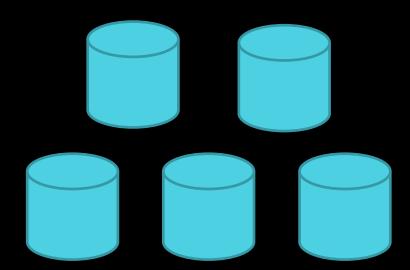
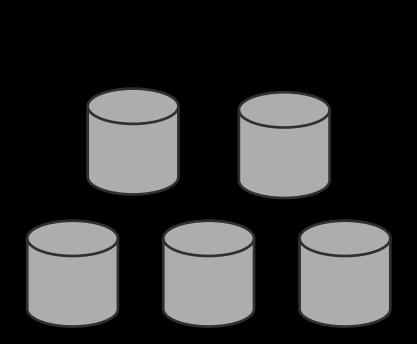

Data-driven museums

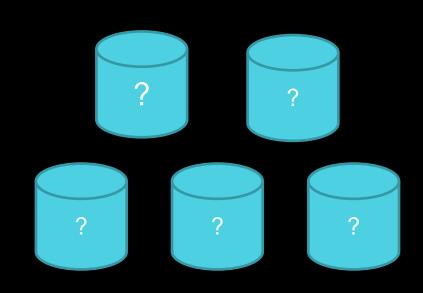
Alice Daish

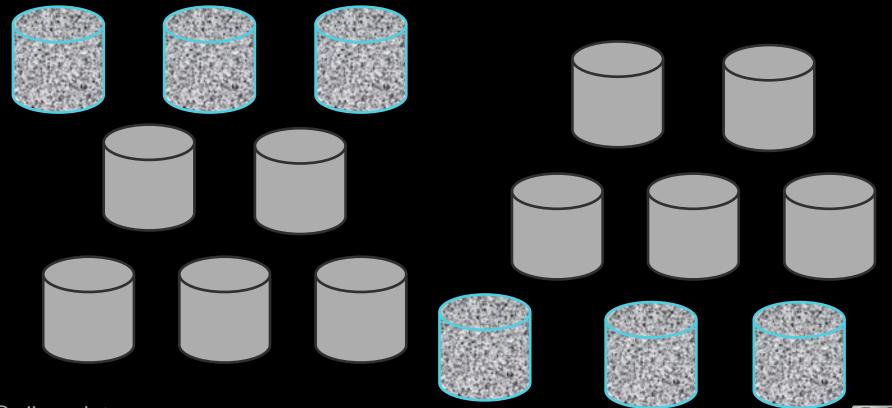
Data Scientist


@alice_data

12th International Digital Curation Conference February 2017




The British Museum Data Silos


The British Museum Unmanaged data

Undervalued data

Questions

Problems

The British Museum Here

Here to help us ...

Questions

Problems

Data

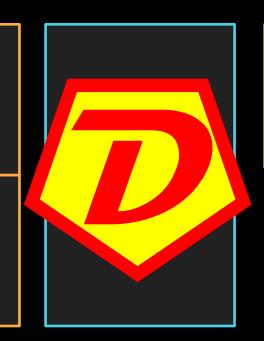
...to the rescue

Questions

Problems

Questions

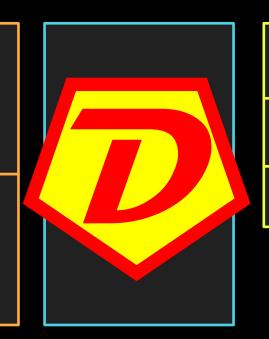
Problems



Answers

Questions

Problems

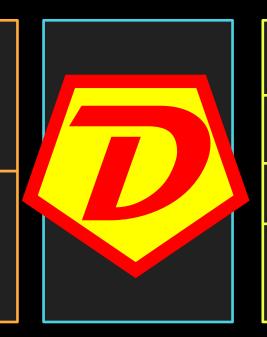

Answers

Decision

Questions

Problems

Answers


Decision

Actions

Questions

Problems

Answers

Decision

Actions

More Q's

However...

