
Foundational (Co)datatypes and (Co)recursion
for Higher-Order Logic

Julian Biendarra1, Jasmin Christian Blanchette2,3(�), Aymeric Bouzy4,
Martin Desharnais5, Mathias Fleury3, Johannes Hölzl6, Ondřej Kunčar1,

Andreas Lochbihler7, Fabian Meier8, Lorenz Panny9, Andrei Popescu10,11,
Christian Sternagel12, René Thiemann12, and Dmitriy Traytel7

1 Fakultät für Informatik, Technische Universität München, Germany
2 Vrije Universiteit Amsterdam, The Netherlands

j.c.blanchette@vu.nl
3 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany

4 InstantJob, Paris, France
5 Ludwig-Maximilians-Universität München, Germany

6 Carnegie Mellon University, Pittsburgh, USA
7 Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland

8 Google, Zurich, Switzerland
9 Technische Universiteit Eindhoven, The Netherlands

10 Middlesex University London, UK
11 Institute of Mathematics Simion Stoilow of the Romanian Academy, Bucharest, Romania

12 Universität Innsbruck, Austria

Abstract. We describe a line of work that started in 2011 towards enriching
Isabelle/HOL’s language with coinductive datatypes, which allow infinite values,
and with a more expressive notion of inductive datatype than previously supported
by any system based on higher-order logic. These (co)datatypes are complemented
by definitional principles for (co)recursive functions and reasoning principles for
(co)induction. In contrast with other systems offering codatatypes, no additional
axioms or logic extensions are necessary with our approach.

1 Introduction

Rich specification mechanisms are crucial to the usability of proof assistants—in par-
ticular, mechanisms for defining inductive datatypes, recursive functions, and inductive
predicates. Datatypes and recursive functions are inspired by typed functional program-
ming languages from the ML family. Inductive predicates are reminiscent of Prolog.

Coinductive methods are becoming increasingly widespread in computer science.
Coinductive datatypes, corecursive functions, and coinductive predicates are useful to
represent potentially infinite data and processes and to reason about them. Coinductive
datatypes, or codatatypes, are freely generated by their constructors, but in contrast to
datatypes, infinite constructor terms are also legitimate values for codatatypes. Core-
cursion makes it possible to build such values. A simple example is the “lazy” (or
coinductive) list LCons 0 (LCons 1 (LCons 2 . . .)) that enumerates the natural numbers.
It can be specified via the corecursive equation enum n = LCons n (enum (n+1)).

In 2011, we started an effort to enrich the Isabelle/HOL proof assistant with defini-
tional mechanisms for codatatypes and corecursion. Until then, Isabelle/HOL and the

2

other main systems based on higher-order logic (HOL4, HOL Light, and ProofPower–
HOL) provided at most (inductive) datatypes, recursive functions, and (co)inductive
predicates. Our aim was to support formalizations such as Lochbihler’s verified compiler
for a Java-like language [32] and his mathematization of the Java memory model [33],
both of which rely on codatatypes to represent infinite traces.

Creating a monolithic codatatype package to supplement Isabelle/HOL’s existing
datatype package [4] was not an attractive prospect, because many applications need to
mix datatypes and codatatypes, as in the following nested (co)recursive specification:

datatype α list = Nil | Cons α (α list)
codatatype α ltree = LNode α ((α ltree) list)

The first command introduces a polymorphic type of finite lists over an element type α,
freely generated by the constructors Nil : α list and Cons : α→ α list→ α list. The second
command introduces a type of finitely branching trees of possibly infinite depth. For
example, the infinite tree LNode 0 (Cons (LNode 0 (Cons . . . Nil)) Nil) specified by t =
LNode 0 (Cons t Nil) is valid. Ideally, (co)datatypes should also be allowed to (co)recurse
through well-behaved nonfree type constructors, such as the finite set constructor fset:

codatatype α ltreefs = LNodefs α ((α ltreefs) fset)

In this paper, we present the various new definitional packages for (co)datatypes
and (co)recursive functions that today support Isabelle users with their formalizations.
The theoretical cornerstone underlying these is a semantic criterion we call bounded
natural functors (BNF, Sect. 3). The criterion is met by construction for a large class
of datatypes and codatatypes (such as list, ltree, and ltreefs) and by bounded sets and
bounded multisets. On the right-hand side of a datatype or codatatype command,
recursion is allowed under arbitrary type constructors that are BNFs. This flexibility is
not available in other proof assistants.

The datatype and codatatype commands construct a type as a solution to a fixpoint
equation (Sect. 4). For example, α list is the solution for β in the equation β∼= unit+α×β,
where unit is a singleton type, whereas + and× are the type constructors for sum (disjoint
union) and product (pairs), respectively. To ensure that the new types are nonempty, the
commands must also synthesize a witness (Sect. 5).

The above mechanisms are complemented by commands for defining primitively
(co)recursive functions over (co)datatypes (Sect. 6). But primitive (co)recursion is very
restrictive in practice. For general (nonprimitive) well-founded recursion, Isabelle/HOL
already provided the fun and function commands [29]; our new datatypes work well
with them. For nonprimitive corecursion, we designed and implemented a definitional
mechanism based on the notion of corecursion up to “friendly” operations (Sect. 7).

In nonuniform datatypes, the type arguments may vary recursively. They arise in
the implementation of efficient functional data structures. We designed commands that
reduce a large class of nonuniform datatypes, and nonuniform codatatypes, to their
uniform counterparts (Sect. 8).

We integrated the new (co)datatypes with various Isabelle tools, including the Lifting
and Transfer tools, which transfer definitions and theorems across isomorphisms, the
Nitpick counterexample generator, and the Sledgehammer proof tool (Sect. 9). The

3

new (co)datatypes are widely used, including in our own work—codatatypes for their
convenience, and the new datatypes for their flexibility and scalability (Sect. 10).

