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In 1948 the phenomenon of turbulent drag reduction by polymers was discov-

ered [B. Toms, Proc. Int’l Rheological Congress 2, 135 (1948)]. It was found

that the addition of a small amount of polymers can significantly reduce

the frictional drag in wall-bounded turbulent flows. The reduction in drag

is characterized by an increase in the fluid throughput under fixed applied

pressure gradient, or equivalently, a smaller pressure gradient is required to

drive the flow at the same flow rate. This phenomenon has been studied

extensively in the past decades but a theory that can give predictions was

proposed only recently [I. Procaccia, V.L. L’ov, and R. Benzi, Rev. Mod.

Phys. 80, 225 (2008)]. This theory is based on the balance of momentum

and energy, and shows that the effect of the polymers can be represented by

a position-dependent effective viscosity.

In this thesis, we work out further predictions of this theory that can be

tested by experiments. In particular, we have worked out the various effects

of polymer concentration for both flexible and rodlike polymers. We have
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focused on the pipe geometry for easy comparison with experiments. We

have calculated the relation of the friction factor with the Reynolds number

and studied how this relation changes with the zero shear viscosity of the

polymer solution. The zero-shear viscosity of the polymer solution depends

on the concentration of the polymers in the solvent. Using additional ex-

perimental knowledge of the concentration dependence of viscosity, we have

found how the friction factor relation changes with concentration for the

rodlike polymer xanthan gum. We have also calculated how the Reynolds

stress profile varies with the concentration of the polymer. Our results re-

veal a linear dependence of the maximum Reynolds stress on the position

of the maximum. This linear dependence is a new theoretical prediction,

which can be tested experimentally. We have found that the viscosity depen-

dence of the percentage drag reduction at different Reynolds numbers can

be collapsed into a universal curve with different functional forms for flexible

and rodlike polymers. We have also compared our results with experimental

observations.
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Chapter 1

Introduction

1.1 The phenomenon of polymer drag reduc-

tion

The phenomenon of polymer drag reduction was discovered in experiment

by Toms in 1948 [1]. It was found that the addition of a small amount of

polymer can reduce the frictional drag in wall-bounded turbulent flow by up

to 80%. Consider the turbulent flow of a fluid in a long pipe of radius R.

The frictional drag is quantified by the friction factor f ,

f ≡ ∆pR

ρU2
avl

(1.1)

where ∆p is the pressure drop across a length l of the pipe, ρ is the fluid

density and Uav is the bulk velocity averaged over the cross-section of the

pipe.

Uav =
1

πR2

∫ R

0

V (y)2π(R− y)dy (1.2)

Here y is the distance from the wall and V (y) is the time average velocity

profile.

1



CHAPTER 1. INTRODUCTION 2

A drop in the pressure gradient required to drive the flow at a fixed

average velocity would mean a decrease in the friction factor. Alternatively,

an increase in the average velocity under a fixed pressure gradient would also

cause a decrease in the friction factor. While drag reduction was observed

originally for flexible polymer, it was later found that rodlike polymers also

exhibit such a drag reducing property. In Fig. 1.1, the experimental friction

factors of flexible polymers at different concentrations are plotted in the

coordinates 1/
√
f against Re

√
f called the Prandtl-Karman coordinates [2].

The Reynolds number Re is defined using the bulk velocity,

Re =
2UavR

ν
(1.3)

where ν is the solvent viscosity.

A decrease in the friction factor compared to the Newtonian case without

polymer is seen. The amount of drag reduction increases with the polymer

concentration and approaches a Maximum Drag Reduction (MDR) asymp-

tote. The experimentally reported friction factor relations of a rodlike poly-

mer is shown in Fig. 1.2 [2].
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Figure 1.1: Experimental friction factor relation in Prandtl-Karman coordi-

nates for flexible polymers. Taken from Ref. [2].
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Figure 1.2: Experimental friction factor relation in Prandtl-Karman coordi-

nates for a rodlike polymer. Taken from Ref. [2].

In general, the friction factor relations of flexible and rodlike polymers

show different behaviors, but it has been reported in experiments that they

approach the same Maximum Drag Reduction asymptote at high polymer

concentrations [3]. In other words, there exists two experimentally reported

asymptotes for which the drag reduction is bounded. Firstly, there is the

Newtonian case without polymer, for which the friction factor relation is



CHAPTER 1. INTRODUCTION 5

given by the Prandtl-von Karman log law [4],

1/
√

f = 4.0 log(Re
√
f)− 0.4 (1.4)

On the other hand, there is the MDR asymptote approached at high polymer

concentration [4].

1/
√

f = 19.0 log(Re
√
f)− 32.4 (1.5)

It has been reported in experiments that there are also log laws for the

Newtonian velocity profile when there is no polymer and the MDR asymp-

tote. For the Newtonian case without polymer, there is the von-Karman log

law,

V +(y+) = κ−1
k ln y+ +B (1.6)

Here the velocity and distance from wall are given in terms of the dimen-

sionless units defined using the solvent viscosity ν and the friction velocity

uτ =
√
p′R/2ρ where p

′
= ∆p/l is the pressure gradient.

y+ ≡ yuτ

ν
, V + ≡ V

uτ

(1.7)

Quantity with the superscript ”+” means that it is in the dimensionless unit

where every length and velocity scales are normalized according to Eq. (1.7).

The von Karman constant κk and the intercept B are known only through

experiments and numerical simulations. The reported experimental values

of the constants are κk ≈ 0.436 and B ≈ 6.13 [5]. For the MDR asymptote,

there is another log law,

V +(y+) = κ−1
v ln y+ +B

′
(1.8)

The Virk constant κv and the intercept B
′
have been obtained using Eqs.
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(1.1), (1.2) and the experimental relation Eq. (1.5), yielding κ−1
v ≈ 11.7 and

B
′ ≈ −17.0 [4].

For intermediate polymer concentration, there is no universal log law for

the friction factor relation or the mean velocity profile as they depend on the

polymer concentration. Experimentally it has been reported that log laws

also exist in this regime, with different forms for flexible and rodlike polymers

[2, 6]. For flexible polymer, the following log law is reported.

1/
√
f = (4.0 +D) log(Re

√
f) + A (1.9)

where the slope increment D and the intercept A are constants that depend

on the concentration. This type of behavior is illustrated in Fig. 1.1 which

has a fan-like structure. For rodlike polymers, the log law was found to be

of the following form.

1/
√
f = 4.0 log(Re

√
f)− 0.4 + δ (1.10)

Here the effective slip δ is a function of concentration. In Fig. 1.2 the ladder-

like feature can be seen. The slope increment D and effective slip δ have been

found to have power law relationships with the concentration [2, 6, 7].

D ∼ cω (1.11)

δ ∼ cϕ (1.12)

There is no general consensus on the value of the scaling exponents ω and ϕ

in experiments. For example, Virk found that [6, 7],

ω = 0.5 (1.13)
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ϕ = 1 (1.14)

On the other hand, Sasaki reported that [2],

ω = 0.80 (1.15)

ϕ = 0.72 (1.16)

Apart from the friction factor, another quantity of interest is the Reynolds

stress W . It is the stress caused by the turbulent fluctuations of fluid mo-

mentum and will be defined in Chapter 2. The Reynolds stress has been

measured as a function of the distance from wall in experiments [8, 9]. Fig-

ure 1.3 shows a typical Reynolds stress profile, an overall decrease in the

Reynolds stress can be seen as the concentration is raised. This is in agree-

ment with the theoretical understanding that the MDR asymptote is an edge

solution between turbulent and laminar flow [10]. However, currently there

is little theoretical prediction on the shape of the Reynolds stress profile

and how it depends on concentration. In this thesis we will derive a new

prediction on the concentration dependence of the Reynolds stress profile.
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Figure 1.3: Experimental Reynolds stress profile in channel flow at various

concentrations for Percol 727, a flexible copolymer of polyacrylamide (PAM)

and sodium acrylamide. L is the channel half width. Taken from Ref. [8].

In Section 1.2 of this chapter, some early phenomenological ideas will

be reviewed. These ideas concern mainly on understanding the onset of

drag reduction and the MDR asymptote. A recent theory of turbulent drag

reduction by polymers and the basis of our work will be outlined in Section
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1.3. The theory is based on the balance of momentum and energy and shows

that the effect of the polymers can be represented by a position-dependent

effective viscosity. In Chapter 2 we review the theory and apply it to pipe

flow. We use the theory to carry out a systematic study of the concentration

dependence of the phenomenon. Our results are presented in Chapters 3 to

7. We have calculated the relation of the friction factor with the Reynolds

number and studied how this relation changes with the zero shear viscosity

of the polymer solution. The zero-shear viscosity of the polymer solution

depends on the concentration of the polymers in the solvent. Using additional

experimental knowledge of the concentration dependence of viscosity, we have

found how the friction factor relation changes with concentration for the

rodlike polymer xanthan gum. We have also calculated how the Reynolds

stress profile varies with the concentration of the polymer. Our results reveal

a linear dependence of the maximum Reynolds stress on the position of the

maximum. This linear dependence is a new theoretical prediction, which can

be tested experimentally. We have found that the viscosity dependence of

the percentage drag reduction at different Reynolds numbers can be collapsed

into a universal curve with different functional forms for flexible and rodlike

polymers. We have also compared our results with experimental observations.

Besides, we have also revisited the MDR asymptote and shown analytically

the reduction of drag in the limit of small concentrations. In Chapter 8 we

finish with some concluding remarks and suggestion for future work.

1.2 The Phenomenology of drag reduction

Early attempts at understanding polymer drag reduction mainly involve phe-

nomenological descriptions of interactions between the turbulent eddies and

the polymer. These ideas focused on understanding the onset and MDR of
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drag reduction, but do not describe the detailed mechanism of how the inter-

action would give rise to drag reduction. Two phenomenological frameworks

have been proposed by Lumley and De Gennes, with the former focusing on

a comparison of time scales and the latter involving the elastic energy of the

polymer. Both frameworks are applicable only to flexible polymers but not

rodlike polymers as they rely on the relaxation time and elastic properties of

the polymer, which is irrelevant in the case of rodlike polymers.

Lumley proposed [11] that the polymer would be affected by the flow only

if the characteristic timescale of the turbulent eddies becomes smaller than

the polymer relaxation time. This is known as the Lumley time criterion,

Lumley argued that only if this condition is satisfied would the polymer

become significantly stretched.

τp > Tflow (1.17)

where τp is the relaxation time of the polymer and Tflow is the characteris-

tic time scale of turbulence. For simplicity, assume that there is only one

polymer relaxation time given by the Zimm relaxation time,

τp = TZ ≡ η0R
3
G

kBT
(1.18)

where η0 is the solvent viscosity, RG the radius of gyration of the polymer

coil, and kBT the typical thermal energy of the system. On the other hand,

the turbulent flow time scale at a length scale r is estimated by dimensional

analysis as in the usual phenomenology of turbulence [12].

Tflow =
r

U(r)
(1.19)
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where U(r) is the typical velocity at the length scale r, and is related to the

energy dissipation rate ϵ and r by,

U(r) = (rϵ)1/3 (1.20)

Eqs. (1.19) and (1.20) implies that Tflow ∼ r2/3, therefore the turbulent

time scale decreases when the length scale of turbulence is decreased, so this

time criterion holds for all length scales smaller than a certain scale r∗ at

which the time scale of turbulence equals the polymer relaxation time.

r∗

U(r∗)
= TZ (1.21)

When the time criterion is satisfied, the stretched polymer produces a

significant increase in elongational viscosity [13, 14, 15]. Lumley argued that

the increased elongational viscosity would then reduce the drag by suppress-

ing the turbulent fluctuations and increasing the thickness of the buffer layer.

However, it is yet unknown how the suppression of turbulent fluctuations or

the increased buffer layer thickness may contribute to the reduction in drag.

