trend analysis was used, e.g., for monitoring
by Cicciotti (2015) or maintenance planning by Xenos
et al. (2016). However, in some industrial cases, the degra-
dation indicator can be not monotonic and its convexity
might change. An example of such case is depicted in Fig.
2. Figure 2a shows the actual efficiency of a compressor
(black curve) compared with the expected value of 84%
(blue horizontal line). The corresponding efficiency degra-
dation indicator was calculated according to Eq. (1) and is
presented as a function of time (in weeks) in Fig. 2b (black
curve). The red curve shows the approximating function
determined with Eq. (3).

The efficiency degradation described in Cicciotti (2015)
follows the assumptions about the monotonicity, convexity,
and boundedness of the indicator. However, Fig. 2b shows
an indicator that saturates at 0.012 starting in week
two, but then increases to 0.025 in week eight. Moreover,
starting in week nine, the monotonicity changes, and the
indicator starts to decrease.

The red curve shows the approximating function of form
(3), with T0 = 0 and parameters βi found by minimising
the square of a norm of the residuals r multiplied by a
vector of weights w = [wk]

min
β

n
∑

k=1

wkr
2
k (4)

with
r = [rk] = [f(xk, β)− yk] (5)

where (tk, yk) are the observed data points, and wk denote
the weights of the measurements, here wk = 1. The value
of tk denotes time and yk is the corresponding value of
efficiency degradation indicator, n indicates the number
of measurements.

The approximating curve in Fig. 2b deviates from the
actual value of the degradation indicator, starting from
week three. This suggests that an approximation using a
function with fixed shape is not sufficient.

3. APPROXIMATION WITH MOVING WINDOW
AND SHAPE ADAPTATION

This section presents a method of updating the parameters
of (3) using a moving window. The minimisation problem
(4) is solved repeatedly with the optimisation constraints
adapted to the varying shape in each period.
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(a) Actual compressor efficiency (black line) and
assumed efficiency if there was no degradation
(blue line)
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Fig. 2. Example of compressor efficiency (Fig. 2a) and
corresponding degradation indicator (Fig. 2b) from
Brekke et al. (2009)
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Fig. 3. Explanation of moving window notation

3.1 Moving window idea

The idea of a moving window approximation is depicted in
Fig. 3. The ith approximation window starts at T i

0, ends at
T i
end and has length Tapp. The subsequent approximation

window, i + 1, is described with T i+1
0 and T i+1

end , and has
the same length, Tapp. The time difference between two
consecutive windows, Tf = ∆T0 = ∆Tend, is also constant,
and characterises the update rate of the approximation.
The dots on the time axis denote the measurement instants
tik in ith window. In this work, ∆tk = tik+1−tik = 1 minute

for all tik ∈
[

T i
0, T

i
end

]

, for all i.

3.2 Approximation with shape adaptation

Rewriting Eq. (3) using the notation from section 3.1
yields:

f i(t, βi) = βi
1 − βi

2 exp(−βi
3(t− T i

0)) (6)

The parameter T i
0 denotes the start of the ith approxi-

mation window. The signs of βi
2 and βi

3 define the shape
in the ith window, i.e. the monotonicity and convexity of
the function, as indicated by the first and second time
derivative, respectively (Davidson and Donsig, 2009). The
parameter βi

1 shifts the approximating function up and
down the vertical axis.

To allow adaptation to the varying shape of the degrada-
tion trend and in contrast to previous work where βi > 0,
the constraints in the minimisation problem (4) are ad-
justed for the last element of the vector βi, i.e. βi

3. using
the vector of differencesDi =

[

Dk
i

]

in the period
[

T i
0, T

i
end

]

calculated as

Dk
i =

yk − yk−1

tk − tk−1

∣

∣

∣

tk∈
[

T i
0, T

i
end

] (7)

Formula (8) applies a switching rule for βi
3

Di

{

≥ −0.0001, then βi
3 ∈ [0,∞)

< −0.0001, then βi
3 ∈ (−∞, 0]

(8)

where Di is the mean value of Di. The rest of the
parameters are in the interval [−3, 3]. The values are found
by consideration of typical rates of degradation and loss
of performance of real machines.

The constraints for the parameter βi allow the trend to
follow the non-monotonic shape of the curves. The second
issue is to force the system to follow the change in the
trend of the indicator as soon as it happens, as the initial
time is not known. This is done by adjusting the weighting
vector, w, to give less weight to older measurements in
period

[

T i
0, T

i
end

]

. Therefore, the weights are distributed

in the interval [0.9, 1] with the most recent measurements
having the weights close to unity.