Crucially, all our specification mechanisms follow the definitional approach, as is
typical in Isabelle/HOL and the HOL family of systems. This means that the desired types
and terms are explicitly constructed and introduced using more primitive mechanisms
and their characteristic properties are derived as theorems. This guarantees that they
introduce no inconsistencies, reducing the amount of code that must be trusted. The main
drawback of this approach is that it puts a heavy burden on the mechanisms’ designers and
implementers. For example, the (co)datatype commands explicitly construct solutions to
fixpoint equations and nonemptiness witnesses, and the constructions must be performed
efficiently. Other approaches—such as the intrinsic approach, where the specification
mechanism is built directly into the logic, and the axiomatic approach, where types and
terms are added to the signature and characterized by axioms—require less work but do
not guard against inconsistencies [4, Sect. 1].

The work described in this paper was first presented in conference and journal publi-
cations between 2012 and 2017 [7,9,10,12,13,15–18,46,50,51]. The current text is partly
based on these papers. The source code consists of about 29 000 lines of Standard ML
distributed as part of Isabelle and the Archive of Formal Proofs [47]. It is complemented
by Isabelle lemma libraries necessary for the constructions, notably a theory of cardi-
nals [15]. We refer to our earlier papers [10, 13, 18, 51] for discussions of related work.

2 Isabelle/HOL

Isabelle [39] is a generic proof assistant whose metalogic is an intuitionistic fragment of
polymorphic higher-order logic. The types τ are built from type variables α, β, . . . and
type constructors, written infix or postfix (e.g.,→, list). All types are inhabited. Terms
t, u are built from variables x, constants c, abstractions λx. t, and applications t u. Types
are usually left implicit. Constants may be functions. A formula is a term of type prop.
The metalogical operators are

∧
, =�⇒, and ≡, for universal quantification, implication,

and equality. The notation
∧

x. t abbreviates
∧
(λx. t). Internally, λ is the only binder.

Isabelle/HOL is the instantiation of Isabelle with classical higher-order logic (HOL)
extended with type classes as its object logic, complete with a Boolean type bool, an
equality predicate (=), the usual connectives (¬, ∧, ∨,−�→,←→) and quantifiers (∀, ∃), and
Hilbert’s choice operator. HOL formulas, of type bool, are embedded in the metalogic.
The distinction between prop and bool is not essential to understand this paper.

Isabelle/HOL offers two primitive definitional mechanisms: The typedef command
introduces a type that is isomorphic to a nonempty subset of an existing type, and the
definition command introduces a constant as equal to an existing term. Other commands,
such as datatype and function, build on these primitives.

Proofs are expressed either as a sequence of low-level tactics that manipulate the
proof state directly or in a declarative format called Isar [53]. Basic tactics rely on
resolution and higher-order unification. Other useful tactics include the simplifier, which
rewrites terms using conditional oriented equations, and the classical reasoner, which
applies introduction and elimination rules in the style of natural deduction. Specialized
tactics can be written in Standard ML, Isabelle’s main implementation language.

4

3 Bounded Natural Functors

An n-ary bounded natural functor (BNF) [12, 51, 52] is an (n+ k)-ary type constructor
equipped with a map function (or functorial action), a relator, n set functions (natural
transformations), and a cardinal bound that satisfy certain properties. For example, list is
a unary BNF. Its relator rel : (α→ β→ bool)→ α list→ β list→ bool extends binary
predicates over elements to binary predicates over parallel lists: rel R xs ys is true if and
only if the lists xs and ys have the same length and the elements of the two lists are
elementwise related by R. Moreover, the cardinal bound bd constrains the number of
elements returned by the set function set; it cannot depend on α’s cardinality. To prove
that list is a BNF, the datatype command discharges the following proof obligations:

map id = id map (f ◦g) = map f ◦ map g
∧

x. x ∈ set xs =�⇒ f x = g x
map f xs = map g xs|set xs| ≤o bd set ◦ map f = image f ◦ set

ℵ0 ≤o bd rel R �•�• rel Sv rel (R �•�• S)
rel R xs ys⇐⇒∃ps. set ps⊆ {(xs, ys). R xs ys} ∧ map fst ps = xs ∧ map snd ps = ys

The operator ≤o is a well-order on ordinals [15], v denotes implication lifted to binary
predicates, �•�• denotes the relational composition of binary predicates, fst and snd denote
the left and right pair projections, and the horizontal bar denotes implication (=�⇒).

The class of BNFs is closed under composition, initial algebra (for datatypes), and
final coalgebra (for codatatypes). The last two operations correspond to least and greatest
fixpoints, respectively. Given an n-ary BNF, the n type variables associated with set
functions, and on which the map function acts, are live; the remaining k type variables
are dead. For example, the function type α→ β is a unary BNF on β; the variable α is
dead. Nested (co)recursion can only take place through live variables.

Composition of functors is widely perceived as being trivial. Nevertheless, the
implementation must perform a carefully orchestrated sequence of steps to construct
BNFs and discharge the emerging proof obligations for the types occurring on the right-
hand sides of fixpoint equations. This is achieved by four operations: Composition proper
works on normalized BNFs that share the same live variables, whereas the other three
operations achieve this normalization by adding, killing, or permuting live variables.

4 Datatypes and Codatatypes

The datatype and codatatype commands [12] state and solve fixpoint equations. Then
they define the constructor, discriminator, and selector constants and derive various
theorems involving the constructors. The command for introducing lazy lists follows:

codatatype α llist = lnull: LNil | LCons (lhd: α) (ltl: α list)

The constructors are LNil and LCons. The discriminator lnull tests whether a lazy list is
LNil. The selectors lhd and ltl return the head or tail of a non-LNil lazy list.