The length scale (r∗)+ is related to the Weissenberg number We = u2
τTZ/ν

and the distance from the wall y+ by,

(r∗)+ =
We3/2

(y+)1/2
(1.22)

The onset condition of drag reduction is understood as the requirement

for the Weissenberg number to be sufficiently large such that r∗ exceeds

the smallest turbulent length scale, making it possible for some eddies to

satisfy the time criterion. In the phenomenology of turbulence, the smallest
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turbulent length scale is estimated by the Kolmogorov scale defined as [12],

rkol = (
ν3

ϵ
)1/4 (1.23)

Using dimensional analysis, ϵ in the log layer is approximated as u3
τ/y. As

such the Kolmogorov scale in the dimensionless unit is estimated as,

r+kol = (y+)1/4 (1.24)

Therefore the Kolmogorov scale increases with the position y+. Lumley

assumed that the smallest y+ that is relevant lies just outside the viscous

sublayer and is of the order one. We remark that this assumption is not en-

tirely obvious as the polymer may well have certain effects inside the viscous

sublayer. Using this assumption, the onset condition is approximated by,

We ∼ O(1) (1.25)

Maximum drag reduction occurs when the polymer concentration is suf-

ficiently large and the Weissenberg number is large enough for eddies of the

largest size to satisfy the time criterion. In this case the following condition

has to be satisfied,

We ≈ Reτ (1.26)

where Reτ = R+ is the friction Reynolds number.

In the phenomenology of De Gennes [16], he identified the elastic property

of the polymer as the major factor in drag reduction and suggested that the

polymer would affect the energy cascade substantially only when its elastic

energy becomes comparable to the turbulent kinetic energy. The idea is

that this elastic energy criterion is more stringent than the time criterion,
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and therefore will be the effective criterion for drag reduction. De Gennes

used the following estimation of the elastic free energy per unit volume for a

polymer in good solvents originally derived by Pincus [17].

Fel = cpkBTλ
5/2 = Gλ5/2 (1.27)

where cp is the number concentration of the polymer, G ≡ cpkBT and λ is the

fractional molecular elongation of the polymer. De Gennes further assumed

λ to be of the following form.

λ(r) = (
r∗

r
)n (1.28)

where n is an unknown parameter between 0 and 2.

At a certain length scale r∗∗, the elastic energy of the polymer would be

equal to the turbulent kinetic energy estimated by ρU2(r∗∗).

G(
r∗

r∗∗
)5n/2 = ρU2(r∗∗) (1.29)

When the length scale decreases, the elastic energy increases and the tur-

bulent kinetic energy ρU2(r) ∼ r2/3 decreases. Therefore the elastic energy

would be higher than the turbulent energy for length scales smaller than r∗∗.

Sreenivasan and White have applied the idea of De Gennes to pipe flow and

derived the functional form of r∗∗ [18]. Using the estimate ϵ ≈ u3
τ/y and Eqs.

(1.20), (1.22) and (1.29), r∗∗ can be expressed as,

(r∗∗)+ = (
Gy+

ρu2
τWe

)γ[
We3/2

(y+)1/2
] (1.30)

γ ≡ (5n/2 + 2/3)−1

The onset of drag reduction happens when r∗∗ is larger than the Kol-
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mogorov scale given in Eq. (1.23). Since the elastic energy depends on the

polymer concentration, r∗∗ is dependent on both the polymer concentration

and Weissenberg number, and there will be an onset concentration for each

Weissenberg number. This is in contrast to Lumley’s result in which the on-

set depends only on the Weissenberg number. From Eqs. (1.24) and (1.30)

it is seen that both (r∗∗)+ and r+kol depends on y+. Sreenivasan and White

argued that the onset of drag reduction is given by the comparison of (r∗∗)+

and r+kol at a constant y+, yielding the following scaling relationship at onset.

G0

ρu2
τ

∼ We1−3/2γ (1.31)

where G0 is the value of G at onset.

The scaling behavior in Eq. (1.31) has been fitted [18] to the available

experimental data [18, 19, 20, 21] by using γ as the fitting parameter in Fig.

1.4. The prediction of a power law according to Eq. (1.31) is reasonably

satisfied, albeit with some variation in γ. The scaling exponent of −5/2 best

captures the general trend of the experimental data shown, giving γ ≈ 3/7

and therefore n ≈ 2/3.
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Figure 1.4: Available experimental data for G0/ρu
2
τ against We. The dashed

line corresponds to a scaling exponent of −5/2. The data are from the

following sources and with different number of monomers N . Nadolink [19]:

N = 6.1×104 (solid rhombus), 7×104 (solid triangle) and 2.3×104 (empty tri-

angle); Berman [20]: N = 1.4×105 (empty square); Patterson and Abernathy

[21]: N = 1.8× 105 (solid circle); Sreenivasan and White [18]: N = 1.1× 105

(solid square). Figure taken from Ref. [18].

It was hypothesized that saturation at high concentration may happen

at the critical concentration cm = 1/R3
G at which the polymer coils start to

touch each other.

Gm = cmkBT = kBT/R
3
G = η0/TZ (1.32)
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where Eq. (1.18) has been used. From the definition We ≡ TZu
2
τ/νs, the

saturation condition is acquired.

Gm

ρu2
τ

= We−1 (1.33)

where Gm is the value of G when the drag reduction approaches the MDR

asymptote.

Sreenivasan and White has compared [18] Eq. (1.33) to experimental

data [3, 7, 18, 21, 22, 23] of the MDR asymptote , with the results shown in

Fig. 1.5. It seems to overestimate the concentration required for MDR.
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Figure 1.5: Experimental data for MDR asymptote with Gm/ρu
2
τ against

We. The straight line represents Eq. (1.33). The data are from the fol-

lowing sources: Sreenivasan and White [18] (empty triangle); Patterson and

Abernathy [21] (empty square); Virk [3] (solid rhombus); Virk (virk1971b)

[22]; Gampert and Wagner [23] (empty circle); Virk and Baher (virk1970)

[7]. Figure taken from Ref. [18].

Lee and Akhavan has compared Eq. (1.33) to DNS data [24] as shown in

Fig. 1.6 which also shows an overestimation. Based on the DNS results, Lee

and Akhavan suggested that the saturation data has the following relation-

ship instead,
Gm

ρu2
τ

= (1− β)We−1 (1.34)

with β = 0.98.
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Figure 1.6: DNS data withG0/ρu
2
τ at onset (circle) andGm/ρu

2
τ at saturation

(square) against We. The solid line is a fitting with G0/ρu
2
τ ∼ We−5/2. The

dashed line is Eq. (1.33) and the dash-dotted line Eq. (1.34). Taken from

Ref. .

Lee and Akhavan argued that based on the modeling of flexible poly-

mers and some approximations, the MDR relationship in Eq. (1.34) can be

obtained.

In this section we have reviewed some early phenomenological ideas.

These ideas produced very limited predictions on the onset of drag reduction

such as the power law relationship in Eq. (1.31), and have nothing concrete

to say about the MDR asymptote. Furthermore, they have not explained

how the reduction in drag can be brought about by the interaction between

the polymer and the flow. Moreover, they are not directly applicable to

rodlike polymers which are also known to reduce drag, and do not provide

predictions for the velocity profile and friction factor. More recently, a theory
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has been developed that can provide these predictions.

1.3 A recent theory

Recently, a theory has been developed for polymer drag reduction and has

been applied to channel flow [25, 10, 26, 27, 28]. Starting from the Navier-

Stokes equations with an additional contribution of stress from the polymer

and approximating the polymer stress, it has been shown that two balance

equations can be obtained by a procedure of Reynolds decomposition which

decompose the velocity into the mean and fluctuating parts. The two balance

equations correspond to the momentum and energy balance of the system.

After applying appropriate approximations, it has been found that the effect

of the polymer is given by a position dependent effective viscosity. The effect

of polymer concentration is parametrized by the polymer contribution to

the solution zero-shear viscosity. Analytical expressions have been obtained

for the mean shear rate and the Reynolds stress for the Newtonian and

MDR case, and have been shown to correspond to log laws as observed in

experiments [25, 10]. Velocity profiles at intermediate concentrations have

been calculated by solving the set of equations numerically [27].

Our work is to use the theory to conduct a systematic study of the con-

centration dependence of the phenomenon. Following the same ideas of the

theory that has been used in the study of channel flow, we have applied the

theory to pipe flow. Furthermore, earlier work [25, 28, 27] have focused on

the region where the distance from the wall is much smaller than the width

of the channel or in our case the radius of the pipe. In our present work one

of the quantity of interest is the friction factor. To calculate this quantity,

one has to integrate the mean velocity over the entire cross-section of the

pipe. As a result, the term y+/R+ must be kept in the equations. Further-
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more, in previous works the analytical expressions of the mean shear rate

and Reynolds stress were given separately for the Newtonian case with no

polymer and MDR limit. Using the theory, we have written a single set of

explicit equations for the general case that will give back the Newtonian and

MDR expressions when the appropriate limit is taken.



Chapter 2

Review of a recent theory of

drag reduction

2.1 The balance equations

When polymers are added to the solvent, there is an additional stress tensor

Σ contributed by the polymer. Therefore the equations of motion would be

the Navier-Stokes equations with a polymer stress term Σ. The form of the

polymer stress is not known exactly and has to be modeled.

∂U

∂t
+U·∇U = −∇p+ ν∇2U+∇·Σ (2.1)

where the fluid density ρ is taken to be unity for simplicity.

It has been shown that the momentum and turbulent energy balance

equations are important in understanding drag reduction [25]. The two bal-

ance equations will be derived in this section. Define x, r and θ to be the

lengthwise, radial and azimuthal directions. Therefore the radial distance

from the wall is y = R− r. Let the i− th component of the fluid velocity be

21
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Ui. For a sufficiently long pipe, the velocity statistics depends only on the

radial distance from the centre, r, or equivalently the distance from the wall

y. In addition, the mean flow will be along the x direction. As a result, the

fluid velocity can be decomposed as the sum of its mean V (y) and turbulent

fluctuation ui(r, t),

U(r, t) = V (y)x̂+ u(r, t) (2.2)

Such a procedure of decomposing a quantity into the mean and the fluctua-

tion is called the Reynolds decomposition.

Likewise, the shear rate tensor S ≡ (∇U)T and the polymer stress tensor

Σ can be decomposed as,

S = S0 + s (2.3)

where S0 = S0x̂ŷ with S0 = dV (y)/dy

Σ = Σ0 + σ (2.4)

Consider the continuity equation and the x component Eq. (2.1),

∂Ux

∂x
+

1

r

∂

∂r
(rUr) +

1

r

∂Uθ

∂θ
= 0 (2.5)

∂Ux

∂t
+ Ux

∂Ux

∂x
+ Ur

∂Ux

∂r
+

Uθ

r

∂Ux

∂θ
= −∂p

∂x
+ ν∇2Ux + (∇ · Σ)x (2.6)

Before applying the Reynolds decomposition, rewrite Eq. (2.6) by the fol-

lowing three equations stemming from the product rule of differentiation,

Ux
∂Ux

∂x
=

∂U2
x

∂x
− Ux

∂Ux

∂x
(2.7)

Uθ

r

∂Ux

∂θ
=

1

r

∂UxUθ

∂θ
− Ux

r

∂Uθ

∂θ
(2.8)

Ur
∂Ux

∂r
=

1

r

∂

∂r
(rUxUr)−

Ux

r

∂

∂r
(rUr) (2.9)
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As a result, Eq. (2.6) is rewritten as,

∂Ux

∂t
+

∂U2
x

∂x
+

1

r

∂

∂r
(rUxUr) +

1

r

∂UxUθ

∂θ
− Ux[

∂Ux

∂x
+

1

r

∂Uθ

∂θ
+

1

r

∂

∂r
(rUr)]

= −∂p

∂x
+ ν∇2Ux + (∇ · Σ)x (2.10)

By Eq. (2.5), the last term on the LHS of Eq. (2.10) vanishes, giving

∂Ux

∂t
+

∂U2
x

∂x
+

1

r

∂

∂r
(rUxUr) +

1

r

∂UxUθ

∂θ
= −∂p

∂x
+ ν∇2Ux + (∇ · Σ)x (2.11)

Applying Reynolds decomposition to Eq. (2.5) and (2.11) and taking average,

noting that the statistics depends only on r (or equivalently y = R− r),

1

r

∂

∂r
(r⟨Ur⟩) = 0 (2.12)

DV (r)

Dt
= −∂p

∂x
− 1

r

∂

∂r
(r⟨uxur⟩) + ν∇2V (r) + (∇ · Σ)x (2.13)

where D
Dt

= ∂
∂t

+ V (r) ∂
∂x

+ ⟨Ur⟩ ∂
∂r

and V (r) = ⟨Ux⟩. Equation (2.12) is

equivalent to the condition that r⟨Ur⟩ is a constant for all r. The no-slip

boundary condition at the wall means that R⟨Ur⟩ = 0 at the wall, therefore

⟨Ur⟩ = 0 for all r. As a result,

D

Dt
=

∂

∂t
+ V (r)

∂

∂x
(2.14)

Plugging Eq. (2.14) into Eq. (2.13), it is evident that the LHS of Eq. (2.13)

vanishes.