4. PREDICTION AND MONITORING

In this part, the algorithm using trend analysis is applied
for monitoring of the degradation due to fouling and shown
in Fig. 2. Two features of the algorithm are analysed: how
accurate the prediction is, and how early the algorithm
is able to predict a change in the trend of the indicator,
depending on the parameters of the algorithm, Tapp and
Tf . The data come from a GE LM2500 engine operating
offshore in the Norwegian Sea and were obtained from
Brekke et al. (2009) using software developed by Rohatgi
(2018). Accordingto Brekke et al. (2009), the data were
collected during a period of operation without mainte-
nance activities that could mitigate the loss of perfor-
mance.

The idea of the prediction is depicted in Fig. 4. The
function obtained after approximating the data in the
interval

[

T i
0, T

i
end

]

(green lines) is extended into the next
time period of length Tpred (blue lines). The end of the
prediction window is marked with T i

pred = T i
end + Tpred.

The arrows (red) show the differences between the actual
values and the predicted curve.

4.1 Prediction accuracy

The differences between the actual values and the pre-
dicted curve are used for evaluating the accuracy of the
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Fig. 4. Prediction idea with moving window approach

prediction for a given window, for instance of the ith
window on the left side of Fig. 4. An indicator is proposed
to evaluate the accuracy in ith window as:

SEP i =
n
∑

k=1

(yk − f(tk))
2 (9)

where tk ∈
[

T i
end, T

i
pred

]

. The higher the value of SEP i,
the further the prediction is from the actual data points,
whereas SEP i = 0 would mean that the prediction goes
through each data point, capturing also the noise.

4.2 Prediction accuracy - results and discussion

The prediction results were evaluated as a function of Tapp.
Figure 5 shows how the mean value of SEP i from Eq. (9)
changes with the size of the approximating window (Tapp)
for a fixed value of the prediction window (Tpred = 2
weeks). An approximating window of less than 15 days
resulted in high values of mean SEP i, where 0.85 and
above is considered high. If Tapp is between 15 and 26 days,
the mean SEP i is below 0.8, and then increases again if
Tapp > 26. The quadratic approximation (orange line) in
Fig. 5 suggests a robust minimum is at 20 to 21 days (three
weeks). The explanation for this can be found by analysis
of the black curve in Fig. 2b. It is visible that the two
major changes of the trend of the degradation indicator
last two weeks. They occurred in weeks one and two,
and weeks eight and nine. Therefore, the approximation
window of 21 days captures the entire transient behaviour
and a short part of a neighbouring period. This allows
the use of the properties of the approximating exponential
function which follows this curvature.

To show the importance of Tapp, two cases were chosen:
Tapp = 14 days (2 weeks), and Tapp = 21 days (3 weeks).
In both cases, shorter approximation period Tapp = 14
days yielded larger value of mean SEP i for two prediction
periods, Tpred = 14 days and Tpred = 4 weeks. For
Tpred = 14 days it was 0.8742 and 4.3072, whereas for
Tpred = 4 weeks, it was 0.7661 and 3.455, respectively.
The indicator was over four times higher when Tpred was
longer. This suggests that trend analysis is better at short
term predictions. It is confirmed by visual analysis of Fig.
2b. To accurately predict the efficiency degradation four
weeks in the future, the trend would have to be constant
for at least the summed lengths of the approximation and
prediction windows, i.e. six weeks in this case. As there
is no such period in Fig. 2b, the one month prediction is
considered too long.

These results are also confirmed by the inspection of the
efficiency indicators in Fig. 6 which presents the degra-
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Fig. 6. Degradation indicator for Tpred = 2 weeks and Tapp

two and three weeks (solid black lines). The trend
approximation and prediction are depicted in red

dation indicator (black) and the approximating curves
(red) for Tapp ∈ {14, 21} days, and Tpred = 14 days.
The case Tpred = 4 weeks can be obtained directly by
extrapolating the red curves and was omitted due to a
space requirements. The period of two weeks is short
enough to be contained almost entirely in a period with
constant trend which results in incorrect predictions (Fig.
6a). Longer Tapp captures the curvature of the indicator
and the approximation follows the exponential trend (Fig.
6b) and is therefore chosen for further analysis.
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4.3 Monitoring

In this section, the properties of the method from the point
of view of monitoring are considered, i.e. if the algorithm
were used on-line, how early the operator would get a
prediction indicating future change in the trend of the
degradation indicator. The idea of the detection algorithm
has been depicted in Fig. 7. The black curve shows the
values of the data, approximated with exponential trend
(solid green curves) given by Eq. (6), then extrapolated
in the prediction period (dashed green lines). The green
dots denote the values of the trend approximation at the
end of the prediction period. In addition, the pink lines
denote the mean value of the real data in approximation
window (solid lines). For the purpose of the evaluation,
a change has been defined using the difference hi (red
arrows) between the final value of the approximating trend
(green dot) and the mean extended in the prediction
period (dashed pink lines):

hi = f i
(

T i
pred, β

i
)

−
1

n

n
∑

k=1

yk (10)

where the parameters of f i
(

T i
pred, β

i
)

are given by Eq.