The datatype command also introduces a recursor, which can be used to define
primitively recursive functions. The list recursor has type β→ (α→ α list×β→ β)→
α list→ β and is characterized by the following theorems:

rec n c Nil = n rec n c (Cons x xs) = c x (xs, rec n c xs)

5

In general, for a datatype equipped with m constructors, the recursor takes one argument
corresponding to each constructor, followed by a datatype value, and returns a value
of an arbitrary type β. The corresponding induction principle has one hypothesis per
constructor. For example, for lists it is as follows:

P Nil
∧

x xs. P xs =�⇒ P (Cons x xs)

P t

Recursive functions consume datatype values, peeling off constructors as they pro-
ceed. In contrast, corecursive functions produce codatatype values, consisting of finitely
or infinitely many constructors, one constructor at a time. For each codatatype, a corre-
sponding corecursor embodies this principle. It works as follows: Given a codatatype τ
with m constructors, m−1 predicates sequentially determine which constructor to pro-
duce. Moreover, for each argument to each constructor, a function specifies how to
construct it from an abstract value of type α that captures the tuple of arguments given
to the corecursive function. For corecursive constructor arguments, the function has
type α→ τ+α and returns either a value (τ) that stops the corecursion or a tuple of
arguments (α) to a corecursive call. Thus, the corecursor for lazy lists has type

(α→ bool)→ (α→ β)→ (α→ β llist+α)→ α→ β llist

and is characterized as follows, where Inl and Inr are the injections into the sum type:

n a =�⇒ corec n h t a = LNil
¬ n a =�⇒ corec n h t a = LCons (h a) (case t a of Inl xs⇒ xs | Inr a′⇒ corec n h t a′)

The coinduction principle can be used to prove equalities l = r. It is parameterized by
a relation R that relates l and r and is closed under application of destructors. Such a
relation is called a bisimulation. For lazy lists, we have the following principle:

R xs ys

∧
xs ys. R xs ys =�⇒ lnull xs←→ lnull ys ∧ (¬ lnull xs ∧ ¬ lnull ys−→

lhd xs = lhd ys ∧ R (ltl xs) (ltl ys))

xs = ys

5 Nonemptiness Witnesses

The typedef primitive requires a nonemptiness witnesses before it introduces the desired
type in HOL. Thus, the datatype and codatatype commands, which build on typedef,
must provide such a witness [18]. For datatype, this is nontrivial. For example, the
following inductive specification of “finite streams” must be rejected because it would
lead to an empty datatype, one without a nonemptiness witness:

datatype α fstream = FSCons α (α fstream)

If we substituted codatatype for datatype, the infinite value FSCons x (FSCons x . . .)
would be a suitable witness, given a value x of type α.

While checking nonemptiness appears to be an easy reachability test, nested recursion
complicates the picture, as shown by this attempt to define infinitely branching trees
with finite branches by nested recursion via a codatatype of (infinite) streams:

6

codatatype α stream = SCons α (α stream)

datatype α tree = Node α ((α tree) stream)

The second definition should fail: To get a witness for α tree, we would need a
witness for (α tree) stream, and vice versa. Replacing streams with finite lists should
make the definition acceptable because the empty list stops the recursion. So even though
codatatype specifications are never empty, here the datatype provides a better witness
(the empty list) than the codatatype (which requires an α tree to build an (α tree) stream).

Mutual, nested datatype specifications and their nonemptiness witnesses can be
arbitrarily complex. Consider the following commands:

datatype (α, β) tree = Leaf β | Branch ((α+(α, β) tree) stream)

codatatype (α, β) ltree = LNode β ((α+(α, β) ltree) stream)

datatype
t1 = T11 (((t1, t2) ltree) stream) | T12 (t1× (t2 + t3) stream) and
t2 = T2 ((t1× t2) list) and
t3 = T3 ((t1, (t3, t3) tree) tree)

The definitions are legitimate, but the last group of mutually recursive datatypes should
be rejected if t2 is replaced by t3 in the constructor T11.

What makes the problem interesting is the open-ended nature of our setting. BNFs
form a semantic class that is not syntactically predetermined. In particular, they are not
restricted to polynomial functors (sums of products); the user can register new type
constructors as BNFs after discharging the BNF proof obligations.

Our solution exploits the package’s abstract, functorial view of types. Each (co)data-
type, and more generally each functor (type constructor) that participates in a definition,
carries its own witnesses. Operations such as functorial composition, initial algebra, and
final coalgebra derive their witnesses from those of the operands. Each computational
step performed by the package is certified in HOL.

The solution is complete: Given precise information about the functors participating
in a definition, all nonempty datatypes are identified as such. A corollary is that the
nonemptiness of open-ended, mutual, nested (co)datatypes is decidable. The proof relies
on a notion of possibly infinite derivation trees, which can be captured formally as a
codatatype. We proved the key results in Isabelle/HOL for an arbitrary unary functor,
using the datatype and codatatype commands to formalize their own metatheory.

6 Primitive Recursion and Corecursion

Primitively recursive functions can be defined by providing suitable arguments to the
relevant recursor, and similarly for corecursive functions. The primrec and primcorec
commands automate this process: From the recursive equations specified by the user,
they synthesize a (co)recursor-based definition [12, 41]. For example, the command

primrec length : α list→ nat where
length Nil = 0
| length (Cons x xs) = 1+ length xs

7

synthesizes the definition length = rec 0 (λx xs n. 1+n) and derives the specified equa-
tions as theorems, exploiting the recursor’s characteristic theorems (Sect. 4).

To qualify as primitive, recursive calls must be directly applied to constructor ar-
guments (e.g., xs in the second equation for length). Dually, primitive corecursive calls
must occur under exactly one constructor—and possibly some ‘if–then–else’, ‘case’, and
‘let’ constructs—as in the next example:

primcorec lappend : α llist→ α llist→ α llist where
lappend xs ys = (case xs of LNil⇒ ys | LCons x xs⇒ LCons x (lappend xs ys))

With both primrec and primcorec, an interesting scenario arises for types defined
by (co)recursion through a BNF. The (co)recursive calls must then appear inside the map
function associated with the BNF. For example:

primrec height_�treefs : α treefs→ nat where
height_�treefs (Nodefs x T) = 1+

⊔
(fimage height_�treefs T)

Here, α treefs is the datatype constructed by Nodefs : α→ (α treefs) fset → α treefs,⊔
N stands for the maximum of N, and the map function fimage gives the image of a

finite set under a function. From the specified equation, the command synthesizes the
definition height_�treefs = rec_�treefs (λx TN. 1+

⊔
(fimage snd TN)). From this definition

and treefs’s recursor theorems, it derives the original equation as a theorem. Notice how
the argument T : (α treefs) fset becomes TN : (α treefs×nat) fset, where the second pair
components (extracted by snd) store the result of the corresponding recursive calls.