Questions

Problems

Answers

Decision

Actions

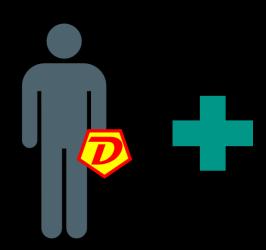
More Q's

Questions	Data	Allsweis
		Decision
Problems		Actions
		More Q's

Data-driven

Data-Driven

Data in the hands of decision makers



Data in the hands of decision makers

Data in the hands of decision makers

De-siloed, accessible, centralised data

@alice_data

Data Science at The British Museum

Set up

Opened 1759 to all 'studious and curious persons'
1st National Public Museum in the World

Today

One of the most visited museum in the world 8 million objects 2 million years of human history

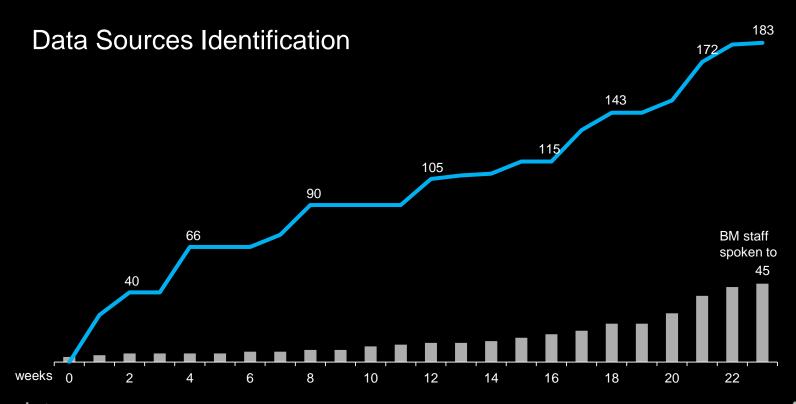
Starting point

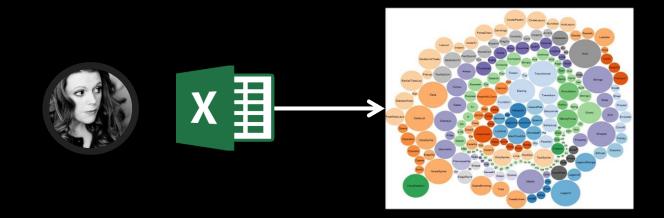
Didn't have ...

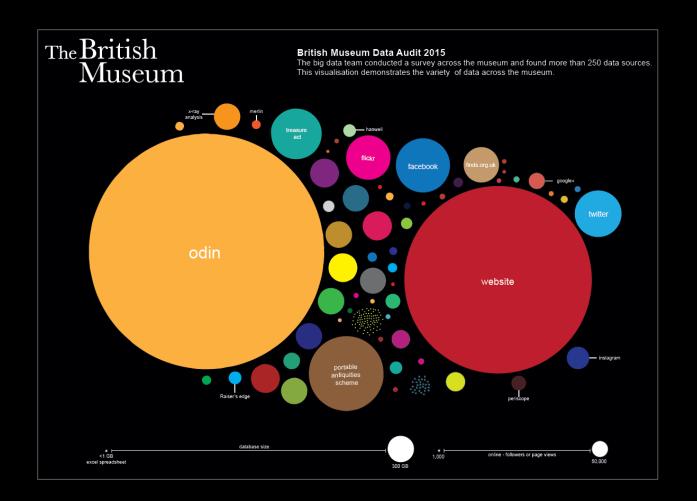
- No list of data sources
- No data access
- No databases
- No data warehouse

Did have...

- R
- Data Scientist
- Big Data: Senior Product Manager
- What does "big data" mean to the museum?

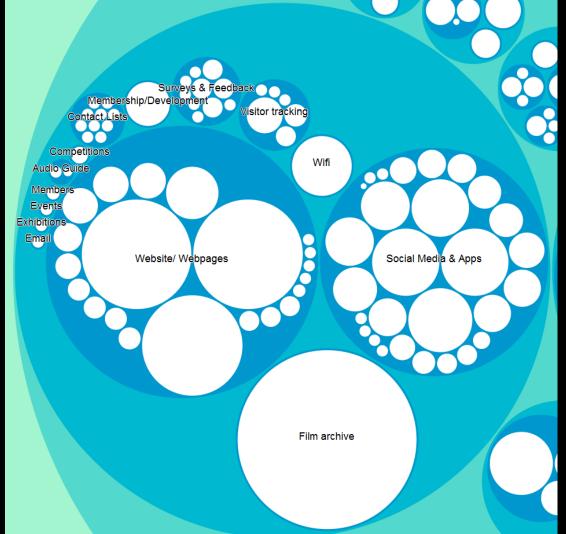



Finding data 🤛



Bubble Envy

D3
(Data-Driven Documents)