0 = −r
dp

dx
− d

dr
(r⟨uxur⟩) + ν

d

dr
(r
dV (r)

dr
) +

∂(r⟨Σxr⟩)
∂r

(2.15)
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Equation (2.15) can be rewritten as,

r
dp

dx
=

d(τ(r)r)

dr
(2.16)

where the total shear stress τ(r) = −⟨uxur⟩ + ν(dV (r)
dr

) + ⟨Σxr⟩. Integrating

Eq. (2.16) with respect to r, noting that τ(r = 0) = 0 because it is anti-

symmetric to the centre-line,

τ(r) =
r

2

dp

dx
(2.17)

Therefore shear stress at the wall τw is,

τw ≡ −τ(R) =
p
′
R

2
(2.18)

Therefore in pipe flow, the friction velocity can also be written as,

uτ =
√
τw (2.19)

By integrating Eq. (2.15) with respect to r, the momentum balance

equation is found,

p
′
r

2
= −⟨uxur⟩+ ν

d

dr
V (r) + ⟨Σxr⟩ (2.20)

Writing Eq. (2.20) in terms of the variable y and defining the Reynolds stress

W ≡ −⟨uxuy⟩ and the mean shear rate S0 ≡ dV/dy.

νS0 +W + ⟨Σxy⟩ =
p
′
R

2
(1− y

R
) = τw(1−

y

R
) (2.21)

The shear rate and the stresses can be transformed to dimensionless units
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by rescaling all velocity and length scales according to Eq. (1.7),

S+
0 =

νS0

u2
τ

W+ =
W

u2
τ

Σ+
ij =

Σij

u2
τ

(2.22)

In this set of dimensionless units, Eq. (2.21) is rewritten as,

S+
0 +W+ + ⟨Σ+

xy⟩ = (1− y+

Reτ
) (2.23)

The energy balance eqaution can be obtained in a similar fashion. It can

be derived by making a dot product with the velocity fluctuation u on both

sides of Eq. (2.1) and then taking average. The result is given by,

WS0 =
∂

∂y
⟨u

2uy

2
+ uyp− σiyui − ν∂y(

u2

2
)⟩

+ ν⟨sijsij⟩+ ⟨σijsij⟩ (2.24)

where sij = ∂jui.

The first term on the RHS of Eq. (2.24) is the spatial flux of the energy,

and has been assumed to be negligible in the log layer.

WS0 = ν⟨sijsij⟩+ ⟨σijsij⟩ (2.25)

The energy balance equation can also be written in dimensionless units.

W+S+
0 = ⟨s+ijs+ij⟩+ ⟨σ+

ijs
+
ij⟩ (2.26)

The balance equations (2.23) and (2.26) forms the basis for further discus-
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sions. In particular, it is necessary to estimate the relevant averaged terms

⟨σ+
xy⟩, ⟨s+ijs+ij⟩ and ⟨σ+

ijs
+
ij⟩. These approximations are described in Section

2.2.

2.2 Estimating the average terms

To proceed from the general balance equations (2.23) and (2.26), the average

terms in these equations have to be estimated. Starting with non-polymeric

terms, the first term on the RHS of the energy balance equation Eq. (2.25)

is the viscous dissipation of the energy. The dissipation has been estimated

[25] using the phenomenology of turbulence.

ν⟨sijsij⟩ ∼ ν(
a

y
)2K(y) +

bK3/2

y
(2.27)

where K ≡ ⟨|u|2⟩/2 is the turbulent kinetic energy. The first term in the

RHS of Eq. (2.27) is the dissipation when the viscous effects are dominant.

The second term is important when the Reynolds number is large and the

flow is turbulent, where the viscous dissipation equals the turbulent energy

flux down the cascade of scales and is approximated as the turbulent kinetic

energy divided by the eddy turnover time y/
√
K.

The turbulent kinetic energy was experimentally found to be proportional

to the Reynolds stress W+,

K+ =
W+

c2
(2.28)

Experiments have shown that c has a value of around 0.5 for Newtonian flow

without polymer and 0.25 for MDR flow [3, 9].

The difference between flexible and rodlike polymers will be accounted

for when the average polymeric terms in equations (2.23) and (2.26) are
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estimated [28, 26, 25, 29]. The treatments for flexible and rodlike polymers

will be given in the following.

2.2.1 Average terms for flexible polymers

Flexible polymers are commonly modeled by the FENE-P model (Finitely

Extensible Nonlinearly Elastic model with the Peterlin closure) [30], in which

a polymer is approximated as a dumbbell connected by a Non-linearly Elastic

spring that has a Finite maximum Extension. The P refers to the closure

suggested by Peterlin. Denote n to be the end-to-end distance of the polymer

normalized by the equilibrium length of the polymer. Then the conformation

tensor describing the extent of stretching of the polymers is defined as,

ℜab ≡ nanb (2.29)

where the average is carried out over the polymer conformations. The Pe-

terlin function is defined as,

P (r, t) = (ρ2m − 1)/(ρ2m −ℜkk) (2.30)

where ρm is the maximum value of the end-to-end length of the polymer. ℜkk

is the end-to-end length of the polymer (the indices are summed over). In

the FENE-P model, the components of the polymer stress tensor Σ is given

by [30],

Σab =
νp
τp
[P (r, t)ℜab − δab] (2.31)

where νp is the polymeric contribution to the solution viscosity for infinites-

imal shear and the average is over the turbulent fluctuations. It has been

reported that in most numerical simulations Pℜab is usually much greater
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than one [28], therefore the polymer stress tensor can be approximated as,

Σab ≈
νp
τp
Pℜab (2.32)

The conformation tensor is governed by the following equation,

D

Dt
ℜab =

∂Ua

∂rk
ℜkb + ℜak

∂Ub

∂rk
− 1

τp
[P (r, t)ℜab] (2.33)

where D/Dt is the substantial time derivative.

The term ⟨Σxy⟩ in the momentum balance Eq. (2.21) can be written in

terms of the conformation tensor as,

⟨Σxy⟩ =
νp
τp
⟨Pℜxy⟩ (2.34)

By Eq. (2.34) and recalling that the statistics only depends on y, Eq. (2.33)

can be averaged to give,

⟨Pℜxy⟩/τp = −∂y⟨Uyℜxy⟩+ ⟨ℜxk∂kUy⟩+ ⟨ℜyk∂kUx⟩ (2.35)

By approximating the average of the product as the product of the averages,

the leading order term in Eq. (2.35) is given by,

⟨Pℜxy⟩ = τpS0Ryy (2.36)

where Rab ≡ ⟨ℜab⟩. It has been checked using DNS that when the Weis-

senberg number is large, the approximation is satisfactory [28].

Plugging this result back into Eq. (2.34), the averaged xy component of
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the polymer stress can be approximated.

⟨Σxy⟩ ≈ νpRyyS0 (2.37)

The momentum balance equation can then be expressed as,

(ν + νpRyy)S0 +W = τw(1−
y

R
) (2.38)

In dimensionless units, it reads

νeffS
+
0 +W+ = 1− y+

R+
(2.39)

The effective viscosity νeff is given by,

νeff = 1 + ν̃Ryy (2.40)

where ν̃ = νp/ν.

Proceeding to the energy balance Eq. (2.25), the term ⟨sijsij⟩ has already

been approximated in Eq. (2.27), so it remains to estimate the term ⟨σijsij⟩.

The physical meaning of ⟨σijsij⟩ is the dissipation of the turbulent energy as

a result of the stretching of polymer. The total dissipation of energy brought

about by the polymer can be obtained from Eqs. (2.30) and (2.33).

Ep =
νp
2τ 2p

⟨P 2ℜkk⟩ (2.41)

The total disspation of energy due to polymer is the sum of the dissipation of

turbulent energy and mean energy. The balance equation for the mean energy

is the same as the momentum balance energy, but with an additional factor

of S0. Therefore the polymer contribution to the dissipation of mean energy
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is given by the polymer contribution to the momentum balance multiplied

by S0, ⟨Pℜxy⟩S0νp/τp. Subtracting this from the total polymeric energy

dissipation yields the polymeric turbulent energy dissipation,

ϵp = ⟨σijsij⟩ =
νp
2τ 2p

⟨P 2(ℜxx + ℜyy + ℜzz)⟩ −
νp
τp
⟨Pℜxy⟩ (2.42)

It has been shown [28] that in Eq. (2.42) there is a cancelation of terms due

to the following equation,

⟨P 2ℜxx⟩ = 2⟨Pℜxy⟩S0τp (2.43)

Equation (2.43) can be understood by the relation of the components of

the conformation tensor at high Weissenberg number, ⟨Pℜxx⟩ ∼ WeRxy.

Therefore Eq. (2.42) can be simplified to,

⟨σijsij⟩ =
νp
2τ 2p

⟨P 2(ℜyy + ℜzz)⟩ (2.44)

The terms Ryy and Rzz have been shown by DNS to have very similar values.

As a result, Eq. (2.44) can be further written as,

⟨σijsij⟩ ≈
νp
τ 2p

⟨P 2ℜyy⟩ (2.45)

The correlation term on the RHS of Eq. (2.44) can be further estimated

by approximating the average of the product by the product of the averages,

νp
τ 2p

⟨P 2ℜyy⟩ ≈
νp
τ 2p

⟨P ⟩2⟨ℜyy⟩ (2.46)

Identifying τp/P as the effective relaxation time, it must be of the order of

the typical turbulent time scale of y/
√
K in order for coil-stretch transition



CHAPTER 2. REVIEW OF A RECENT THEORY OF DRAG
REDUCTION 31

to occur, without which the polymer would not interact strongly with the

flow. With the approximation
√
K/y ∼ ⟨P ⟩/τp and Eq. (2.46), ⟨σijsij⟩ is

estimated as,

⟨σijsij⟩ ≈ νpRyy
K

y2
(2.47)

By Eqs. (2.25), (2.27) and (2.47), the energy balance equation becomes,

WS = (ν + νpRyy)K(
a

y
)2 + b

K3/2

y
(2.48)

In dimensionless units,

W+S+ = νeffK
+(

a

y+
)2 + b

(K+)3/2

y+
(2.49)

To provide the basis for a testable theory, Ryy needs to be related to

other variables. Such a relation has been established as [27, 28],

Ryy ≈
√
K+

S+y+
(2.50)

Therefore the effective viscosity νeff is given by,

νeff = 1 + ν̃

√
K+

S+y+
(2.51)

To summarize, by comparing the relative magnitude of the different con-

tributions to the average terms in the balance equations and approximating

the term
√
K/y by P/τ by considering a coil-stretch transition at large Weis-

senberg number, the polymer has been shown to produce a effective viscosity

that depends on the position.
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2.2.2 Average terms for rodlike polymers

The theory of drag reduction for rodlike polymer has been presented in Ref.

[26], showing that the idea of a position dependent effective viscosity is also

applicable in this case. The procedure of estimating the average terms in the

balance equations for rodlike polymer will be reviewed in the following.

For rodlike polymer, the polymer stress tensor is given by [31],

Σab = 6νpnanb(ninjSij) (2.52)

Or in terms of the conformation tensor,

Σab = 6νpℜab(ℜijSij) (2.53)

The equation of motion of the conformation tensor is given by,

Dℜab

Dt
= Saiℜib + Sbiℜia − 2Sijℜijℜab (2.54)

Consider the momentum balance equation, the average term ⟨Σxy⟩ can

be obtained from Eq. (2.53) and the equation Sab = S0δaxδby + sab,

⟨Σxy⟩ = 6νp[S0⟨ℜ2
xy⟩+ ⟨ℜxyℜijsij⟩] (2.55)

To obtain the term ⟨ℜ2
xy⟩ = ⟨n2

xn
2
y⟩ in Eq. (2.55), approximate the average

of the product as the product of the averages and note that nx ≈ 1.

ℜ2
xy = ℜxxℜyy ≈ ℜyy (2.56)

By Eq. (2.56), the first term on the RHS of Eq. (2.55) can be estimated
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as,

6νpS0⟨ℜ2
xy⟩ ≈ νpRyyS0 (2.57)

It has been argued in Ref. [26] that by Reynolds decomposition of Eq.

