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§1. Introduction

In real life, most of the systems are represented by graphs, such that the nodes denote the

basic constituents of the system and edges describe their interaction. The Internet, electric,

bioinformatics, telephone calls, social networks and many other systems are now represented

by complex graphs [1].

There are many different types of networks and their classification depends on the proper-

ties such as nodes degrees, clustering coefficients, shortest paths. Another concern in studying

complex network is how to evaluate the robustness of a network and its ability to adapt to

changes [21]. The robustness of a network is correlated to its ability to deal with internal

feedbacks within the network and to avoid malfunctioning when a fraction of its constituents is

damaged. We use the entropy of spanning trees or what is called the asymptotic complexity [4]

in order to quantify the robustness and to characterize the structure. The number of spanning

trees in G, also called, the complexity of the graph is a well-studied quantity (for long time)

and appear in a number of applications. Most notable application fields are network reliability

[15, 16, 17], enumerating certain chemical isomers [18] and counting the number of Eulerian

circuits in a graph [19].

1Received March 7, 2018, Accepted November 15, 2018.
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A graph G has different subgraphs. In fact a graph having |V (G)| nodes has

2( |V (G)|(|V (G)− 1|)
2

)

possible distinct subgraphs. Some of these subgraphs are trees and the others are not trees.

We are focused certain kinds of trees called spanning trees. The history of determining the

number of spanning trees τ(G) of a graph G, dates back to the year 1842 in which the German

Mathematician Gustav Kirchhoff [2] introduced a relation between the number of spanning trees

of a graph G, and the determinant of a specific submatrix associated with G. This method is

infeasible for large graphs. For this reason scientists have developed techniques to get around

the difficulties and have paid more attention to deriving explicit and simple formulas for special

classes, see [3 - 13].

The basic combinatorial idea, Feussners recursive formula [20], for counting τ(G) in a graph

G is quite intuitive. For an undirected simple graph G, let e be any edge of G. All spanning

trees in G can be separated into two parts: one part contains all spanning trees without e as a

tree edge; the other part contains all spanning trees with e as a tree edge. The first part has

the same number of spanning trees as graph G − e , but leaving all other edges and vertices

as they are. The second part has the same number of spanning trees as graph G ⊙ e, where

G ⊙ eis the graph (not a subgraph) obtained from G by contracting the edge e = {u, v} until

the two vertices u and v coincide. Call this new vertex uv. Both G − e and G ⊙ e have fewer

edges, than G. So the number of spanning trees in G can be counted recursively in this way.

In this paper, we propose the combinatorial method to facilitate the calculation of the number

of spanning trees for complex networks. In particular, we derive the explicit formulas for

the triangular snake (∆k − snake), double triangular snake (2∆k − snake), four triangular

snake (4∆k−snake), the total graph of path Pn(T (Pn)), the graph nC4⊙2Pn , the generalized

friendship graphs kFn and the subdivision of double triangular snake (S(2∆n−snake)). Finally,

we calculate their spanning trees entropy and we compare it between them.

§2. Preliminary Notes

The combinatorial method involves the operation of contraction of an edge. An edge e of a

graph G is said to be contracted if it is deleted and its ends are identified. The resulting graph

is denoted by G • e . Also we denote by G− e the graph obtained from G by deleting the edge

e.

Theorem 2.1([13-20]) Let G be a planar graph (multiple edges are allowed in here). Then for

any edge τ(G) = τ(G − e) + τ(G • e).

Definition 2.2([22]) A triangular snake(∆ − snake) is a connected graph in which all blocks

are triangles and the block-cut-point graph is a path, as shown in Figure 1.

Definition 2.3 For an integer number m, an m-triangular snake is a graph formed by m

triangular snakes having a common path. If m = 2 that graph is called the double triangular
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snake is denoted by 2∆− snake, as shown in Figure 1.

Definition 2.4 The friendship graph Fn,k is a collection of k-cycles (all of order n), meeting

at a common vertex, as shown in Figure 1.