7 Corecursion up to Friendly Operations

Primitive corecursion is very restrictive. To work around this, Lochbihler and Hölzl
dedicated an entire paper [35] to ad hoc techniques for defining operations on lazy lists;
and when formalizing formal languages coinductively, Traytel [50] needed to recast the
nonprimitive specifications of concatenation and iteration into specifications that can be
processed by the primcorec command.

Consider the codatatype of streams (infinite lazy lists), with the constructor SCons
and the selectors shd and stl:

codatatype α stream = SCons (shd: α) (stl: α stream)

Primitive corecursion is expressive enough to define operations such as the component-
wise addition of two streams of numbers:

primcorec ⊕ : nat stream→ nat stream→ nat stream where
xs⊕ ys = SCons (shd xs+ shd ys) (stl xs⊕ stl ys)

Intuitively, the evaluation of ⊕ makes some progress with each corecursive call, since
the call occurs directly under the constructor, which acts as a guard (shown underlined).
The specification is productive and unambiguously characterizes a function. Moreover,
it is primitively corecursive, because the topmost symbol on the right-hand side is a
constructor and the corecursive call appears directly as an argument to it.

8

Although these syntactic restrictions can be relaxed to allow conditional statements
and ‘let’ expressions, primitive corecursion remains hopelessly primitive. The syntactic
criterion for admissible corecursive definitions in Coq [5] is more permissive in that it
allows for an arbitrary number of constructors to guard the corecursive calls, as in the
following definition: oneTwos= SCons 1 (SCons 2 oneTwos).

We designed and implemented a framework, code-named AmiCo, that can be used
to define such functions and reason about them [10, 17]. It achieves the same result as
Coq by registering SCons as a friendly operation, or a friend. Intuitively, a friend needs
to destruct at most one constructor of input to produce one constructor of output. For
streams, such an operation may inspect the head and the tail (but not the tail’s tail)—i.e.,
it may explore at most one layer of its arguments before producing an SCons. Because
the operation preserves productivity, it can safely surround the guarding constructor.

But how can we formally express that operators such as SCons and ⊕ only explore
at most one layer? Inspired by “up to” techniques in category theory [1, 37], we require
that the corecursor argument is a composition of an optional destructor and a “surface”
function that does not explore its codatatype argument. Formally, the surface must be
polymorphic and relationally parametric [43] in that argument.

Our corec command generalizes primcorec to allow corecursion under friendly
operations. The codatatype constructors are automatically registered as friends. Other
operations can be registered as friends either after their definition—using the dedicated
friend_of_corec command, which takes as input either their definition or another proved
equation—or at definition time, by passing the friend option to corec:

corec (friend) ⊕ : nat stream→ nat stream→ nat stream where
xs⊕ ys = SCons (shd xs+ shd ys) (stl xs⊕ stl ys)

The command synthesizes the corecursor argument and surface functions, defines ⊕
in terms of the corecursor, and derives the user’s equation as a theorem. It additionally
checks that ⊕ meets the criteria on friends and registers it as such.

After registering friends, the corecursor becomes more expressive, allowing core-
cursive calls surrounded by any combinations of friends. In other words, the corecursor
gradually grows to recognize more friends, going well beyond the syntactic criterion
implemented in Coq and other systems. For example, the shuffle product ⊗ of two
streams is defined in terms of ⊕, and already goes beyond the corecursive definition
capabilities of Coq. Shuffle product being itself friendly, we can employ it to define
stream exponentiation, which is also friendly:

corec (friend) ⊗ : nat stream→ nat stream→ nat stream where
xs⊗ ys = SCons (shd xs× shd ys) ((xs⊗ stl ys)⊕ (stl xs⊗ ys))

corec (friend) exp : nat stream→ nat stream where
exp xs = SCons (2 ˆ shd xs) (stl xs⊗ exp xs)

Friends also form a basis for soundly combining recursion with corecursion. The
following definition exhibits both recursion on the naturals and corecursion on streams:

corec cat : nat→ nat stream where
cat n = (if n > 0 then cat (n−1)⊕ SCons 0 (cat (n+1)) else SCons 1 (cat 1))

The call cat 1 computes the stream C1,C2, . . . of Catalan numbers, where Cn =
1

n+1

(2n
n

)
.

9

The first self-call, cat (n− 1), is recursive, whereas the others are corecursive. Both
recursive and corecursive calls are required to appear in friendly contexts, whereas only
the corecursive calls are required to be guarded. In exchange, the recursive calls should
be terminating: They should eventually lead to either a base case or a corecursive call.
AmiCo automatically marks unguarded calls as recursive and attempts to prove their
termination using Isabelle/HOL’s termination prover [19]. Users also have the option to
discharge the proof obligation manually.

8 Nonuniform Datatypes and Codatatypes

Nonuniform (co)datatypes are recursively defined types in which the type arguments
vary recursively. Powerlists and powerstreams are prominent specimens:

nonuniform_datatype α plist = Nil | Cons α ((α×α) plist)
nonuniform_codatatype α pstream = SCons α ((α×α) pstream)

The type α plist is freely generated by Nil : α plist and Cons : α→ (α×α) plist→ α plist.
When Cons is applied several times, the product type constructors (×) accumulate to
create pairs, pairs of pairs, and so on. Thus, any powerlist of length 3 will have the form

Cons a (Cons (b1, b2) (Cons ((c11, c12), (c21, c22)) Nil))

Similarly, the type pstream contains only infinite values of the form

SCons a (SCons (b1, b2) (SCons ((c11, c12), (c21, c22)) . . .))