(2.54) and a careful analysis of the leading order terms, the second term in

Eq. (2.55) can be shown to be of the same order as the first term. Using this

estimation, the momentum balance equation can be written as,

νS0 + νpRyyS0 +W = τw(1−
y

R
) (2.58)

Or in dimensionless units,

S+
0 +

νp
ν
RyyS

+
0 +W+ = (1− y+

R+
) (2.59)

This result can be written more simply by the introduction of an effective

viscosity νeff ,

νeffS
+
0 +W+ = (1− y+

R+
) (2.60)

where νeff is given also by Eq. (2.40).

Similar to the flexible polymer case, the term ⟨σijsij⟩ needs to be esti-

mated. It can be expressed as,

⟨σijsij⟩ = 6νp⟨sijℜij(S0ℜxy + sklℜkl)⟩ (2.61)

It has been reported that by expanding Eq. (2.61) into a series in the

small parameter ny ∼ nz according to the expansion nx ≈ 1− 1
2
(n2

y+n2
z) and

a delicate cancellation of terms, ⟨σijsij⟩ can be approximated by,

⟨σijsij⟩ ≈ νpRyy(y)K(y)/y2 (2.62)
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By Eqs. (2.25), (2.27) and (2.62),

WS0 = νK(
a

y
)2 +

b(K+)3/2

y
+ νpRyy

K

y2
(2.63)

Writing Eq. (2.63) in dimensionless units and with the effective viscosity

νeff ,

W+S+
0 = νeffK

+(
a

y+
)2 +

b(K+)3/2

y+
(2.64)

where νeff = 1 + ν̃Ryy

Since Ryy ∼ R2
xy and S0Rxy ∼

√
K/y, Ryy can be written as,

Ryy ∼
K

(S0y)2
(2.65)

Therefore the effective viscosity for rodlike polymers is given by,

νeff = 1 + ν̃
K+

(S+
0 y

+)2
(2.66)

In this section the theory for rodlike polymer has been reviewed, showing

that rodlike polymer also produces a position dependent effective viscosity

that depends on Ryy in the same linear manner as flexible polymer. The

difference between flexible polymer and rodlike polymer is the functional

form of Ryy, with Ryy ∼
√
K/S0y for flexible polymer and Ryy ∼ K/(S0y)

2

for rodlike polymer. In Section 2.3 the method of solving the set of equations

containing the effective viscosity will be reviewed.

2.3 Solving the balance equations

With the average terms in the balance equations estimated, the balance equa-

tions can be solved to give expressions of S+
0 and W+. This has been carried
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out in Refs. [10, 25] for the Newtonian case without polymer and the MDR

asymptote. The velocity profiles at intermediate polymer concentrations have

been calculated numerically in Ref. [27].

We first derive the general set of equations for W+ and S+
0 , with care

taken in preserving the term y+/R+.

The position dependence of the effective viscosity ν̃ is conveniently dis-

cussed by defining a slope α of the effective viscosity profile [10].

νeff = 1 + α[y+ −∆] (2.67)

where ∆ is the thickness of the viscous sublayer and is a function of α. In

general, the effective viscosity is not linear so α is a function of y+.

The functional form of ∆(α) has been derived in Ref. [10] using the

symmetry of Eqs. (2.21) and (2.25) under the transformation to a new set

of variables. The resulting functional form is given by,

∆(α) =
δ+

1− αδ+
(2.68)

The inclusion of the term y+/R+ in the balance equations does not affect the

functional form of ∆(α), therefore the result in Eq. (2.68) carries over to the

present case.

By Eq. (2.67), Eqs. (2.60) and (2.64) can be written as,

[1 + α(y+ −∆)]S+
0 +W+ = 1− y+

R+
(2.69)

W+S+
0 = [1 + α(y+ −∆)]K+(

a

y+
)2 +

b(K+)3/2

y+
(2.70)

Inside the viscous sublayer (y+ < ∆), S+
0 = 1, therefore Eq. (2.70) can be

further simplified by fitting the boundary solution at y+ = ∆ which should
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give S+
0 = 1. Using Eq. (2.28), Eq. (2.70) can be rewritten as,

S+
0 = [1 + α(y+ −∆)](

a

cy+
)2 +

√
W+

(c3/b)y+
(2.71)

Approaching the boundary of the viscous sublayer from the outside (y+ →

∆), the limits are S+
0 → 1 and W+ → 0. Therefore Eq. (2.71) gives a

relation between ∆, a and c.

∆ = a/c (2.72)

Putting the results together,

S+
0 = [1 + α(y+ −∆)](

∆

y+
)2 +

√
W+

κcy+
(2.73)

where κc = c3/b = a3/∆3b. The values of κc at zero polymer concentration

and at the MDR asymptote are given by κk and κv respectively.

Now consider the region far from the viscous sublayer, i.e. y+ ≫ ∆. The

set of equations become,

[1 + αy+]S+
0 +W+ = 1− y+

R+
(2.74)

S+
0 = [1 + αy+](

∆

y+
)2 +

√
W+

κcy+
(2.75)

Eqs. (2.74) and (2.75) give a quadratic equation of y+S+
0 in the form,

κ2
c(y

+S+
0 )

2+y+S+
0 (α+

1

y+
)(1−2κ2

c∆
2)+[κ2

c(α+
1

y+
)2∆4−1+

y+

R+
] = 0 (2.76)
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Solving the quadratic equation yields the following solution.

y+S+
0 = (α +

1

y+
)∆2 −

(α + 1
y+
)

2κ2
c

(2.77)

+
1

κc

√
(
α + 1

y+

2κc

)2 + 1− y+

R+
− (α +

1

y+
)2∆2

From Eq.(2.75), there is also an expression for W+,

√
W+ = −

(α + 1
y+
)

2κc

+

√
(
α + 1

y+

2κc

)2 + 1− y+

R+
− (α+

1

y+
)2∆2 (2.78)

The velocity profiles have been calculated for flexible and rodlike polymers

in Ref. [27]. The equations have been solved numerically to provide concrete

results for the mean velocity profile. To obtain S+
0 and W+, Eqs. (2.77) and

(2.78) are inconvenient to be used directly because α depends on y+ and ν̃ in

a complicated way, therefore a scheme has been developed for solving these

equations [27].

From Eq. (2.68) and (2.72), α can be expressed in terms of δ+, c and a.

α =
1

δ+
(1− δ+c

a
) (2.79)

Then with Eq. (2.67), the effective viscosity becomes,

νeff = 1 +
1

δ+
(1− δ+c

a
)[y+ − a

c
] (2.80)

This equation can be manipulated to give a quadratic equation in c.

δ+y+

a
c2 + [δ+(νeff − 2)− y+]c+ a = 0 (2.81)
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Solving for c gives,

c =
a

2
[
1

δ+
+

(2− νeff )

y+
] +

a

2δ+

√
1− 2νeffδ+

y+
+

(2− νeff )2(δ+)2

(y+)2
(2.82)

Next a variable A is introduced such that,

K+ = A2(S+
0 y

+)2 (2.83)

where

A2 = (
νeff − 1

ν̃
)2 (2.84)

for flexible polymers, and

A2 =
νeff − 1

ν̃
(2.85)

for rodlike polymers.

With Eq. (2.28) and (2.83), the set of equations become,

νeffS
+
0 + c2A2(S+

0 y
+)2 = 1− y+

R+
(2.86)

c2S+
0 = νeff (

a

y+
)2 + bAS+

0 (2.87)

To solve for νeff , S
+
0 can be eliminated from the equations, first by observing

that Eq. (2.87) leads to,

S+
0 =

νeff
(y+)2

a2

(c2 − bA)
(2.88)

Substituting Eq. (2.88) into Eq. (2.86) provides an equation for νeff ,

ν2
eff (

a

y+
)2(c2 − bA) + c2A2ν2

eff (
a2

y+
)2 = (1− y+

R+
)(c2 − bA)2 (2.89)

Equation (2.89) can be solved to get νeff (y
+) for different values of ν̃. Then
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S+
0 can be obtained from Eq. (2.88). By integrating S+

0 over y+, V +(y+) is

obtained.

The constants a and b are fixed by the empirical von-Karman log law for

the Newtonian case without polymer. The Newtonian case corresponds to

νeff = 1 and therefore α = 0. From Eq. (2.77), S+
0 is found to be,

S+
0 = (

1

y+
)2[(δ+)2 − 1

2κ2
k

] (2.90)

+
1

κk(y+)2

√
(y+)2(1− y+

R+
)− (δ+)2 + (2κk)−2

where κk = a3/(δ+)3b and δ+ is the dimensionless thickness of the viscous

sublayer in the Newtonian case where there is no polymer.

While Eq. (2.90) cannot be directly integrated to give an expression in

terms of elementary functions and numerical integration has to be used, it

can be simplified by considering the near wall region y+ ≪ R+. By taking

this approximation, Eq. (2.90) can be readily integrated to give the mean

velocity profile. This has been done in Ref. [25] with the resulting velocity

profile given by,

V + = κ−1
k lnY (y+) +B −Θ(y+) (2.91)

where the functions are defined as,

Y (y+) ≡ 1

2
[y+ +

√
(y+)2 − (δ+)2 + (2κk)−2]

Θ(y+) ≡ 2κ2
k(δ

+)2 + 4κk[Y (y+)− y+]− 1

2κ2
ky

+

B ≡ 2δ+ − κ−1
k ln[

e(1 + 2κkδ
+)

4κk

]

Note that in the limit y+ ≫ δ+, Y (y+) � y+ and Θ(y+) � 0. As a result,
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the von-Karman log law is recovered,

V +(y+) = κ−1
k ln y+ +B (2.92)

Since the von-Karman constant κk = a3/b(δ+)3 in the theory and it is known

from experiments that δ+ ≈ 6, the experimental values [5] of κk ≈ 0.436 and

B ≈ 6.13 were used to fix the parameters a and b. The best fitted values are

given by a ≈ 3 and b ≈ 0.321.

In the following we describe how we obtained the friction factor relations

from the velocity profiles. From Eq. (1.1), the friction factor f can be

obtained by first averaging the mean velocity profile V +(y+) over the whole

cross-section of the pipe to get the average velocity U+
av, which is related to

f by,
1√
f
=

1√
2
U+
av (2.93)

From Eqs. (2.93) and (1.2) we decompose the integral into a sum of inte-

grals over the viscous sublayer and outside the viscous sublayer. However, a

complication with numerical calculation of the velocity profile is the instabil-

ity of the root-finding algorithm at small y+, which means that the velocity

is not easily obtained for some small y+ slightly larger than the width of the

viscous sublayer ∆ (note that ∆ = δ+ for Newtonian flow without polymer).

Therefore we introduce an additional constant y+0 that is the smallest y+

outside the viscous sublayer at which the velocity can be reliably computed.

Also recall that inside the viscous sublayer V + = y+. As a result,

1√
f
=

√
2

(R+)2
[

∫ ∆

0

y+(R+−y+)dy++

∫ y+o

∆

∆ ln(
y+

∆
)(R+−y+)dy++

∫ R+

y+0

V +(R+−y+)dy+]

(2.94)
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The first two integrals in Eq. (2.94) are straightforward, giving

1√
f

=

√
2

(R+)2
{−∆3

3
+ ∆(R+ − ∆

4
) +

∆2R+

2

+ y+0 [−R+ +
y+0
4

+ (R+ − y+0
2
) ln(

y+0
∆

)]

+

∫ R+

y+0

V +(R+ − y+)dy+} (2.95)

The remaining integral on the RHS of Eq. (2.95) can be computed once we

know the velocity profile. Furthermore, Re
√
f is related to R+ by a constant

factor,

Re
√
f = 2

√
2R+ (2.96)

Therefore the Prandtl-Karman coordinates of 1/
√
f against Re

√
f is just

1/
√
f against 2

√
2R+, and can be plotted once we know the value of f for

different R+. Results of the velocity profiles and the friction factor relations

will be presented in Chapter 5.