Definition 2.5 The graph nCm ⊙ 2Pn is a connected graph obtained from n copies of Cm

( nCm is a disconnected graph) and two paths where each path connects with one vertex ui

(i = 1, 2, · · · , 2n) of each copy of Cm . All the vertices ui (i = 1, 2, · · · , 2n) are distinct as

shown in Figure 1.r r rr r r r r r r rr r rr r r r rr r r
(a) ∆k-snake (b) 2∆3-sanke (c) T (P3)

!!!!r rrrr rrr r
(d) F3,4

r r rr r r r r rr r r
(e) 3C4 ⊙ 2P3

���r r rr rr rr r rr r r r r rr r rr r r r r r
(f) S(2∆3 − snake)

Figure 1 Triangular snake, double triangular snake, four triangular snake,
total graph of path, generalized friendship and subdivision of double triangular snake

Definition 2.6 The total graph of a graph G is the graph whose vertex set is V (G)∪E(G) and

two vertices are adjacent whenever they are either adjacent or incident in G. The total graph

of G denoted by T (G).

§3. Main Results

Theorem 3.1 The number of spanning trees of triangular snake graph is

τ(∆n) = 3n.

Proof Consider a triangular snake graph ∆
′

n constructed from ∆n by deleting one edge.

See Figure 2.
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rr r rr r rr r r r rr r r r
∆n ∆′

n

Figure 2 Triangular snake graph (∆n)

We put

∆n = τ(∆n) and ∆
′

n = τ(∆
′

n).

It is clear that

∆n = 2(∆n−1) + 3(∆
′

n−1) and ∆
′

n = 2(∆n−1)− 3(∆
′

n−1)

with initial conditions ∆1 = 3,∆
′

n = 1 thus we have





∆n

∆
′

n



 = A





∆n

4∆
′

n



 ,

where,

A =





2 3

2 −3



 ;





∆n

∆
′

n



 = A





∆n−1

∆
′

n−1



 = · · · = An−1





∆1

∆
′

1



 ,

we compute An−1as follows:

det(A− λI2) = λ2 − λ− 12 = 0, λ1 = −4 and λ2 = 3, λ1 6= λ2.

Then there is a matrix M is invertible such that A = MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
3



 ; M−1





1
7

−3
7

6
7

3
7



 ; An−1 = MBn−1M−1,

where

Bn−1 =





(−4)n−1 0

0 (3)n−1




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From which, we obtain

An−1 =





(−4)n−1

7 + 2∗3n

7
−3∗(−4)n−1

7 + 3n

7

−2∗(−4)n−1

7 + 2∗(3)n−1

7
6∗(−4)n−1

7 + 3n−1

7





and hence the result follows. 2
Theorem 3.2 The number of spanning trees of the double triangular snake is

τ(2∆n − snake) = 8n.

Proof Consider a double triangular snake graph 2∆′
n-snake constructed from 2∆n-snake

by deleting two edges. See Figure 3.r r r r r r r r r rLLLr r r r r rr r r r r r
2∆n-snake 2∆′

n-snake

Figure 3 Triangular snake graph (∆n)

We put

2∆n − snake = τ(2∆n − snake) and 2∆
′

2 − snake = τ(2∆
′

2 − snake).

It is clear that

2∆n − snake = 7(2∆n−1 − snake) + 8(2∆
′

2 − snake)
2∆

′

2 − snake = 2(2∆n−1 − snake)− 8(2∆
′

n−1 − snake)

with initial conditions 2∆1 − snake = 8, 2∆
′

1 − snake = 1. Thus we have





2∆n − snake
2∆

′

n − snake



 = A





2∆n−1 − snake
2∆

′

n − snake



 , where A =





7 8

2 −8



 ,





2∆n − snake
2∆

′

n − snake



 = A





2∆n−1 − snake
2∆

′

n − snake



 = · · · = An−1





2∆1 − snake
2∆

′

1 − snake



 .