Finance Human Resources Operations 0; 0 Visitor Engagment Collections, Conservation & Science Commercial

2017 update In Development

D3
(Data-Driven Documents)

2017 update In Development

Valuing data

Business Problems = Data Opportunities

We don't know who our visitors are?

Online = > 9 million

Offline = 6.8 million

We don't know what they do in the museum?

And we don't know the opportunities to generate revenue?

Business Problems = Data Opportunities

We don't know who our visitors are?

Online = > 9 million

Offline = 6.8 million

We don't know what they do in the museum?

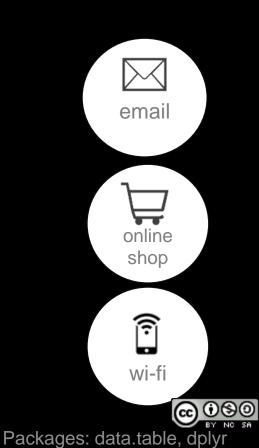
And we don't know the opportunities to generate revenue?

"silos" and "wrangling"

data viz

visitor movement

predictive modelling



"silos" and "wrangling"

Multiple visitor data platforms

CSV exports from external platforms

No SQL

"silos" and "wrangling"

100's of columns

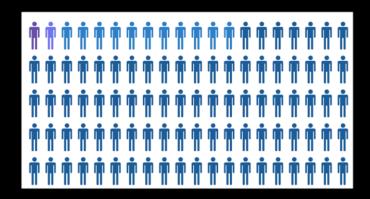
Multiple visitor data platforms

CSV exports from external platforms

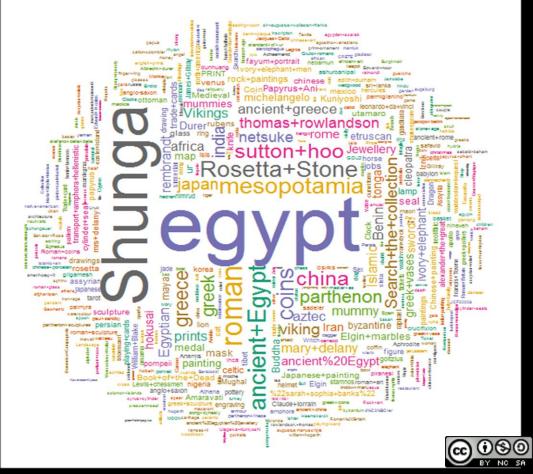
No SQL

print format exports nested by timeslots

Split first and second name


No SQL = data.table

How many visitors are on multiple platforms?


Assess the visitor data siloing

Why?

To improve engagement and access of the museum we need to examine our visitor data.

Top 500 website search
June 2015-16

Packages: RSiteCatalyst (Adobe Analytics), WordCloud

Visitor Movement

62 galleries, 3 floors, largest covered public square in Europe with 6.8 million visitors per year.