Chapter 3

Behavior near the maximum

drag reduction asymptote

Earlier studies have identified the MDR asymptote as the edge solution of

turbulence where W+ becomes zero and that it corresponds to the maximum

amount of drag reduction [10]. In this section we will show that while the

zero W+ solution is approached at high polymer concentration, it does not

correspond exactly to the maximum velocity profile obtained by treating α

as a free parameter. The discrepancy is due to the constraint imposed by

the y+ dependence of α at a fixed ν̃. The difference is very small in the

constant κc case considered in Fig. 3.1, but becomes more noticeable when

the α dependence of κk is taken into account. In addition, W+ and S+ also

depend on the position when the term y+/R+ is preserved. In the following

we will first show that the high polymer concentration limit corresponds to

the W+ = 0 limit, and then we will proceed to show the non-equivalence

between the W+ = 0 solution and the maximum solution of the shear rate

(and therefore also the maximum of the velocity).

From Eqs. (2.51), (2.66) and (2.67), there are two equations connecting

42
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α to ν̃ for flexible and rodlike polymer respectively,

α[y+ −∆] = ν̃

√
K+

S+
0 y

+
(3.1)

for flexible polymer. And,

α[y+ −∆] = ν̃
K+

(S+
0 y

+)2
(3.2)

for rodlike polymer.

From Eqs. (2.28) and (2.72), the term K+ can be expressed in terms of

W+ by,

K+ =
W+

c2
=

W+∆2

a2
(3.3)

From Eq. (2.75) it is clear that for y+ ≫ ∆,

y+S+
0 = (α +

1

y+
)∆2 +

√
W+

κc

(3.4)

where
√
W+ is given by Eq. (2.78). As a result,

√
K+

S+
0 y

+
=

∆
√
W+

a[(α + 1/y+)∆2 +
√
W+/κc]

(3.5)

Putting the results back into Eqs.(3.1) and (3.2), taking care that ∆ should

be neglected when compared to y+ for consistency, we finally arrive at,

ν̃ =
a[(α + 1/y+)∆2 +

√
W+/κc]

∆
√
W+

αy+ (3.6)

for flexible polymer. And,

ν̃ =
a2[(α + 1/y+)∆2 +

√
W+/κc]

2

∆2W+
αy+ (3.7)
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for rodlike polymer.

ν̃ has been written in a functional form as ν̃ = ν̃(α, y+, R+). This should

be understood as giving an implicit function of α in the form α = α(ν̃, y+, R+)

because it is ν̃ that is being controlled. Therefore it is now clear that α should

not be treated as a free parameter. Later we will show that the maximum

drag reduction limit obtained by maximizing S+
0 using α as a free parameter

does not correspond to the high polymer concentration limit.

From Eqs.(3.6) and (3.7), it is obvious that ν̃ = 0 (no polymer) corre-

sponds to α = 0, which is also evident considering that the effective viscosity

equals one for the Newtonian case where there is no polymer. Now consider

the maximum drag reduction limit where ν̃ → ∞, therefore,

1

ν̃
=

∆
√
W+

a[(α + 1/y+)∆2 +
√
W+/κc]αy+

→ 0 (3.8)

for flexible polymer.

1

ν̃
=

∆2W+

a2[(α + 1/y+)∆2 +
√
W+/κc]2αy+

→ 0 (3.9)

for rodlike polymer.

Physically, ∆ and W+ must be finite, and α must also be bounded as
√
W+ is positive. Therefore, Eqs.(3.8) and (3.9) implies that W+ → 0 in the

high concentration limit for both flexible and rodlike polymer. However, the

rate of decay of W+ is different in the two cases. Consider very small W+,

Eqs.(3.8) and (3.9) become,

1

ν̃
=

∆
√
W+

a[(α+ 1/y+)∆2κc]αy+
(3.10)
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for flexible polymer.

1

ν̃
=

∆2W+

a2[(α+ 1/y+)∆2κc]2αy+
(3.11)

for rodlike polymer.

The ν̃ dependence of W+ is different for flexible and rodlike polymer,

with

W+ ∼ 1

ν̃2
(3.12)

for flexible polymer.

W+ ∼ 1

ν̃
(3.13)

for rodlike polymer.

Therefore it is clear that W+ decays faster with ν̃ in flexible polymer

when ν̃ is very large. While currently there is insufficient experimental data

on the Reynolds stress at high polymer concentrations to test the different

ν̃ dependence of W+ quantitatively, the scaling behaviors are reproduced

self-consistently from the theory in Section 6 by solving the equations.

In the following the solution for α at which W+ = 0 is derived, which

corresponds to the high concentration limit. This solution will be contrasted

to the solution for which S+
0 (y

+) attains maximum at every y+ by adjusting

α(y+). The differene between the two solutions stems from the fact that the

requirement for a constant ν̃ implies constraint on the function α(y+).

From Eqs. (2.77) and (2.78), assuming at the MDR limit α is sufficiently

large such that αy+ ≫ 1, the following expressions for S+ and W+ can be

obtained.

y+S+ = α∆2(α)− α

2κ2
c

+
1

κc

√
(
α

2κc

)2 + 1− y+

R+
− α2∆2(α) (3.14)
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√
W+ = − α

2κc

+

√
(
α

2κc

)2 + 1− y+

R+
− α2∆2(α) (3.15)

The MDR asymptote has been considered for the region y+ ≪ R+ in Ref.

[10]. In this region Eqs. (3.14) and (2.78) can be simplified to

y+S+
0 = α∆2(α) +

√
W+/κC (3.16)

√
W+ = − α

2κc

+

√
(
α

2κc

)2 + 1− α2∆2(α) (3.17)

In the original analysis in Ref. [10], α was treated as a free parameter

and κc assumed to be a constant.
√
W+ and y+S+

0 have been plotted as

functions of α. The results are shown in Fig. 3.1.
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Figure 3.1: y+S+
0 (solid) and 10

√
W+ (dashed) against α for constant κc =

0.436.

In Fig. 3.1, the maximum of y+S+
0 lies very close to the zero of W+ = 0,

which happens at α = 1/∆(α), implying α = 1/2δ+ and ∆(α) = 2δ+. Phys-

ically, it means that the maximum drag reduction (thus maximum y+S+
0 )
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happens at an edge solution (W+ = 0) where turbulence cannot be sup-

ported when α is further increased. Substituting the solution into Eq. (3.16)

and integrate over y+, one obtains the MDR log-law for the mean velocity,

V +(y+) ≈ 12 ln y+ − 17.8 (3.18)

Equation (3.18) agrees well with the empirical log-law in Eq. (1.8).

However, from the definition κc = c3(α)/b, κc is clearly a function of α

and cannot be treated as a constant. Furthermore, α actually depends on y+

and is not a free parameter. We would like to take these effects into explicit

account. We would also like to consider the case where y+ can be comparable

to R+, so the term y+/R+ in Eqs. (3.14) and (3.15) will be kept.

In Fig. 3.1, the maximum of y+S+
0 is very near the zero of W+ = 0,

but closer inspection reveals that the maximum point of y+S+
0 actually does

not coincide exactly with the root of W+ = 0, and the discrepancy (the

difference in the α value for these two conditions) is larger if we consider κc

to be dependent on α, while for the constant κc = 0.436 they are extremely

close, with the maximum of y+S+
0 happening at αm ≈ 0.08318 and W+ = 0

achieved at α0 = 1/12 ≈ 0.08333. It can be proved that the two solutions do

not match exactly; first taking the derivative of Eq. (3.16) with respect to

α,

∂(y+S+
0 )

∂α
= ∆2(α) + 2α∆(α)∆′(α) +

∂α
√
W+

κc

−
√
W+

κ2
c

κ′
c(α) (3.19)

∆′(α) is easily obtained by direct differentiation,

∆′(α) =
∂

∂α
(

δ+

1− αδ+
) =

(δ+)2

(1− αδ+)2
= ∆2(α) (3.20)
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∂αW
+ can be obtained from Eq. (3.15) by,

∂α
√
W+ =

(− 1
2κc

+ α
2κ2

c
κ′
c(α))

√
W+ − α∆2(1 + α∆)√

( α
2κc

)2 + 1− y+

R+ − α2∆2(α)
(3.21)

Plugging Eqs. (3.20) and (3.21) back into Eq. (3.19) gives,

∂(y+S+
0 )

∂α
=

√
W+[∆2(1 + 2α∆)− 1

2κ2
c
+ α

2κ3
c
κ′
c(α)]− α∆2

2κc√
( α
2κc

)2 + 1− y+

R+ − α2∆2(α)
−

√
W+

κ2
c

κ′
c(α)

(3.22)

In Eq. (3.22), we have not specified the functional form of κc(α) as we are go-

ing to demonstrate that the difference between the W+ = 0 solution and the

maximum S+ solution exists irrespective of the specific form of κc(α) used.

At W+ = 0, according to Eq. (3.17), the square root in the denominator of

Eq. (3.22) becomes α/(2κc), and

[
∂(y+S+

0 )

∂α
]W+=0 = −∆2(α0) (3.23)

where α0 is the root forW
+ = 0. We remark that Eq. (3.23) is valid for any α

dependence of κc. The meaning of Eq. (3.23) is that when W+ = 0, the slope

of y+S+
0 against α must have a finite negative value, therefore W+ = 0 does

not occur at the same α value as the maximum of S+
0 . From the definition

of κc, its α dependence is obtained.

κc =
a3

∆3b
= (

1− αδ+

δ+
)3
a3

b
(3.24)

With Eq. (3.14), (3.15) and (3.24), the maximum point of y+S+
0 and

the root of W+ = 0 can be found. The former was done by numerical

maximization while the latter can be derived analytically with ease, giving
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an explicit functional form. Defining x ≡ y+/R+, and from Eq. (3.15),

W+ = 0 is equivalent to,

1− x− α2∆2 = 0 (3.25)

Equation (3.25) forms a quadratic equation for α,

x(δ+)2α2 + 2δ+(1− x)α− (1− x) = 0 (3.26)

Solving Eq. (3.25) gives α0,

α0 =
1

δ+x
[
√
1− x− (1− x)] (3.27)

For the region far from the centre of the pipe, x ≪ 1, therefore

α0 ≈
1

δ+x
[1− x

2
− 1 + x] =

1

2δ+
(3.28)

Next we proceed to the maximization of y+S+
0 , but before that we would

like to visualize the relationship between the W+ = 0 solution and the max-

imum y+S+
0 solution by plotting

√
W+ (Eq. (3.15)) and y+S+

0 (Eq. (3.14))

as a function of α for different x as a parameter. These are plotted with x

ranging from 0 to 1 from Figs. 3.2 to 3.7. Looking at the figures, we first ob-

serve that differing from the constant κc case, the maximum y+S+
0 position

is visibly different from the W+ = 0 position, with both solution shifting

to the smaller α side when x is increased while keeping a relative difference

of around 10%. The increase in the difference between the two solutions is

caused by the α dependence of κc. While the two solutions are different in

both the constant κc case and the α dependent κc case, the magnitude of the

difference depends on the functional form of κc. The simultaneous shifting



CHAPTER 3. BEHAVIOR NEAR THE MAXIMUM DRAG
REDUCTION ASYMPTOTE 50

can be understood by noting in Eq. (3.23), the α derivative of y+S+
0 has a

value of some typical −∆2(α) at the root of W+ = 0 for any x, therefore it

is expected that the maximum position of y+S+
0 will shift with W+ = 0.
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Figure 3.2: y+S+
0 (solid) and 10

√
W+ (dashed) against α by Eq. (3.15) and

(3.14) with κc = a3/(∆3b) and x = 0.
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Figure 3.3: y+S+
0 (solid) and 10

√
W+ (dashed) against α by Eq. (3.15) and

(3.14) with κc = a3/(∆3b) and x = 0.3.
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Figure 3.4: y+S+
0 (solid) and 10

√
W+ (dashed) against α by Eq. (3.15) and

(3.14) with κc = a3/(∆3b) and x = 0.5.
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Figure 3.5: y+S+
0 (solid) and 10

√
W+ (dashed) against α by Eq. (3.15) and

(3.14) with κc = a3/(∆3b) and x = 0.66.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Α

-4

-2

2

4

:S+ y+, 10 W+ >

Figure 3.6: y+S+
0 (solid) and 10

√
W+ (dashed) against α by Eq. (3.15) and

(3.14) with κc = a3/(∆3b) and x = 0.7.
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Figure 3.7: y+S+
0 (solid) and 10

√
W+ (dashed) against α by Eq. (3.15) and

(3.14) with κc = a3/(∆3b) and x = 0.9.