Nonuniform datatypes arise in the implementation of efficient functional data struc-
tures such as finger trees [23], and they underlie Okasaki’s bootstrapping and implicit
recursive slowdown optimization techniques [40]. Agda, Coq, Lean, and Matita allow
nonuniform definitions, but these are built into the logic, with all the risks and limitations
that this entails [17, Sect. 1]. For systems based on HOL, until recently no dedicated
support existed for nonuniform types, probably because they were widely believed to
lie beyond the logic’s simple polymorphism. Building on the BNF infrastructure, we
disproved this folklore belief by showing how to define a large class of nonuniform
datatypes by reduction to their uniform counterparts within HOL [13, 36].

Our constructions allow variations along several axes for both datatypes and codata-
types. They allow multiple recursive occurrences, with different type arguments:

nonuniform_datatype α plist′ = Nil | Cons1 α (α plist′) | Cons2 α ((α×α) plist′)

They allow multiple type arguments, which may all vary independently of the others.
Moreover, they allow the presence of uniform or nonuniform (co)datatypes and other
BNFs both around the type arguments and around the recursive type occurrences:

nonuniform_datatype α crazy = Node α (((((α pstream) fset) crazy) fset) list)

Once a nonuniform datatype has been introduced, users want to define functions that
recurse on it and carry out proofs by induction involving these functions—and similarly
for codatatypes. A uniform datatype definition generates an induction theorem and a
recursor. Nonuniform datatypes pose a challenge, because neither the induction theorem
nor the recursor can be expressed in HOL, due to its limited polymorphism. For example,

10

the induction principle for plist should look like this:∧
Q. Q Nil ∧

(∧
x xs. Q xs =�⇒ Q (Cons x xs)

)
=�⇒
∧

ys. Q ys

However, this formula is not typable in HOL, because the second and third occurrences
of the variable Q need different types: (α×α) plist→ bool versus α plist→ bool. Our
solution is to replace the theorem by a procedure parameterized by a polymorphic
property ϕα : α plist→ bool. For plist, the procedure transforms a proof goal of the form
ϕα ys into two subgoals ϕα Nil and

∧
x xs. ϕα×α xs =�⇒ ϕα (Cons x xs). A weak form of

parametricity is needed to recursively transfer properties about ϕα to properties about
ϕα×α. Our approach to (co)recursion is similar.

9 Tool Integration

Lifting and Transfer. Isabelle/HOL’s Lifting and Transfer tools [26] provide automa-
tion for working with type abstractions introduced via the typedef command. Lifting
defines constants on the newly introduced abstract type from constants on the original
raw type. Transfer reduces proof goals about the abstract type to goals about the raw
type. Both tools are centered around parametricity and relators.

The BNF infrastructure serves as an abundant supply of relator constants, their
properties, and parametricity theorems about the constructors, ‘case’ combinators, re-
cursors, and the BNF map, set, and relator constants. The interaction between Lifting,
Transfer, and the BNF and (co)datatype databases is implemented using Isabelle’s plugin
mechanism. Plugins are callbacks that are executed upon every update to the BNF or
(co)datatype database, as well as for all existing database entries at the moment of the
registration of the plugin. The Lifting and Transfer plugins derive and register properties
in the format accepted by those tools from the corresponding properties in the BNF and
(co)datatype databases.

To enable nested recursion through types introduced by typedef, we must register
the types as BNFs. The BNF structure can often be lifted from the raw type to the
abstract type in a canonical way. The command lift_bnf automates this lifting based
on a few properties of the carved-out subset: Essentially, the subset must be closed
under map f for any f , where map is the map function of the raw type’s BNF. If the
carved out subset is the entire type, the copy_bnf command performs the trivial lifting
of the BNF structure. This command is particularly useful to register types defined via
Isabelle/HOL’s record command, which are type copies of some product type, as BNFs.

Size, Countability, Comparators, Show, and Hash. For each finitary datatype τ, the
size plugin generates a function size : τ→ nat. The fun and function commands [29]
rely on size to prove termination of recursive functions on datatypes.

The countable_datatype tactic can be used to prove the countability of many data-
types, building on the countability of the types appearing in their definitions.

The derive command [46], provided by the Archive of Formal Proofs [47], auto-
matically generates comparators, show functions, and hash functions for a specified
datatype and can be extended to generate other operations. The mechanism is inspired
by Haskell’s deriving mechanism, with the important difference that it also provides
theorems about the operations it introduces.

11

Nitpick and Sledgehammer. Nitpick [6, 8] is a counterexample generator for Isabelle/
HOL that builds on Kodkod [49], a SAT-based first-order relational model finder. Nitpick
supported codatatypes even before the introduction of a codatatype command. Users
could define custom codatatypes from first principles and tell Nitpick to employ its
efficient first-order relational axiomatization of ω-regular values (e.g., cyclic values).

Sledgehammer integrates automatic theorem provers in Isabelle/HOL to provide
one-click proof automation. Some automatic provers have native support for datatypes
[28, 38, 42]; for these, Sledgehammer generates native definitions, which are often more
efficient and complete than first-order axiomatizations. Blanchette also collaborated with
the developers of the SMT solver CVC4 to add codatatypes to their solver [42].

10 Applications

Coinductive. Lochbihler’s Coinductive library [31] defines general-purpose codata-
types, notably extended natural numbers (N] {∞}), lazy lists, and streams. It also
provides related functions and a large collection of lemmas about these. Back in 2010,
every codatatype was constructed manually—including its constructors and corecursor—
and operations were defined directly in terms of the corecursor. Today, the codatatypes
are defined with codatatype and most functions with primcorec, leading to consid-
erably shorter definitions and proofs [12]. The library is used in several applications,
including in Hölzl’s formalization of Markov chains and processes [24, 25] and in Loch-
bihler’s JinjaThreads project to verify a Java compiler and formalize the Java memory
model [30, 32, 33].