We compute An−1 as follows:

det(A− λI2) = λ2 − λ− 72 = 0, λ1 = −9 and λ2 = 8, λ1 6= λ2.
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Then there is a matrix M is invertible such that A = MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
8



 ; M−1 =





−1
7

8
7

8
7

−8
7



 ; An−1 = MBn−1M−1,

where

Bn−1 =





(8)n−1 0

0 (−9)n−1



 .

From which, we obtain

An−1 =





(−8)n−1

7 + 8∗(−9)n−1

7
8n

7 + −8∗(−9)n−1

7

−2∗(8)n−1

7 + (−9)n−1

7
−2∗(8)n

7 + −(−9)n−1

7





and hence the result follows. 2
Theorem 3.3 The number of spanning trees in 4∆n − snake is τ(2∆n − snake)=48n, where

n is the number of blocks.

Proof Consider a double triangular snake graph 2∆
′

2−snake constructed from 2∆n−snake
by deleting four edges. See Figure 4.r r r r r r r r r rLLLr r r r r rr r r r r r����

q r r r r rrrrrrr
4∆n-snake 4∆′

n-snake

Figure 4 Friendship graph F4,k

We put

4∆n − snake = τ(4∆n − snake) and 4∆
′

n − snake = τ(4∆
′

n − snake).

It is clear that

4∆n − snake = 47(4∆n−1 − snake) + 48(4∆
′

2 − snake)
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and

4∆
′

n − snake = 2(4∆n−1 − snake)− 48(4∆
′

n−1 − snake)

with initial conditions 4∆1 − snake = 48, 4∆
′

1 − snake = 1. Thus, we have





4∆n − snake
4∆

′

n − snake



 = A





4∆n−1 − snake
4∆

′

n−1 − snake



 ,

where

A =





47 48

2 −48



 ,





4∆n − snake
4∆

′

n − snake



 = A





4∆n−1 − snake
4∆

′

n−1 − snake



 = · · · = An−1





4∆1 − snake
4∆

′

1 − snake



 .

We compute An−1 as follows:

det(A− λI2) = λ2 + 4λ− 2352 = 0, λ1 = 48 and λ2 = −49, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

1
48 −2



 ; M−1 =





96
97

48
97

1
97

−48
97



 ; An−1 = MBn−1M−1,

where

Bn−1 =





(48)n−1 0

0 (−49)n−1



 .

From which, we obtain

An−1 =





2∗(48)n

97 + (−49)n−1

97
48n

97 + −48
97 ∗ (−49)n−1

2∗(48)n−1

97 + −2
97 ∗ (−49)n−1 (48)n

97 + 96
97 ∗ (−49)n−1





and hence the result follows. 2
Theorem 3.4 The number of spanning trees of the total graph of path Pn is

τ(T (Pn)) =
1√
5

[

(
7 + 3

√
5

2
)n − (

7− 3
√

5

2
)n

]

.

Proof Consider a total graph of path PnT (P
′

n) constructed from T (Pn) by deleting one
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edge. See Figure 5. ���r r r rr r r r r r r r rr r r r r
T (Pn) T (P ′

n)

Figure 5 Total graph of path

We put

T (Pn) = τ(T (Pn)) and T (P
′

n) = τ(T (P
′

n).

It is clear that

T (Pn) = 7T (Pn−1)− T (P
′

n−2),

where T (Pn) is the number of even block and

T (P
′

n) = 48T (Pn−2)− 7T (P
′

n−3),

where T (P
′

n) is the number of odd block with initial conditions T (P2) = 3, T (P
′

2) = 1. Thus,

we have




T (Pn)

T (P
′

n)



 = A





T (Pn−1)

T (P
′

n−1)



 ,

where

A =





7 −1

48 −7



 ,





T (Pn)

T (P
′

n)



 = A





T (Pn−1)

T (P
′

n−1)



 = · · · = An−2





T (P2)

T (P
′

2)



 ,

λ1 = 1 and λ2 = −1, λ1 6= λ2. Then there is a matrix M is invertible such that A=MDM−1,

where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

6 8



 ; M−1









4 −1
2

−3 1
2









; An−2 = MBn−2M−1,

where

Bn−2 =





(1)n−2 0

0 (−1)n−2



 .