We first do a numerical maximization of y+S+
0 to obtain the maximum

point αm, and then use Eq. (3.27) to compute α0 which is the root ofW+ = 0.

The results are presented in Fig. 3.8. It is seen that α0 is always larger than

αm, but the gap between them closes up when x approaches to 1. Similarly,

the profile for y+S+
0 for the condition W+ = 0 and maximum y+S+

0 can also

be found. The profiles are shown in Fig. 3.9. Previously we have argued that

the high concentration limit corresponds to W+ = 0. The reason why it does

not correspond to the maximum y+S+ profile obtained here is that for the

latter ν̃ cannot be a constant, which is unphysical for a polymer solution of

fixed concentration. In other words, the maximum velocity profile obtained

by treating α as a free parameter does not satisfy the constraint of a fixed

ν̃. The non-constant behavior of ν̃ in such a case is shown in Figs. 3.10 and

3.11 for flexible and rodlike polymers respectively.

Therefore there are two velocity profiles each corresponding to W+ =
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0 and maximum S+
0 (equivalent to maximizing y+S+

0 because we find the

maximum y+S+
0 at each x = y+/R+). The velocity profile can then be

integrated to calculate the friction factor relation. These will be compared to

the theoretical velocity profile and friction factor results at high concentration

in Section 5.2 to show that at high concentration the W+ = 0 limit is indeed

approached.
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Figure 3.8: α0 (solid) and αm (dashed) as functions of x.
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Figure 3.9: y+S+
0 for W+ = 0 (solid) and the maximum y+S+

0 (dashed) as

functions of x.
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Figure 3.10: ν̃(x) of the maximum y+S+
0 solution for flexible polymer.
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Figure 3.11: ν̃(x) of the maximum y+S+
0 solution for rodlike polymer.



Chapter 4

Reduction of drag at small

concentrations

This section aims to show analytically that there is indeed a reduction in

drag when polymer is added. For simplicity, we consider the case of low

polymer concentration (small ν̃). In this case the change in the mean shear

rate S+
0 due to the polymer can be approximated by the first order correction

when ν̃ is increased from zero to a small value. Although there is no direct

expression of S+
0 in terms of ν̃, this expansion can still be carried out by

treating α as an implicit function of ν̃. More specifically,

S+
0 (α(ν̃, y

+)) = S+
0(α=0)(y

+) + ν̃(
∂S+

0

∂α
)0(α=0)(

∂α

∂ν̃
)ν̃=0 +O(ν̃2) (4.1)

From Eq.(3.4), taking the partial derivative with respect to α,

y+(
∂S+

0

∂α
) = ∆2 + 2(α +

1

y+
)∆∂α∆+

∂α
√
W+

κc

−
√
W+(∂ακc)

κ2
c

(4.2)

57
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The derivatives of ∆ and κc can be easily evaluated,

∂α∆ =
∂

∂α
(

δ+

1− αδ+
) =

(δ+)2

(1− αδ+)2
= ∆2 (4.3)

∂ακc =
∂

∂α
(
a3

∆3b
) = − 3a3

b∆2
= −3κc∆ (4.4)

As a result, the derivative becomes,

y+(
∂S+

0

∂α
) = ∆2 + 2(α+

1

y+
)∆3 +

3
√
W+∆

κc

+
∂α

√
W+

κc

(4.5)

The term ∂α
√
W+ is evaluated by partial differentiation of Eq.(2.78).

∂α
√
W+ = − 1

2κc

− 3∆(α + 1/y+)

2κc

+
1√
ξ
{(α + 1/y+

2κc

)[
1

2κc

+
3∆(α + 1/y+)

2κc

]−

(α+ 1/y+)∆2[1 + (α + 1/y+)∆]} (4.6)

where ξ = (α+1/y+

2κc
)2 + 1− y+

R+ − (α+ 1
y+
)2∆2. Putting the result of Eq.(4.6)

into Eq.(4.5),

y+(
∂S+

0

∂α
) = ∆2Θ(α, y+, 2)− 1

2κ2
c

Θ(α, y+, 6)

+
1

κc

√
ξ
{α + 1/y+

(2κc)2
Θ(α, y+, 6)

− (α + 1/y+)∆2Θ(α, y+, 4) + 3∆(1− y+

R+
)} (4.7)

where Θ(α, y+, n) ≡ [1 + n(α + 1/y+)∆].

We proceed to calculate the value of the derivative at α = 0. For α = 0,

Θ(α = 0, y+, n) = 1 + n
∆

y+
≈ 1 (4.8)
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since we are considering y+ ≫ ∆.

Therefore for α = 0,

(
∂S+

0

∂α
)α=0 =

1

y+
[(δ+)2 − 1

2κ2
k

]

+
1

2κ2
ky

+
√

1 + (1− y+/R+)(2κky+)2
(4.9)

To complete the expansion, we will need ∂α/∂ν̃. It will be obtained by

first calculating ∂ν̃/∂α and then taking the reciprocal. Recall that we have

previously derived expressions of ν̃ for flexible and rodlike polymer,

ν̃ =
a[(α + 1

y+
)∆2 +

√
W+

κc
]

∆
√
W+

αy+ (4.10)

for flexible polymer. And,

ν̃ =
a2[(α + 1

y+
)∆2 +

√
W+

κc
]2

∆2W+
αy+ (4.11)

for rodlike polymer.

We first deal with the flexible polymer case, differentiating ν̃ with respect

to α,

∂ν̃

∂α
=

a[(α+ 1
y+
)∆2 +

√
W+

κc
]

∆
√
W+

y+

+
a[∆2 + 2(α + 1/y+)∆3 + ∂α

√
W+/κc + 3∆

√
W+/κc]

∆
√
W+

αy+

−
a[(α + 1

y+
)∆2 +

√
W+

κc
][∆2

√
W+ +∆(∂α

√
W+)]

(∆
√
W+)2

αy+ (4.12)

The second and third term in the RHS of Eq.(4.12) becomes zero when

α = 0 because W+(α = 0) ̸= 0 outside the viscous sublayer, while ∆ and
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the derivative of W+ are well behaved at α = 0. Therefore the derivative at

α = 0 simplifies to,

(
∂ν̃

∂α
)α=0 =

ay+

δ+κk

=
by+

c2N
(4.13)

where cN ≈ 0.5 is the Newtonian value of c where there is no polymer.

Proceeding to the rodlike polymer case, observe that in Eq.(4.10) and

(4.10), the difference in the expressions of ν̃ for flexible and rodlike polymer

is that the coefficient before αy+ for rodlike polymer is the square of the

flexible case. So for rodlike polymer,

(
∂ν̃

∂α
)α=0 = (

a

δ+κk

)2y+ =
b2

c4N
y+ (4.14)

Finally, combining the results, the first order coefficient of the Taylor

expansion of S+
0 with respect to the point ν̃ = 0 is,

(
∂S+

0

∂ν̃
)ν̃=0 = (

∂S+
0

∂α
)α=0(

∂α

∂ν̃
)ν̃=0 (4.15)

=
ζ

(y+)2
{[(δ+)2 − 1

2κ2
k

] +
1

2κ2
k

√
1 + (1− y+/R+)(2κky+)2

}

where ζ = δ+κk/a for flexible polymer and ζ = (δ+κk/a)
2 for rodlike polymer.

ζ and the second term inside the curly bracket in Eq.(4.15) are obviously

positive, while the first term [(δ+)2 − 1
2κ2

k
] ≈ 32.70 is also positive. As a

result, an small increase of ν̃ from ν̃ = 0 causes an increase in S+
0 , in other

words, a reduction in drag. Furthermore, for flexible polymer ζ ≈ 0.779 and

for rodlike polymer ζ ≈ 0.607, so the reduction in drag for flexible polymer is

greater than rodlike polymer even for the same α(y+) profile. Care should be

taken when interpreting this result, because major difference in drag reducing

power is also caused by the different functional forms of α(y+) for flexible

and rodlike polymers at a given ν̃, as observed in Chapter 3.



Chapter 5

Velocity profiles and friction

factor relations

5.1 Newtonian flow without polymer

We consider Newtonian flow without polymer in this section, Eq. (2.90)

cannot be integrated to give an expression in terms of elementary functions

as long as the term y+/R+ is kept, therefore numerical integration was used

instead. We present two velocity profiles in Fig. 5.1, one computed from a

numerical integration of Eq. (2.90 with R+ = 10000 and the other directly

from Eq. (2.91). Also present in the graph is the von-Karman log law Eq.

(2.92). From the graph it can be concluded that at R+ = 10000 the log law

is satisfied at around 200 < y < 1000.
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Figure 5.1: Newtonian velocity profiles where there is no polymer. The solid

black curve is the velocity profile from Eq. (2.90), in which the y+/R+ term

is kept and R+ = 10000. The dashed red curve has that term dropped and

corresponds to the velocity profile of Eq. (2.91). The dash-dotted green

curve is the von-Karman log law Eq. (2.92). Notice how the red curve starts

to deviate from the black curve when y+ becomes comparable with R+, and

that the von-Karman log law (green curve) deviates from the red curve when

y+ is not too large compared to δ+.

The friction factor relation for pipe flow and channel flow are presented in

Fig. 5.2 in Prandtl-Karman coordinates (1/
√
f vs Re

√
f). From Fig. 5.2 it is

seen that there is a reasonably straight region of the friction factor relation

at large Re
√
f for both pipe and channel flow, indicating the existence of

a log law region. The effect of keeping the y+/R+ term in the balance

equations can be observed by comparing the friction factor relation for pipe
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flow with the full expression (solid curve), and the one with y+/R+ neglected

(dotted curve). From the comparison it is concluded that the finite R+ merely

shifts the entire friction factor relation curve slightly lower, without causing

significant change in the shape of the curve.
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Figure 5.2: Friction factor relations for pipe flow (solid) and channel flow

(dashed). The channel flow curve is above the pipe flow curve and therefore

has a higher flow rate. Also presented (dotted) is the friction factor relation

for pipe flow in which R+ is taken to be infinity, i.e. the y+/R+ term in the

balance equations is neglected.

5.2 Flow at high polymer concentration

Previously we have shown that the high polymer concentration limit corre-

sponds to the condition W+ = 0 rather than the maximum y+S+ profile. In
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this subsection we confirm this by comparing results from the two solutions

to numerical results at high ν̃.

The velocity profiles for flexible and rodlike polymers at high polymer

concentrations are shown in Figs. 5.3 and (5.4). It is clear that the ve-

locity profiles for both flexible and rodlike polymers at high concentration

approaches theW+ = 0 profile rather than the maximum S+
0 profile, with the

flexible polymer approaching much faster than its rodlike counterpart, evi-

dent from the fact that the ν̃ = 105 curve for flexible polymer coincides with

the W+ = 0 profile, while for rodlike polymer the profile deviates from the

MDR even for ν̃ as high as 5×106. The velocity profiles overshoot the MDR

for some intermediate ν̃ and then stabilizes back to the MDR. For flexible

polymer the velocity profile starts to drop at around ν̃ = 5000, and for rodlike

polymer at around ν̃ = 50000. The corresponding friction factor relations are

plotted in Figs. 5.5 and 5.6. From the two graphs we see that the W+ = 0

condition matches the friction factor relations at high concentration for high

Re
√
f and ν̃. The discrepancy at lower Re

√
f is to be expected because the

MDR asymptote is only approached for sufficiently large Reynolds number.

The friction factor relations also overshoot the MDR and drop again when

ν̃ is further increased. The ν̃ at which the maximum occurs differ from the

value for the velocity profile we have considered, because in Figs. 5.3 and 5.4

we only considered the large y+ region while the friction factor concerns the

whole pipe. In fact, the velocity profiles cross each other at lower y+, and

it is the area under the curve that determines the friction factor. For the

friction factor relation, the maximum curve occurs at around ν̃ = 1000 for

flexible polymer and ν̃ = 10000 for rodlike polymer. It is worth noting that

both values are about one-fifth of that for the velocity profile, and the ratio

between the values of the flexible and the rodlike cases remains unchanged.
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We conclude that the theory predicts that the condition W+ = 0 is what

is being approached at the high concentration MDR limit, and the amount of

drag reduction may not be a monotonic function of polymer concentration.