Coinductive Languages. Rutten [44] views formal languages as infinite tries—i.e.,
prefix trees branching over the alphabet with Boolean labels at the nodes indicating
whether the path from the root denotes a word in the language. Traytel [50] formalized
these tries in Isabelle as

codatatype α lang = Lang bool (α→ α lang)

a type that nests corecursion through the right-hand side of the function space arrow
(→). He also defined regular operations on them as corecursive functions and proved by
coinduction that the defined operations form a Kleene algebra.

Completeness of First-Order Logic. Gödel’s completeness theorem [21] is a central
result about first-order logic. Blanchette, Popescu, and Traytel [9, 14, 16] formalized
a Beth–Hintikka-style proof [27] in Isabelle/HOL. It depends on a Gentzen or tableau
system and performs a search that builds either a finite deduction tree yielding a proof
(or refutation, depending on the system) or an infinite tree from which a countermodel
(or model) can be extracted.

Even in the most formalistic textbooks, potentially infinite trees are defined rigorously
(e.g., as prefix-closed sets), but the reasoning is performed informally, disregarding the
definition and relying on the intuitive notion of trees. By contrast, the formalization
relies on α ltreefs (Sect. 1), a codatatype of finitely branching, possibly infinite trees
with nodes labeled by elements in a set α of inference rules. One could argue that trees
are intuitive and do not need a formal treatment, but the same holds for the syntax of
formulas, which is treated very rigorously in most textbooks.

12

The core of the proof establishes an abstract property of possibly infinite derivation
trees, independently of the concrete syntax or inference rules. This separation of concerns
simplifies the presentation. The abstract proof can be instantiated for a wide range of
Gentzen and tableau systems as well as variants of first-order logic.

IsaFoR and CeTA. The IsaFoR (Isabelle Formalization of Rewriting) formal library,
developed by Sternagel, Thiemann, and their colleagues, is a collection of abstract
results and concrete techniques from the term rewriting literature. It forms the basis of
the CeTA (Certified Termination Analysis) certifier [48] for proofs of (non)termination,
(non)confluence, and other properties of term rewriting systems. Termination proofs are
represented by complicated mutually and nested recursive datatypes.

One of the benefits of the modular, BNF-based approach is its scalability. The previ-
ous approach [4, 22] implemented in Isabelle/HOL consisted in reducing specifications
with nested recursion to mutually recursive specifications, which scales poorly (and
only allows nesting through datatypes). After the introduction of the new datatype
command in 2014, Thiemann observed that the IsaFoR session Proof-Checker compiled
in 10 minutes on his computer, compared with 50 minutes previously.

Generative Probabilistic Values. Lochbihler [34] proposed generative probabilistic
values (GPVs) as a semantic domain for probabilistic input–output systems, which he
uses to formalize and verify cryptographic algorithms. Conceptually, each GPV chooses
probabilistically between failing, terminating with a result of type α, and continuing by
producing an output γ and transitioning into a reactive probabilistic value, which waits
for a response ρ of the environment before moving to the generative successor state.
Lochbihler modeled GPVs as a codatatype (α, γ, ρ) gpv and defined a monadic language
on GPVs similar to a coroutine monad:

codatatype (α, γ, ρ) gpv = GPV (unGPV: (α+γ× (ρ→ (α, γ, ρ) gpv)) spmf)

This codatatype definition exploits the full generality that BNFs provide as it corecurses
through the nonfree type constructor spmf of discrete subprobability distributions and
through the function space (→), products (×), and sums (+).

The definition of the ‘while’ loop corecurses through the monadic sequencing opera-
tor >>=gpv and is accepted by corec after >>=gpv has been registered as a friend (Sect. 7):

corec while : (σ→ bool)→ (σ→ (σ, γ, ρ) gpv)→ σ→ (σ, γ, ρ) gpv where
while g b s =
GPV (mapspmf (map+ id (map× id (λx r. x r>>=gpv while g b))) (search g b s))

The auxiliary operation search g b s iterates the loop body b starting from state s until the
loop guard g is falsified or the first interaction is found. It is defined as the least fixpoint
of the recursive specification in the spmf monad below. The search is needed to expose
the constructor guard in while’s definition. The recursion in search must be manually
separated from the corecursion as the recursion is not well founded, so search is not the
only solution—e.g., it is unspecified for g s = True and b s = GPV (returnspmf (Inl s)).

search g b s = (if g s then
unGPV (b s)>>=spmf (λx. case x of Inl s′⇒ search g b s′ | _⇒ returnspmf x)

else returnspmf (Inl s))

13

Nested and Hereditary Multisets. Blanchette, Fleury, and Traytel [7, 11] formalized
a collection of results about (finite) nested multisets, as a case study for BNFs. Nested
multisets can be defined simply, exploiting the BNF structure of multiset:

datatype α nmultiset = Elem α | MSet ((α nmultiset)multiset)

This type forms the basis of their formalization of Dershowitz and Manna’s nested
multiset order [20]. If we omit the Elem case, we obtain the hereditary multisets instead:

datatype hmultiset = HMSet (hmultiset multiset)

This type is similar to hereditarily finite sets, a model of set theory without the axiom
of infinity, but with multisets instead of finite sets. Indeed, we can replace multiset with
fset to obtain the hereditarily finite sets.

It is easy to embed hmultiset in α nmultiset, and using the Lifting and Transfer tools,
we can lift definitions and results from the larger type to the smaller type, such as the
definition of the nested multiset order. Hereditary multisets offer a convenient syntactic
representation for ordinals below ε0, which can be expressed in Cantor normal form:

α ::= ωα1 · c1 + · · ·+ωαn · cn

where ci ∈ N>0 and α1 > · · · > αn. The correspondence with hereditary multisets is
straightforward:

α ::= {α1, . . . , α1︸ ︷︷ ︸
c1 occurrences

, . . . , αn, . . . , αn︸ ︷︷ ︸
cn occurrences

}

The coefficients ci are represented by multiset multiplicities, and the ω exponents are
the multiset’s members. Thus, {}= 0; {0}= {{}}=ω0 = 1; {0, 0, 0}= {{}, {}, {}}=
ω0 ·3 = 3; {1}= {{{}}}= ω1 = ω; and {ω}= {{{{}}}}= ωω.