(6), with βi found solving Eq. (4), and T i
pred denoting

the end of the ith prediction window. The corresponding
approximation window contains n values of the degrada-
tion indicator, yk, k = 1, . . . , n. The absolute value of the
difference hi is compared with a predefined threshold θ.
The change is detected if |hi| > θ.

The choice of θ depends on the operator. In this work, a
change of 0.5 percentage points of efficiency is detected,
i.e. η− ηD = 0.5%. Taking η = 84% and using Eq. (1), the
threshold θ is set to 0.006 in the degradation indicator.

4.4 Monitoring results and discussion

The detection algorithm was applied to data from Brekke
et al. (2009). Figure 10 shows the data used for the analysis
(black curve) obtained by removing the first two weeks
from Fig. 2b to start from a steady state of the degradation
process. The influence of the update rate, Tf , on the
detection of an increasing trend in weeks eight and nine
is analysed. The value of Tf is sought that would allow
the earliest prediction. At the same time, Tf represents
how often the approximation is performed, so to minimise
the number of calculations, the largest possible Tf should
be chosen. Then an application for online monitoring with
selected parameters is presented. The prediction window
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Fig. 8. The moment of detection as a function of Tf (blue
points) and approximating quadratic curve (orange
line)

was set Tpred = 2 weeks, i.e. the algorithm is set to detect
a change in the next two weeks. The parameter Tapp was
set to 21 days (3 weeks).

Figure 8 presents the moment when the increase of the
trend has been detected as a function of Tf . The horizontal
axis shows the value of Tf , and the vertical axis shows the
detection moment as day in week eight (blue points). The
results were then approximated with a quadratic function
(orange line), to emphasize the increasing value of T i

end.
Smaller values of Tf , below 44 hours, allow prediction
earlier in week eight, at the expense of more frequent
calculations. Larger Tf results in detecting the values up
to three or four days later (Tf above 84 hours). Therefore
Tf is chosen as 40 hours, as this allowed detection during
the first two days of the week.

Figure 9 presents the evolution of the differences hi as
a function of time, with Tapp = 21 days, Tpred = 14
days, Tf = 40 hours, and the threshold of 0.006. Two
changes were detected – one in week eight, and one at the
beginning of week twelve. The moments of detection have
been marked with red dots. The approximation windows
corresponding to the detected changes (also indicated with

red dots) are depicted in Fig. 10, T i
0, T

j
0 – dotted lines,

T i
end, T

j
end – dash-dotted lines, i < j. The green curves

show the approximating function, and pink horizontal
lines show the mean values in the approximated periods.
The corresponding differences h are marked with arrows,
upwards if h > 0, downwards if h < 0.

The analysis of Fig. 9 provides an insight into the duration
of the change detected in week eight. The values |hi| above
the threshold show that the prediction is different than the
mean, i.e. the trend in the corresponding approximating
window is not constant. Increasing |hi| indicates the period
where the prediction moves away from the actual value.
However, decreasing value of |hi| indicates that the trend
follows the curvature of the indicator and the prediction
is getting closer to the mean, with the maximum of hi

indicating the transition. This implies that the change
from week eight lasted two weeks, which is consistent with
a visual analysis of Fig. 2, and thus confirms that the trend
analysis might be used for monitoring.
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The behaviour of hi could also be used for decision
support regarding the degradation. Positive and increasing
hi (detected in week eight in Fig. 9) means that the
predicted value is larger than the mean in the ith window,
and this suggests that the degradation would increase over
the next prediction period. Negative value of hi, on the
other hand, shows a decreasing indicator (detected in week
12 in Fig. 9 and confirmed by a decreasing trend in Fig.
10). This suggests that the degradation would decrease
and the performance might improve in the next prediction
period.

5. CONCLUSION

Degradation monitoring is used with turbomachinery for
purposes such as maintenance planning. Existing models
of degradation assume that the degradation is strictly
increasing with fixed convexity and that there are no
additional changes during the considered operating period.
Such behaviour is observed in certain industrial cases
(Cicciotti, 2015), however, the shape of the degradation
might change because of maintenance activities (Madsen
and Bakken, 2014) or unexpected disturbances (Li and
Nilkitsaranont, 2009). This work uses an exponential trend
analysis with shape adaptation and applies it in a moving
window framework to find the approximating model. The
suggested adaptation method makes it possible for the
model to follow the curvature of the degradation indicator.

The method is applied to the analysis of the evolution
of the trend of the degradation. Two features of the

algorithm are evaluated: the accuracy of the prediction
depending on the length of the approximation window,
and the capability of early detection of the change of the
trend as a function of the update rate. The influence of
the tuning parameters is investigated and recommenda-
tions for the values evaluated in a monitoring framework.
Further work includes increasing the robustness over a
variety of datasets and comparison with other monitoring
approaches.
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