This result is in contrast to the traditional view that the high concentration

limit corresponds to the maximum amount of drag reduction. The existence

of a maximum amount of drag reduction at finite concentration has been re-

ported in some experiments and DNS studies [24, 32, 33]. To avoid confusion

of the terminology, the high polymer concentration limit will still be denoted

as the MDR asymptote in the present work.

4000 6000 8000 10000
y

+

76

80

84

V
+

Figure 5.3: Velocity profiles (R+ = 10000) for flexible polymer (solid curves),

ν̃ = 500 (black), 5000 (red), 10000 (green), 105 (yellow). Dashed curve is the

W+ = 0 profile, and dash-dotted curve the maximum S+ profile. Note that

the ν̃ = 100000 curve almost coincides with the W+=0 curve.
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Figure 5.4: Velocity profiles (R+ = 10000) for rodlike polymer (solid curves),

ν̃ = 5000 (black), 10000 (orange), 50000 (blue), 5×105 (red), 5×106 (green).

Dashed curve is the W+ = 0 profile, and dash-dotted curve the maximum

S+ profile. The high ν̃ profiles appraoch the W+ = 0 profile, but at a much

slower rate than the flexible case.
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Figure 5.5: Friction factor relations for flexible polymer (solid curves), ν̃ =

500 (black), 1000 (red), 5000 (green), 10000 (blue), 105 (yellow). Dashed

curve is the W+ = 0 friction factor relation.
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Figure 5.6: Friction factor relations for rodlike polymer (solid curves), ν̃ =

5000 (black), 10000 (red), 50000 (green), 5 × 105 (yellow), 5 × 106 (blue).

Dashed curve is the W+ = 0 friction factor relation.

5.3 Flow at intermediate concentration

This section presents the results of the velocity profiles and friction factors

obtained for pipe flow by solving Eq. (2.89) numerically. To check for self

consistency, we show the results at very low concentrations and compare

them with the Newtonian values obtained by integrating Eq. (2.90). In Fig.

5.7, the velocity prifles at very low concentrations of flexible polymers are

plotted together with the Newtonian profile without polymer. It can be ob-

served that when the concentration is lowered, the profile indeed approaches

the Newtonian case with no polymer. A similar trend is observed in Fig. 5.8
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with rodlike polymer, and with the profiles much closer to the Newtonian

case for the same ν̃. However, caution should be used when trying to de-

termine the relative strength of drag reduction between flexible and rodlike

polymers based on this observation. The reason is that the dependence of

ν̃ on concentration is related to the detailed polymer properties, which is

different for different polymers.
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Figure 5.7: Velocity profile for the Newtonian case without polymer (black),

ν̃ = 0.1 (blue), 0.3 (red) and 0.5 (green) with flexible polymer (R+ = 10000).
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Figure 5.8: Velocity profile for the Newtonian case without polymer (black),

ν̃ = 0.1 (blue), 0.3 (red) and 0.5 (green) with rodlike polymer (R+ = 10000).

Next we present a panoramic view of the drag reducing behavior by show-

ing the velocity profiles and friction factors for a wide range of ν̃ for flexible

and rodlike cases. Figures 5.9 and 5.10 shows the velocity profiles for various

ν̃ for flexible and rodlike polymers respectively. Vrik has proposed [4] the

elastic sublayer model for flexible polymers in which the velocity profile fol-

lows the MDR asymptote for y+ below some critical value, and crosses over

back to a region that is parallel to the Newtonian profile without polymer

called the Newtonian plug. We check the validity of this model for flexible

polymer and rodlike polymer with the data shown in Figs. 5.9 and 5.10. To

aid our visualization, we subtract the velocity profiles at different ν̃ from the

MDR profile. This results in Figs. 5.11 and 5.12 for flexible and rodlike poly-

mers respectively. From Fig. 5.11, it can be observed that the subtracted
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velocity profiles are close to zero for a range of small y+, indicating that the

velocity profiles follow the MDR. This region grows when the concentration

is increased, as described by the elastic sublayer model. On the other hand,

Fig. 5.12 shows that the velocity profiles of rodlike polymer deviate from

the MDR very early on, unless the concentration is very high, where the

profiles will follow the MDR for almost the entire pipe. Therefore at low

y+ the elastic sublayer model is satisfied by flexible polymer but not rod-

like polymer. To investigate the existence of a Newtonian plug, the velocity

profiles are subtracted by the Newtonian profile without polymer and shown

in Figs. 5.13 and 5.14. Newtonian plugs are observed in both flexible and

rodlike cases, characterized by a relatively flat area at high y+. However,

there is noticeable deviation from a flat plateau, which is more significant

for higher concentration. In addition, the transition from the MDR region

to the Newtonian plug for flexible polymer is not sharp as described in the

elastic sublayer model.
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Figure 5.9: Velocity profiles for flexible polymer for ν̃ = 0 (Dotted), 1 (black),

5 (red), 10 (green), 20 (blue), 50 (yellow), 100 (brown) and 500 (violet). The

dashed line is the MDR profile.
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Figure 5.10: Velocity profiles for rodlike polymer for ν̃ = 0 (Dotted), 1

(black), 5 (red), 10 (green), 20 (blue), 50 (yellow), 100 (brown), 500 (violet)

and 1000 (cyan). The dashed line is the MDR profile.
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Figure 5.11: Velocity difference between the MDR profile and profiles for

flexible polymer with different ν̃. Positive value means that the velocity is

below the MDR. Profiles for ν̃ = 1 (black), 5 (red), 10 (green), 20 (blue), 50

(yellow), 100 (brown) and 500 (violet). The dashed line is the MDR profile

which is a horizontal line with an intercept of zero in this representation.
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Figure 5.12: Velocity difference between the MDR profile and profiles for

rodlike polymer with different ν̃. Positive value means that the velocity is

below the MDR. Profiles for ν̃ = 1 (black), 5 (red), 10 (green), 20 (blue),

50 (yellow), 100 (brown), 500 (violet) and 1000 (cyan). The dashed line is

the MDR profile which is a horizontal line with an intercept of zero in this

representation.
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Figure 5.13: Velocity profiles for flexible polymer with different ν̃ subtracted

by the Newtonian profile without polymer. Profiles for ν̃ = 1 (black), 5 (red),

10 (green), 20 (blue), 50 (yellow), 100 (brown) and 500 (violet). The dashed

line is the MDR profile.
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Figure 5.14: Velocity profiles for rodlike polymer with different ν̃ subtracted

by the Newtonian profile without polymer. Profiles for ν̃ = 1 (black), 5 (red),

10 (green), 20 (blue), 50 (yellow), 100 (brown), 500 (violet) and 1000 (cyan).

The dashed line is the MDR profile.

The friction factors are presented in Prandtl-Karman coordinates (1/
√
f

vs Re
√
f) for flexible case and rodlike case in Figs. 5.15 and 5.16 respectively.

Recall that in Chapter 1 we quoted the experimental results [2, 6] that

the friction factor relations follow different log laws. For flexible polymers,

1/
√
f = (4.0 +D) log(Re

√
f) + A (5.1)

On the other hand, for rodlike polymers,

1/
√
f = 4.0 log(Re

√
f)− 0.4 + δ (5.2)
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where the slope increment D and effective slip δ have power law relationships

with the polymer concentration.

D ∼ cω (5.3)

δ ∼ cϕ (5.4)

According to Figs. 5.15 and 5.16, our results do not show any profound

qualitative difference between the flexible and rodlike case at high Re
√
f .

However, the flexible case does seem to show a larger change in slope due to

change in ν̃ at the lower end of Re
√
f . We check the quality of fitting by

log laws for flexible and rodlike polymers, which are plotted in Figs. 5.17

and 5.18. In Fig. 5.17 the friction factor relations of flexible polymer at

several ν̃ are plotted with the Newtonian profile without polymer. While

they do not follow log laws for the entire range of Re
√
f , we comment that

in experiments the log laws are observed over about one decade of Re
√
f .

Therefore we separate the graph into three regions: 300 < Re
√
f < 1000,

1000 < Re
√
f < 10000 and 10000 < Re

√
f < 30000. We then fit log laws to

them separately, forming the dashed red lines in the figure. As seen from Fig.

5.17, the fitting is satisfactory in most of the regions while the deviations

seem to increase with concentration. Similar procedures are conducted in

Fig. 5.18. Again, the fittings by Eq. (1.9) are acceptable. There are slighly

smaller deviations in the central region, but this is probably due to rodlike

polymers causing less drag reduction than flexible polymers at the same ν̃.

The slope increment D and effective slip δ as a function of ν̃ can be

extracted from Figs. 5.15 and 5.16 respectively. To obtain results that can

be directly compared to the available experimental relations in Eqs. (5.3)

and (5.4), we need to know the concentration dependence of the viscosity
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parameter ν̃. However, the form of the relation depends on the concentration

range, and for the extremely dilute regime relevant to drag reduction, the

available experimental data is inconsistent. Therefore we would like to first

study the ν̃ dependence of the slope increment and effective slip. For the

flexible case, we fit log laws to two different regions of Fig. 5.15, 300 <

Re
√
f < 1000(circles in Fig. 5.19) and 10000 < Re

√
f < 30000(crosses),

and then obtain the slope for each ν̃. This slope is then subtracted by the

corresponding slope of the Newtonian case without polymer we derived in

Section 5.1 to get the slope incrementD. For the rodlike case, we observe that

the friction factor relation curves becomes roughly parallel at high Re
√
f .

Therefore we first subtract 1/
√
f by its polymer free Newtonian counterpart

at high Re
√
f to obtain the effective slip δ, represented by circles in Fig.

5.20. Secondly, we fit log law to the Newtonian profile without polymer at

10000 < Re
√
f < 30000 and then fit log laws with the same slope fixed

at the Newtonian value to the other friction factor relations to obtain the

intercept, yielding the effective slip δ (crosses in Fig. 5.20). In Fig. 5.19 for

flexible polymer, the slope increment fitted in the two regions are significantly

different at low ν̃, the slope increment at the higher Re
√
f region is smaller

and saturates slower for increasing ν̃. In Fig. 5.20 for rodlike polymer the

effective slip obtained by the two methods are very close, and saturate at

around ν̃ = 1000.
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Figure 5.15: Friction factor relations for flexible polymer with different ν̃.

Relations for ν̃ = 1 (black), 5 (red), 10 (green), 20 (blue), 50 (yellow), 100

(brown), 500 (violet) and the MDR(dashed).
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Figure 5.16: Friction factor relations for rodlike polymer with different ν̃.

Relations for ν̃ = 1 (black), 5 (red), 10 (green), 20 (blue), 50 (yellow), 100

(brown), 500 (violet), 1000 (cyan) and the MDR(dashed).
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Figure 5.17: Fittings of friction factor relations for flexible polymer with

different ν̃. From bottom to top, ν̃ = 0, 1, 5, 10. Dashed red lines are

fittings by log laws applied to three regions separately, 300 < Re
√
f < 1000,

1000 < Re
√
f < 10000 and 10000 < Re

√
f < 30000.
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Figure 5.18: Fittings of friction factor relations for rodlike polymer with

different ν̃. From bottom to top, ν̃ = 0, 1, 5, 10, 20. Dashed red lines are

fittings by log laws applied to three regions separately, 300 < Re
√
f < 1000,

1000 < Re
√
f < 10000 and 10000 < Re

√
f < 30000.
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Figure 5.19: The slope increment D as a function of ν̃. Circles are computed

from slopes at 300 < Re
√
f < 1000, and crosses from slopes at 10000 <

Re
√
f < 30000.
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Figure 5.20: The effective slip δ as a function of ν̃. Circles are obtained from

subtracting the friction factor relations by the Newtonian profile without

polymer. Crosses are obtained by fitting lines with the slope of the Newtonian

case without polymer at 10000 < Re
√
f < 30000 for the intercepts.
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As an example of obtaining the concentration dependence from the theory,

we present preliminary results using an experimental viscosity-concentration

relationship for the rodlike polymer xanthan gum reported in Ref. [34],

ν̃ = 0.011147c1.422 (5.5)

The resulting friction factor relations at various concentrations are shown

in Fig. 5.21.
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Figure 5.21: Theoretical friction factor relations at different xanthan gum

concentrations obtained using Eq. (5.5).