Visitor Movement

Wi-Fi presence used to sample visitor numbers

1st to use R to connect to CISCO Presence API

Visitor N

Wi-Fi presence used to sampl visitor number

1st to use R to connect to CIS Presence API

```
1 * #-----CISCO API Connection to collect CISCO data-----
    #DATE: 03/06/2016
    #AUTHOR: Alice Daish adaish@britishmusuem.org
    #----Install and Load packages
    library(httr)
    library(isonlite)
    #Load password and username code file
    source("logincisco.R")
    #----FIND THE LIST OF SITES-----
    sites<-GET("https://cmxcisco.com/api/config/v1/sites",authenticate(user, password))</pre>
      gets the URL api content including authroziation
    #testing different export formats
    str(content(sites)) #see content
    sitelist<-content(sites, "text") #collects content as text string</pre>
    sitelist<-fromJSON(sitelist) #convert to table format from string
    head(sitelist) #see the top of the table
22
    #List of site name and siteId
    siteId<-cbind(sitelist$aesUidString,sitelist$name)</pre>
    #EXAMPLE COLLECT HOURLY DATA OF ALL SITE FOR ONE DAY (14/05/2016)
25
    hourdata<-matrix(NA,nrow = 97*1, ncol = 27) #blank matrix
    colnames(hourdata)<-c("SiteID", "SiteName", "Date", "0", "1", "2", "3", "4", "5",
28
                           "6","7","8","9","10","11","12","13","14","15","16",
                          "17","18","19","20","21","22","23") #Label columns
29
31
      hourly<-GET(paste0("https://lnzgy2.cmxcisco.com/api/presence/v1/visitor/hourly?siteId="
32
                         siteId[i,1],"&date=2016-05-14"),authenticate(user, password))
33
      hourdata[i,1]<-siteId[i,1] #ID
      hourdata[i,2]<-siteId[i,2] #Name of site
36
      hourdata[i,3]<-"2016-05-14"
      hourdata[i,4]<-content(hourly)$`0'
38
      hourdata[i,5]<-content(hourly)$`1`
      hourdata[i,6]<-content(hourly)$`2`
      hourdata[i,7]<-content(hourly)$`3'
```


Visitor N

Wi-Fi presence used to sampl visitor number

1st to use R to connect to CIS Presence API

1 *	#	CISC	O API Co	nnection	to colle	ect CISC	O data				
2	#DATE : 03	/06/2016									
3	#AUTHOR: A	lice Dai	sh adais	h@britis	hmusuem.	org					
4	9-10am 10-	11am 11a	m-12p 12-	-13pm <u>13</u> -	14pm 14-	-15pm 15	pm-16բ 16-	-17pm 17-	-18pm To	tal	
5	23	155	212	254	174	165	155	141	120	1399	
6	38	76	94	153	120	115	101	158	92	947	
7	26	52	82	92	91	84	80	105	54	666	
8	27	50	68	81	74	65	83	87	98	633	
9	7	23	64	93	68	65	69	85	36	510	
10	11	61	78	61	76	48	61	57	37	490	
11	13	56	45	88	47	27	31	78	69	454	
12 +	26	40	42	65	56	58	48	47	48	430	
13	14	29	53	111	48	31	35	72	35	428))
14	1	26	69	62	51	64	66	56	27	422	//
15	1	39	78	57	52	45	53	52	19	396	
16	0	30	56	57	53	59	59	53	23	390	
17	3	24	56	56	47	55	41	43	15	340	
18	15	18	29	30	34	41	51	36	86	340	
19	14	43	30	34	44	43	36	31	50	325	
20	5	20	48	73	38	36	30	44	27	321	
21	7	39	53	43	38	30	42	39	27	318	
22	3	22	44	54	41	36	39	50	26	315	
23	4	16	39	50	50	38	38	42	36	313	
24	0	30	31	28	43	44	37	38	16	267	
25	6	17	30	53	24	24	31	40	28	253	
	19	27	20	30	18	22	23	31	38	228	
26	2	14	21	39	37	35	25	20	22	215	
27	8	27	32	23	27	29	25	18	22	211	
28	12	12	15	22	28	27	29	25	37	207	
29	22	38	33	24	22	19	15	16	15	204	
30	11	12	19	33	32	21	25	32	17	202	
31	2	17	26	26	31	26	25	30	12	195	siteId=",
32	10	33	22	25	10	17	20	29	4	170)
33	2	19	17	29	31	19	20	19	12	168	
34	0	9	23	28	19	17	25	35	11	167	
35	0	15	24	31	13	16	20	35	12	166	
36	11	14	21	33	23	20	18	13	8	161	
37	11	9	27	28	23	23	19	12	6	158	
38	3	19	19	25	15	15	24	18	18	156	
39				200						130	
40	hourdata	[i,7]<-c	ontent(h	ourly)\$`	3`						

Nothing is perfect

Predictive modelling

Can we predict ticket sales for exhibitions?

mixed effect modelling

- data wrangling
- modelling
- prediction

Predictive modelling

First initial model created Predicted first exhibition sales Development continues ...