A Combinatorial Approach for the Spanning Tree Entropy in Complex Network 9

From which, we obtain

An−2 =





4 ∗ (1)n−2 − 3 ∗ (−1)n−2 (−1
2 ) ∗ (1)n−2 + (1

2 ) ∗ (−1)n−2

24 ∗ (1)n−2 − 24 ∗ (−1)n−2 −3 ∗ (1)n−2 + 4 ∗ (−1)n−2





and hence the result follows. 2
Theorem 3.5 The number of spanning trees in the graph nC4 ◦ 2Pn is τ(nC4 ◦ 2Pn) = 4n.

Proof Consider a graph Bn constructed from nC4 ◦ 2Pn = An by deleting two edges. See

Figure 6. r r rr r r r r rr r r r r rr r r r rr r r
BnAn

Figure 6 nC4 ◦ 2Pn graph

We put

An = τ(An) and Bn = τ(Bn).

It is clear that

An = 3An−1 + 4Bn−1 and Bn = 2An−1 − 4Bn−1

with initial conditions A1 = 4 and B1 = 1 thus we have





An

Bn



 = A





An−1

Bn−1



 ,

where

A =





3 4

2 −4



 ,





An

Bn



 = A





An−1

Bn−1



 = · · · = An−1





A1

B1



 .

We compute An−1 as follows:

det(A− λI2) = λ2 + λ− 20 = 0, λ1 = −5 and λ2 = 4, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2




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and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
4



 ; M−1 =
1
9

4





1
4 −1

2 1



 ; An−1 = MBn−1M−1,

where

Bn−1 =





(−5)n−1 0

0 (4)n−1



 .

From which, we obtain

An−1 =





(−5)n−1

9 + 2∗(4)n

9
−4∗(−5)n−1

9 + 4n

9

−2∗(−5)n−1

9 + 2∗4n−1

9
8∗(−5)n−1

9 + 4n−1

9





and hence the result follows. 2
Theorem 3.6 The number of spanning trees of friendship graph F3,k is τ(F3,k)=3k.

Proof Consider a friendship graph F
′

3,k constructed from F3,k by deleting one edge. See

Figure 7. r rr rrrrrr r rr rrr rr r
F3,k

F ′
3,k

Figure 7 Friendship graph F3,k

We put

F3,k = τ(F3,k) and F
′

3,k = τ(F
′

3,k).

It is clear that

τ(F3,k) = 2τ(F3,k−1) + 3τ(F
′

3,k−1) and τ(F
′

3,k) = 2τ(F3,k−1)− 3τ(F
′

3,k−1)

with initial conditions (F3,1) = 3, (F
′

3,1) = 1. Thus we have





F3,k

F
′

3,k



 = A





F3,k−1

F
′

3,k−1



 ,
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where

A =





2 3

2 −3



 ,





F3,k

F
′

3,k



 = A





F3,k−1

F
′

3,k−1



 = · · · = Ak−1





F3,1

F
′

3,1



 .

We compute Ak−1 as follows:

det(A− λI2) = λ2 − λ− 12 = 0, λ1 = −4 and λ2 = 3, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
3



 ; M−1 =
1
9

4









1
7

−3
7

6
7

3
7









; Ak−1 = MBk−1M−1,

where

Bk−1 =





(−4)k−1 0

0 (3)k−1



 .

From which, we obtain

Ak−1 =





(−4)k−1

7 + 2∗(3)k

7
−3∗(−4)k−1

7 + 3k

7

−2∗(−4)k−1

7 + 2∗3k−1

7
6∗(−4)k−1

7 + 3k−1

7





and hence the result follows. 2
Theorem 3.7 The number of spanning trees of friendship graph F4,k is τ(F4,k)=4k.