The concentration dependence of the effective slip δ of xanthan gum is

found by subtracting the zero concentration value of 1/
√
f from the polymer

laden values at Re
√
f = 10000 in Fig. 5.21. The concentration dependence

of the effective slip is presented in Fig. 5.22. The effective slip is well approx-
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imated by a power law up to a concentration of about 100 ppm. The fitted

exponent is 1.12. Recall that in Chapter 1 we quoted experimental results

[2, 6, 7] that found power law relationships in the concentration dependence

of the slope increment and effective slip. For the effective slip, Virk reported

[6] an exponent of 1 while Sasaki reported [2] a value of about 0.72. The

exponent of 1.12 from our result is comparable with these values.

10 100
c (ppm)

1

10

δ

Figure 5.22: Concentration dependence of the effective slip for the data in

Fig. 5.21. Solid line is a fitting of power law to the data up to 100 ppm.



Chapter 6

The Reynolds stress profile

In this section we show the results of W+ from the theory. Figures 6.1 and

6.2 shows W+ as a function of y+ for flexible and rodlike polymers respec-

tively. We observe that W+ indeed decreases significantly as ν̃ is increased,

with the rate of decline greater for flexible polymer, as has been predicted.

Furthermore, the maximum points on each W+ profile trace out a nearly

straight line. The maximum value of W+ in each profile is plotted against

ν̃ in Fig. 6.3. Power law is observed at high ν̃, with the scaling exponents

given by −2.01 for flexible polymer and −0.98 for rodlike polymer, which is

consistent with the prediction from our earlier analytical study. The value

of y+ at which W+ attains maximum (y+m) is presented in Fig. 6.4. Power

law is found in the intermediate ν̃ regime, with the exponent 0.45 for flexible

polymer and 0.37 for rodlike polymer. Finally, in Fig. 6.5 we check the rela-

tionship between the value of the maximumW+ and the position y+m at which

it is maximum. A good linear fit is found, with W+
max = 0.99−1.81×10−4y+m

for flexible polymer and W+
max = 1.01 − 2.30 × 10−4y+m for rodlike polymer.

This linear relationship between the maximum value of the Reynolds stress

profile and the position of the maximum is a new theoretical prediction. This

88
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linear dependence of W+ for flexible polymer is translated into a relationship

for the dimensional Reynolds stress W and compared to experimental data

in Fig. 6.6. The relation seems to be plausible, and may be further tested

by high precision Reynolds stress measurement for a large range of polymer

concentrations.
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Figure 6.1: W+ profile for flexible polymer. From top to bottom, ν̃ = 1, 5,

10, 20, 50, 100, 500, 1000 and 5000.
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Figure 6.2: W+ profile for rodlike polymer. From top to bottom, ν̃ = 1, 5,

10, 20, 50, 100, 500, 1000, 5000, 10000 and 50000.
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Figure 6.3: MaximumW+ as a function of ν̃. Crosses refer to flexible polymer

and pluses to rodlike polymer. The scaling exponent at high ν̃ is given by

−2.01 for flexible polymer and −0.98 for rodlike polymer.



CHAPTER 6. THE REYNOLDS STRESS PROFILE 92

1 100 10000
ν∼

100

1000

10000

y m+

Figure 6.4: y+ at maximum W+ (y+m) as a function of ν̃. Crosses refer

to flexible polymer and pluses to rodlike polymer. The scaling exponent

at intermediate ν̃ is given by 0.45 for flexible polymer and 0.37 for rodlike

polymer.
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Figure 6.5: Maximum W+ against position y+m. Crosses refer to flexible

polymer and pluses to rodlike polymer. The linear fit gives W+
max = 0.99 −

1.81 × 10−4y+m for flexible polymer and W+
max = 1.01 − 2.30 × 10−4y+m for

rodlike polymer.
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Figure 6.6: Comparison between the relation W+
max = 0.99 − 1.81 × 10−4y+m

and experimental Reynolds stress profile.



Chapter 7

Percentage drag reduction

From the friction factor f , the percentage drag reduction is defined as,

DR ≡ (1− f

fN
)× 100% (7.1)

where fN is the friction factor of the Newtonian solvent where there is no

polymer.

We present the percentage drag reduction computed from the theory in

Figs. 7.1 and 7.2 for flexible and rodlike polymer respectively. In Fig. 7.1 it is

found that the percentage drag reduction increases with ν̃ and the Reynolds

number. Saturation at high ν̃ occurs at ν̃ ≈ 10 at Re = 4300 to ν̃ ≈ 1000 at

Re = 5× 105. In Fig. 7.2, the percentage drag reduction also increases with

ν̃ and the Reynolds number, but the saturation occurs at a larger ν̃ than in

the flexible case. The amount of drag reduction at saturation is similar to

that in flexible polymer, but it takes a larger ν̃ to reach the saturated value.

Saturation occurs at ν̃ ≈ 100 at Re = 4300 to ν̃ ≈ 10000 at Re = 5 × 105.

The same amount of drag reduction at saturation and the different rates at

which saturation is attained for flexible and rodlike polymers explain the

universality of the MDR asymptote and the weaker drag reducing power

95
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usually attributed to rodlike polymers at intermediate concentrations.
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Figure 7.1: Percentage drag reduction against ν̃ for flexible polymer at dif-

ferent Reynolds number.
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Figure 7.2: Percentage drag reduction against ν̃ for rodlike polymer at dif-

ferent Reynolds number.

The ν̃ dependence of the percentage drag reduction at different Reynolds

number can be collapsed by normalizing the percentage drag reduction DR

by its maximum valueDRm, and rescaling ν̃ by an intrinsic value of ν̃ denoted

as [ν̃]. [ν̃] is the maximum drag reduction divided by the initial slope of the

DR vs ν̃ graph, and therefore has the physical meaning of the ν̃ required to

reach the maximum drag reduction if the entire drag reduction profile is linear

with the slope given by the initial slope. We can compute [ν̃] theoretically by

first extracting the initial slope from the theory. From Eq. (2.93) we have,

U+
av = (

2

f
)1/2 (7.2)
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From Eqs. (1.2), (7.1) and (7.2), we can evaluate the initial slope Si as,

Si ≡ (
∂DR

∂ν̃
)ν̃=0 = − 1

fN
(
∂f

∂ν̃
)ν̃=0

=
8

fN(U+
av)

3(R+)2

∫ R+

δ+

∫ y+

δ+
(
∂S+

0 (ŷ)

∂ν̃
)ν̃=0(R

+ − y+)dŷdy+ (7.3)

The expression (∂S+
0 (ŷ)/∂ν̃)ν̃=0 has already been evaluated in Eq. (4.15),

therefore we can write,

Si =
8ζ

fN(U+
av)

3(R+)2

∫ R+

δ+

∫ y+

δ+

1

(ŷ)2
{[(δ+)2 − 1

2κ2
k

] +
1

2κ2
k

√
1 + (1− ŷ/R+)(2κkŷ)2

}

× dŷ(R+ − y+)dy+ (7.4)

where ζ = δ+κk/a for flexible polymer and ζ = (δ+κk/a)
2 for rodlike polymer.

Consider integration of the variable ŷ, the first term in the curly bracket

of Eq. (7.4) gives the integral,

∫ y+

δ+

1

ŷ2
[(δ+)2 − 1

2κ2
k

]dŷ = −(
1

y+
− 1

δ+
)[(δ+)2 − 1

2κ2
k

] (7.5)

Integration of y+ on this term involves the following integral,

−[(δ+)2 − 1

2κ2
k

]

∫ R+

δ+
(
1

y+
− 1

δ+
)(R+ − y+)dy+

= [(δ+)2 − 1

2κ2
k

]R+{R
+

2δ+
− ln

R+

δ+
− δ+

2R+
} (7.6)

Note that in the final result, the first term in the curly bracket dominates

over the other terms since in turbulent flow R+ ≫ δ+.

Integration of the second term in the curly bracket of Eq. (7.4) involves

the elliptic integral and is not easily solved, therefore it will be computed nu-

merically. The coefficient 8ζ/[fN(U
+
av)

3(R+)2] in Eq. (7.3) can be simplified
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as Uav, fN and R+ are related.

Using Eq. (7.2),
8ζ

fN(U+
av)

3(R+)2
=

2
√
2fNζ

(R+)2
(7.7)

By Eq. (2.96), the results can be expressed in terms of R+ and Re instead,

8ζ

fN(U+
av)

3(R+)2
=

8ζ

R+Re
(7.8)

The initial slope obtained is shown in Fig. 7.3, and with DRm calculated

at each Reynolds number by using a sufficiently high ν̃, we get [ν̃] in Fig.

7.4. With [ν̃] and the percentage drag reduction DRm we can plot DR/DRm

against x ≡ ν̃/[ν̃]. The plots are shown in Figs. 7.5 and 7.6. From the two

graphs we observe that there is a collapse of the data points for reasonably

large Reynolds number. We obtained a good fit of the data using the following

fitting form,

y =
αxβ

1 + αxβ
(7.9)

where α and β are fitting parameters.

From Fig. 7.5 we observe that for flexible polymer the fit matches well

with the collapsed data point. The fitted values are α = 1.38 and β = 1. For

the rodlike case shown in Fig. 7.6, a good fit is obtained with α = 0.53 and

β = 0.84. These functional forms can be tested experimentally by measuring

the viscosity dependence of the percentage drag reduction.
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Figure 7.3: Initial slope Si against Reynolds number Re. Crosses refer to

flexible polymer and plusses to rodlike polymer.
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Figure 7.4: [ν̃] against Reynolds number Re. Crosses refer to flexible polymer

and plusses to rodlike polymer.
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Figure 7.5: DR/DRm against ν̃/[ν̃] for flexible polymer. Solid line is the fit

Eq. (7.9). The symbols refer to different Re as in Fig. 7.1.



CHAPTER 7. PERCENTAGE DRAG REDUCTION 103

0.01 1 100
ν / [ν]∼ ∼

0

0.5

1

D
R

 / 
D

R
m

Figure 7.6: DR/DRm against ν̃/[ν̃] for rodlike polymer. Solid line is the fit

Eq. (7.9). The symbols refer to different Re as in Fig. 7.1.



Chapter 8

Conclusion and future work

To conclude, we have used the theory to obtain a general set of equations for

the Reynolds stress W+ and the mean shear rate S+
0 , which will give back

the Newtonian case with no polymer and MDR results when the appropriate

limit is taken. We have shown analytically that the MDR asymptote attained

at the high polymer concentration limit corresponds to W+ = 0 and differs

from the velocity profile that is maximized at every point. We have also

shown that accounting for the far-from-wall region (y+ ≈ R+) would have

non-trivial effect on the solution of the MDR asymptote. Furthermore, the

appearance of drag reduction has been explained using the equations at the

small concentration limit.

We have also applied the theory to calculate the mean velocity and

Reynolds stress profile for the entire cross-section of the pipe, the friction

factor and the percentage drag reduction. The velocity profile of flexible

polymer was found to follow the MDR asymptote outside the viscous sub-

layer, and then crosses over to the Newtonian plug. The velocity profile of

rodlike polymer was found to interpolate smoothly between the Newtonian

case without polymer and the MDR asymptote. The Reynolds stress pro-
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file shows good qualitative agreement with experiment. The new theoretical

prediction of a linear relationship between the maximum of the Reynolds

stress profile and the position of the maximum matches reasonably well with

the experimental data, though more precise measurements are required to

verify it. The friction factor relation in Prandtl-Karman coordinates does

not show a single log-law that covers a long range of Re
√
f , but effective

log laws can be identified over range of Re
√
f of around a decade. The

friction factor does not show profound difference between the flexible and

rodlike cases as observed in experiments. The slope increment and effective

slip have been extracted. The percentage drag reduction has been obtained

for different values of ν̃. Using the concept of an intrinsic value of ν̃, we were

able to collapse the percentage drag reduction curves at different Reynolds

number into a master curve which is well approximated by a functional form

of y = αxβ/(1 + αxβ). These forms can be tested in future experiments.

Possible future work includes obtaining more concrete theoretical predic-

tions for the concentration dependence of drag reduction. Using the viscosity-

concentration relationship of any polymer, it is possible to derive polymer-

specific theoretical predictions for the velocity profile, Reynolds stress, fric-

tion factor and percentage drag reduction. This has been done for the rodlike

polymer xanthan gum in Chapter 5. We would like to apply the procedure

to other polymers, especially flexible polymers like polyethylene oxide (PEO)

and polyacrylamide (PAM). Theoretical results can then be obtained for the

concentration dependence of the slope increment and compared to experi-

ments.
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