Recommendations and Insights

Audio guide

1 in 3 visits start at the Rosetta Stone

And 3 of the top visited stops are not on the "Top 10" tour

Digital Signage

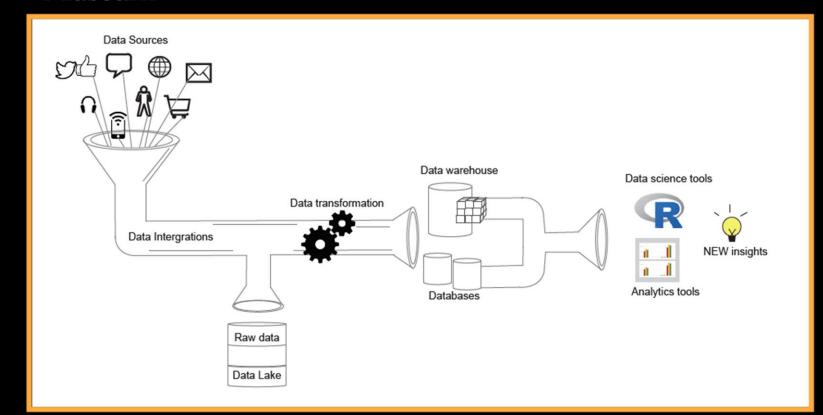
Audio guide starting direction

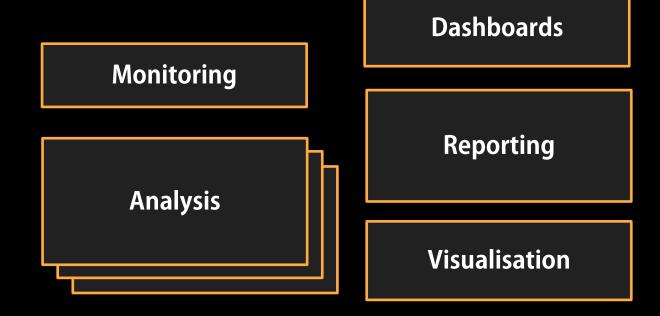
Promoting exhibition tickets at quiet times

Ticketing Trends

Peak and Off-peak times across exhibitions looking at ticketing capacity

Recommendation for filling quiet timeslots and investigation into time dependent ticketing pricing




De-siloed accessible data

Data Pipeline

What next...

- Support staff empowermentData in the hands of decision makers
- De-siloed accessible centralised data

Data-driven decision making primarily for product and content development and optimization

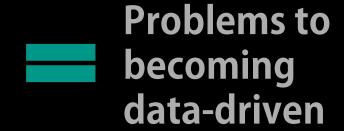
Scoping opportunities for revenue generation

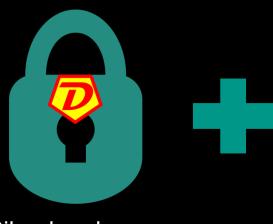
BUT Who knows? **Internet of things** e.g. Toilet door locks, Boilers, Visitor Flow Signs

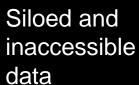
Machine Learning

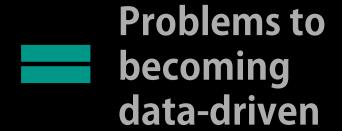
e.g. Predicting Visitor Numbers, Optimization, New Collection Discoveries

Transformation advice








Siloed and inaccessible data

DATA CULTURE

Transforming any organisation to be data-driven is about changing behaviours and habits.

DATA ADVOCACY

Data value needs to be discovered and shared. By giving voices to data champions and advocates.

High level support

Quick Wins

Find early adopters

Build trust

Technical Evangelist

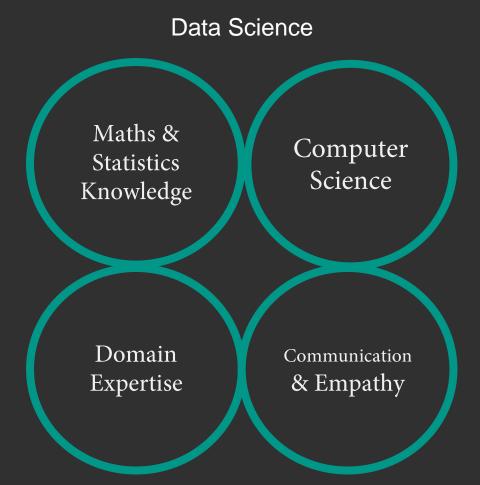
Technology orientated and use data frequently within their roles.