The hereditary multisets were used to represent syntactic ordinals in a proof of
Goodstein’s theorem [7, 11], in an ongoing proof of the decidability of unary PCF
(programming computable functions) [7,11], and in a formalization of transfinite Knuth–
Bendix orders [2, 3].

11 Conclusion

It is widely recognized that proof automation is important for usability of a proof
assistant, but it is not the only factor. Many formalizations depend on an expressive spec-
ification language. The axiomatic approach, which is favored in some subcommunities,
is considered unreliable in others. Extending the logic is also a problematic option: Not
only must the metatheory be extended, but the existing tools must be adapted. Moreover,
the developers and users of the system must be convinced of the correctness and necessity
of the extension.

Our challenge was to combine specification mechanisms that are both expressive
and trustworthy, without introducing new axioms or changing the logic. We believe we
have succeeded as far as (co)datatypes and (co)recursion are concerned, but more could
be done, notably for nonfree datatypes [45]. Our new commands, based on the notion of
a bounded natural functor, probably constitute the largest definitional package to have
been implemented in a proof assistant. Makarius Wenzel [54], Isabelle’s lead developer,
jocularly called it “one of the greatest engineering projects since Stonehenge!”

14

Acknowledgments. We first want to acknowledge the support and encouragement of past and
current bosses: David Basin, Wan Fokkink, Stephan Merz, Aart Middeldorp, Tobias Nipkow,
and Christoph Weidenbach. We are grateful to the FroCoS 2017 program chairs, Clare Dixon
and Marcelo Finger, and to the program committee for giving us this opportunity to present our
research. We are also indebted to Andreas Abel, Stefan Berghofer, Sascha Böhme, Lukas Bulwahn,
Elsa Gunter, Florian Haftmann, Martin Hofmann, Brian Huffman, Lars Hupel, Alexander Krauss,
Peter Lammich, Rustan Leino, Stefan Milius, Lutz Schröder, Mark Summerfield, Christian Urban,
Daniel Wand, and Makarius Wenzel, and to dozens of anonymous reviewers (including those who
rejected our manuscript “Witnessing (co)datatypes” [18] six times).

Blanchette was supported by the Deutsche Forschungsgemeinschaft (DFG) projects “Quis
Custodiet” (NI 491/11-2) and “Den Hammer härten” (NI 491/14-1). He also received funding
from the European Research Council under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 713999, Matryoshka). Hölzl was supported by the DFG
project “Verifikation probabilistischer Modelle in interaktiven Theorembeweisern” (NI 491/15-1).
Kunčar and Popescu were supported by the DFG project “Security Type Systems and Deduction”
(NI 491/13-2 and NI 491/13-3) as part of the program Reliably Secure Software Systems (RS3,
priority program 1496). Kunčar was also supported by the DFG project “Integration der Logik
HOL mit den Programmiersprachen ML und Haskell” (NI 491/10-2). Lochbihler was supported by
the Swiss National Science Foundation (SNSF) grant “Formalising Computational Soundness for
Protocol Implementations” (153217). Popescu was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) starting grant “VOWS: Verification of Web-based Systems”
(EP/N019547/1). Sternagel and Thiemann were supported by the Austrian Science Fund (FWF):
P27502 and Y757. Traytel was supported by the DFG program “Programm- und Modell-Analyse”
(PUMA, doctorate program 1480). The authors are listed alphabetically.

References

[1] Bartels, F.: Generalised coinduction. Math. Struct. Comp. Sci. 13(2), 321–348 (2003)
[2] Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of Knuth–Bendix

orders for lambda-free higher-order terms. Archive of Formal Proofs (2016), http://
isa-afp.org/entries/Lambda_Free_KBOs.shtml, Formal proof development

[3] Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–Bendix order for
lambda-free higher-order terms. In: de Moura, L. (ed.) CADE-26. LNCS, Springer (2017)

[4] Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—Lessons learned in formal-logic
engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin-Mohring, C., Théry, L. (eds.)
TPHOLs ’99. LNCS, vol. 1690, pp. 19–36. Springer (1999)

[5] Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development—Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science, Springer
(2004)

[6] Blanchette, J.C.: Relational analysis of (co)inductive predicates, (co)inductive datatypes,
and (co)recursive functions. Softw. Qual. J. 21(1), 101–126 (2013)

[7] Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets, and syntactic
ordinals in Isabelle/HOL. In: Miller, D. (ed.) FSCD 2017. LIPIcs, vol. 84, pp. 11:1–11:17.
Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2017)

[8] Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 131–146. Springer (2010)

[9] Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by coinduc-
tive methods. J. Autom. Reasoning 58(1), 149–179 (2017)

http://isa-afp.org/entries/Lambda_Free_KBOs.shtml
http://isa-afp.org/entries/Lambda_Free_KBOs.shtml

15

[10] Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Friends with benefits:
Implementing corecursion in foundational proof assistants. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 111–140. Springer (2017)

[11] Blanchette, J.C., Fleury, M., Traytel, D.: Formalization of nested multisets, hereditary
multisets, and syntactic ordinals. Archive of Formal Proofs (2016), http://isa-afp.org/
entries/Nested_Multisets_Ordinals.shtml, Formal proof development

[12] Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular
(co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol.
8558, pp. 93–110. Springer (2014)

[13] Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform (co)datatypes
for higher-order logic. In: Ouaknine, J. (ed.) LICS 2017. IEEE Computer Society (2017)

[14] Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. Archive of Formal Proofs
(2014), http://isa-afp.org/entries/Abstract_Completeness.shtml, Formal proof
development

[15] Blanchette, J.C., Popescu, A., Traytel, D.: Cardinals in Isabelle/HOL. In: Klein, G., Gamboa,
R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 111–127. Springer (2014)