Proof Consider a friendship graph F
′

4,k constructed from F4,k by deleting one edge. See

Figure 8. QQrr rr rrr rr rr rr JJJAArr rr rrr rr r r rr
F4,k

F ′
4,k

Figure 8 Friendship graph F4,k
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We put

τ(F4,k) = 3τ(F4,k−1) + 4τ(F
′

4,k−1) and tau(F
′

4,k) = 2τ(F4,k−1)− 4τ(F
′

4,k−1)

with initial conditions (F4,1) = 4, (F
′

4,1) = 1. Thus, we have





F4,k

F
′

4,k



 = A





F4,k−1

F
′

4,k−1



 ,

where

A =





3 4

2 −4



 ,





F4,k

F
′

4,k



 = A





F4,k−1

F
′

4,k−1



 = · · · = Ak−1





F4,1

F
′

4,1



 .

We compute Ak−1 as follows:

det(A− λI2) = λ2 + λ− 20 = 0, λ1 = −5 and λ2 = 4, λ1 6= λ2.

Then there is a matrix M is invertible such that A = MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
4



 ; M−1 =
4

9





1
4 −1

2 1



 ; Ak−1 = MBk−1M−1,

where

Bk−1 =





(−5)k−1 0

0 (4)k−1



 .

From which, we obtain

Ak−1 =





(−5)k−1

9 + 2∗(4)k

9
−4∗(−5)k−1

9 + 4k

9

−2∗(−5)k−1

9 + 2∗4k−1

9
8∗(−5)k−1

9 + 4k−1

9





and hence the result follows. 2
Theorem 3.8 The number of spanning trees of friendship graph Fn,k is τ(Fn,k)=nk.

Proof Consider a friendship graph F
′

n,k constructed from Fn,k by deleting one edge. See

Figure 9.
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Fn,k F ′
n,k

rrr��
Figure 9 Friendship graph F4,k

We put

Fn,k = τ(Fn,k) and F
′

n,k = τ(F
′

n,k).

It is clear that

τ(Fn,k) = (n− 1)τ(Fn,k−1) + nτ(F
′

n,k−1) andτ(F
′

n,k) = 2τ(Fn,k−1)− nτ(F
′

n,k−1)

with initial conditions (Fn,1) = n, (F
′

n,1) = 1. Thus, we have





Fn,k

F
′

n,k



 = A





Fn,k−1

F
′

n,k−1



 ,

where

A =





n− 1 n

2 −n



 ,





Fn,k

F
′

n,k



 = A





Fn,k−1

F
′

n,k−1



 = · · · = Ak−1v





n− 1 n

2 −n



 .

We compute Ak−1 as follows:

det(A− λI2) = λ2 + λ− n(n− 1) = 0, λ1 = −(n+ 1) and λ2 = n, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
n



 ; M−1 =
n

2n+ 1





1
n −1

2 1



 ; Ak−1 = MBk−1M−1,
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where

Bk−1 =





−(n+ 1)k−1 0

0 (n)k−1



 .

From which, we obtain

Ak−1 =





(−n−1)k−1

2n+1 + 2∗(n)k

2n+1
−n∗(−n−1)k−1

2n+1 + nk

2n+1

−2∗(−n−1)k−1

2n+1 + 2∗nk−1

2n+1
2n∗(−n−1)k−1

2n+1 + nk−1

2n+1





and hence the result follows. 2
Theorem 3.9 The number of spanning trees of the subdivision of double triangular snake graph

is τ(S(2∆n − snake)) = 32n.

Proof Consider a double triangular snake graph S(2∆
′

n−snake) constructed from S(2∆n−
snake) by deleting one edges. See Figure 10,

r r r r r r r r r rLLLLr r r r r rr r r r r r
S(2∆n-snake) S(2∆′

n-snake)

r r r r r r r r r r rr r r r rr r r r r r r r r r rr
Figure 10 Friendship graph F4,k

We put

S(2∆n − snake) = τ(S(2∆n − snake)) and S(2∆
′

n − snake) = τ(S(2∆
′

n − snake)).