[16] Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness: A coinduc-
tive pearl. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562,
pp. 46–60. Springer (2014)

[17] Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion—A proof
assistant perspective. In: Fisher, K., Reppy, J.H. (eds.) ICFP ’15. pp. 192–204. ACM (2015)

[18] Blanchette, J.C., Popescu, A., Traytel, D.: Witnessing (co)datatypes. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 359–382. Springer (2015)

[19] Bulwahn, L., Krauss, A., Nipkow, T.: Finding lexicographic orders for termination proofs
in Isabelle/HOL. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp.
38–53. Springer (2007)

[20] Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM
22(8), 465–476 (1979)

[21] Gödel, K.: Über die Vollständigkeit des Logikkalküls. Ph.D. thesis, Universität Wien (1929)
[22] Gunter, E.L.: Why we can’t have SML-style datatype declarations in HOL. In: TPHOLs

’92. IFIP Transactions, vol. A-20, pp. 561–568. North-Holland/Elsevier (1993)
[23] Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure. J. Funct.

Program. 16(2), 197–217 (2006)
[24] Hölzl, J.: Markov chains and Markov decision processes in Isabelle/HOL. Accepted in J.

Autom. Reasoning
[25] Hölzl, J.: Markov processes in Isabelle/HOL. In: Bertot, Y., Vafeiadis, V. (eds.) CPP 2017.

pp. 100–111. ACM (2017)
[26] Huffman, B., Kunčar, O.: Lifting and Transfer: A modular design for quotients in Isabelle/

HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 131–146.
Springer (2013)

[27] Kleene, S.C.: Mathematical Logic. John Wiley & Sons (1967)
[28] Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning. In:

Castagna, G., Gordon, A.D. (eds.) POPL 2017. pp. 260–270. ACM (2017)
[29] Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U., Shankar, N.

(eds.) IJCAR 2006. LNCS, vol. 4130, pp. 589–603. Springer (2006)
[30] Lochbihler, A.: Jinja with threads. Archive of Formal Proofs (2007), http://isa-afp.org/

entries/JinjaThreads.shtml, Formal proof development
[31] Lochbihler, A.: Coinductive. Archive of Formal Proofs (2010), http://afp.sf.net/

entries/Coinductive.shtml, Formal proof development
[32] Lochbihler, A.: Verifying a compiler for Java threads. In: Gordon, A.D. (ed.) ESOP 2010.

LNCS, vol. 6012, pp. 427–447. Springer (2010)

http://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml
http://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml
http://isa-afp.org/entries/Abstract_Completeness.shtml
http://isa-afp.org/entries/JinjaThreads.shtml
http://isa-afp.org/entries/JinjaThreads.shtml
http://afp.sf.net/entries/Coinductive.shtml
http://afp.sf.net/entries/Coinductive.shtml

16

[33] Lochbihler, A.: Making the Java memory model safe. ACM Trans. Program. Lang. Syst.
35(4), 12:1–65 (2014)

[34] Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher-order logic. In:
Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer (2016)

[35] Lochbihler, A., Hölzl, J.: Recursive functions on lazy lists via domains and topologies. In:
Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 341–357. Springer (2014)

[36] Meier, F.: Non-Uniform Datatypes in Isabelle/HOL. M.Sc. thesis, ETH Zürich (2016)
[37] Milius, S., Moss, L.S., Schwencke, D.: Abstract GSOS rules and a modular treatment of

recursive definitions. Log. Meth. Comput. Sci. 9(3) (2013)
[38] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.

(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer (2008)
[39] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order

Logic, LNCS, vol. 2283. Springer (2002)
[40] Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)
[41] Panny, L.: Primitively (Co)recursive Function Definitions for Isabelle/HOL. B.Sc. thesis,

Technische Universität München (2014)
[42] Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT solvers. J.

Autom. Reasoning 58(3), 341–362 (2017)
[43] Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP ’83. pp. 513–523

(1983)
[44] Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D.,

de Simone, R. (eds.) CONCUR ’98. LNCS, vol. 1466, pp. 194–218. Springer (1998)
[45] Schropp, A., Popescu, A.: Nonfree datatypes in Isabelle/HOL: Animating a many-sorted

metatheory. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 114–130.
Springer (2013)

[46] Sternagel, C., Thiemann, R.: Deriving comparators and show functions in Isabelle/HOL. In:
Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 421–437. Springer (2015)

[47] Sternagel, C., Thiemann, R.: Deriving class instances for datatypes. Archive of Formal Proofs
(2015), http://isa-afp.org/entries/Deriving.shtml, Formal proof development

[48] Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468.
Springer (2009)

[49] Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer (2007)

[50] Traytel, D.: Formal languages, formally and coinductively. In: Kesner, D., Pientka, B. (eds.)
FSCD 2016. LIPIcs, vol. 52, pp. 31:1–31:17. Schloss Dagstuhl—Leibniz-Zentrum für
Informatik (2016)

[51] Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for
higher-order logic—Category theory applied to theorem proving. In: LICS 2012, pp. 596–
605. IEEE Computer Society (2012)

[52] Traytel, D.: A Category Theory Based (Co)datatype Package for Isabelle/HOL. M.Sc. thesis,
Technische Universität München (2012)

[53] Wenzel, M.: Isabelle/Isar—A generic framework for human-readable proof documents.
In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of
Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, vol. 10(23). Uniwersytet w
Białymstoku (2007)

[54] Wenzel, M.: Re: [isabelle] “Unfolding” the sum-of-products encoding of datatypes
(2015), https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-November/

msg00082.html

http://isa-afp.org/entries/Deriving.shtml
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-November/msg00082.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2015-November/msg00082.html

	Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic
	1 Introduction
	2 Isabelle/HOL
	3 Bounded Natural Functors
	4 Datatypes and Codatatypes
	5 Nonemptiness Witnesses
	6 Primitive Recursion and Corecursion
	7 Corecursion up to Friendly Operations
	8 Nonuniform Datatypes and Codatatypes
	9 Tool Integration
	10 Applications
	11 Conclusion