It is clear that

S(2∆n − snake) = 31(S(2∆n−1 − snake)) + 32(S(2∆
′

2 − snake))

and

S(2∆
′

2 − snake) = 2(S(2∆n−1 − snake))− 32(S(2∆
′

n−1 − snake))

with initial conditions S(2∆1 − snake) = 32, S(2∆
′

1 − snake) = 1. Thus, we have





S(2∆n − snake)
S(2∆

′

n − snake)



 = A





S(2∆n−1 − snake)
S(2∆

′

n − snake)



 ,
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where

A =





31 32

2 −32



 ,





S(2∆n − snake)
S(2∆

′

n − snake)



 = A





S(2∆n−1 − snake)
S(2∆

′

n − snake)



 = · · · = An−1





S(2∆1 − snake)
S(2∆

′

1 − snake)



 .

We compute An−1 as follows:

det(A− λI2) = λ2 + λ− 1056 = 0, λ1 = −33 and λ2 = 32, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
32



 ; M−1 =









1
65

−32
65

64
65

32
65









; An−1 = MBn−1M−1,

where

Bn−1 =





(32)n−1 0

0 (−33)n−1



 .

From which, we obtain

An−1 =





(32)n−1

65 + 64∗(−33)n−1

65
(−32)n

65 + −32∗(−33)n−1

65

−2∗(32)n−1

65 + 2∗(−33)n−1

65
2∗(32)n

65 + (−33)n−1

65





and hence the result follows. 2
§4. Spanning Tree Entropy

The entropy of spanning trees of a network or the asymptotic complexity is a quantitative

measure of the number of spanning trees and it characterizes the network structure. We use

this entropy to quantify the robustness of networks. The most robust network is the network

that has the highest entropy. We can calculate its spanning tree entropy which is a finite number

and a very interesting quantity characterizing the network structure, defined in [15, 16] as

Z(G) = lim
V (G)→∞

ln τ(G)

|V (G)| ;
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Z(∆k − snake) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

3n

2n+ 1
= 0.5493;

Z(2∆k − snake) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

ln(8n)

3n+ 1
= 0.6931;

Z(4∆k − snake) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

ln(48n)

5n+ 1
= 0.7742;

Z(T (Pn)) = lim
n→∞

ln 1√
5
[(7+3

√
5

2 )n − (7−3
√

5
2 )]

2n− 1
= ln(

√

7 + 3
√

5

2
) = 0.7650;

Z(nC4 ⊙ 2Pn) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

ln(4n)

4n
=

ln 4

4
= 0.3466;

Z(F k
3 ) = lim

V (G)→∞

ln τ(G)

|V (G)| = lim
k→∞

ln(3k)

2k + 1
= 0.5493;

Z(F k
4 ) = lim

V (G)→∞

ln τ(G)

|V (G)| = lim
k→∞

ln(4k)

3k + 1
= 0.4621;

Z(F k
n ) = lim

V (G)→∞

ln τ(G)

|V (G)| = lim
k→∞

ln(nk)

(n− 1)k + 1
= ln

(n)

n− 1
;

Z(S(2∆k − snake)) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

ln(32n)

8n+ 1
= ln

(32)

8
= 0.4332.

§5. Conclusion

In this paper, we proposed the combinatorial method to facilitate the calculation of the number

of spanning trees for complex networks. In particular, we derive the explicit formulas for

the triangular snake (∆k − snake), double triangular snake (2∆k − snake), four triangular

snake (4∆k− snake), the total graph of path Pn(T (Pn)), the graph nC4⊙ 2Pn, the generalized

friendship graphs F k
n and the subdivision of double triangular snake (S(2∆n−snake)). Finally,

we calculate their spanning trees entropy and we compare it between them.
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