Supports data roles and adoption across the business

Data Ambassador

Data is highly important to their role but not necessarily their main responsibility.

Adopting data techniques and sharing the value and insight data can provide.


Business Data Advocates

Supports data application across business

Champion the use of data in high-level meetings and discussions

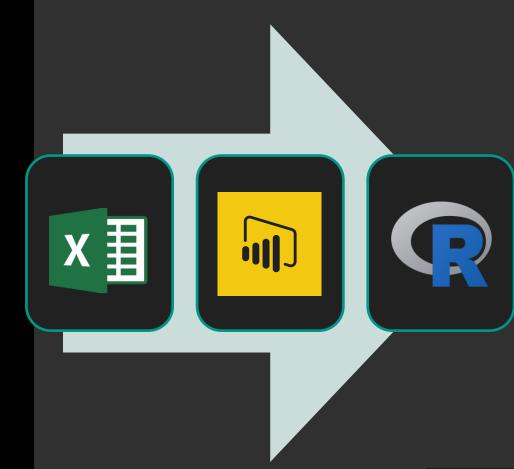
team skills

team skills

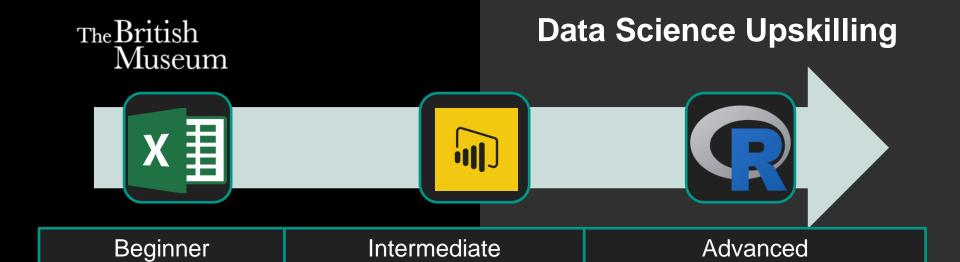
Stakeholder
Management

Project
Management

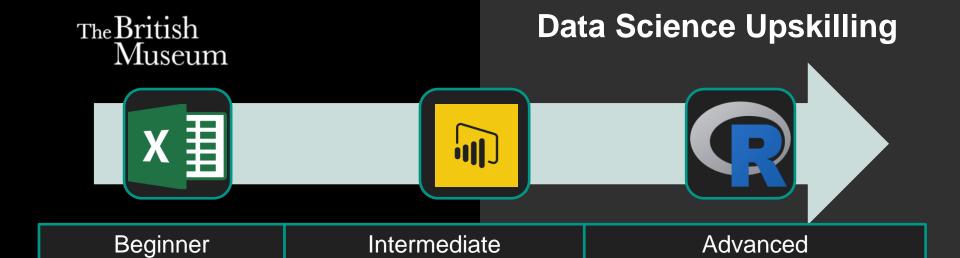
ment

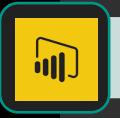

Communication & Empathy

Business Strategy



upskilling




Excel main tool

- Filter
- Basic calculations

Data Science Upskilling

Beginner

Intermediate

Advanced

Excel main tool

- Filter
- Basic calculations

Excel and BI tool

- Pivots
- Advanced Calculation
- Visualisation
- Data Analysis Reporting

Data Science Upskilling

Beginner

Intermediate

Advanced

Excel main tool

- Filter
- Basic calculations

Excel and BI tool

- Pivots
- Advanced Calculation
- Visualisation
- Data Analysis Reporting

Tools including Programming

- Data Wrangling/Munging
- Visualisation
- Data Analysis
- Modelling/Machine Learning

Data Science Upskilling

Beginner

Intermediate

Advanced

Excel main tool

- Filter
- Basic calculations

Excel and BI tool

- Pivots
- Advanced Calculation
- Visualisation
- Data Analysis Reporting

Tools including Programming

- Data Wrangling/Munging
- Visualisation
- Data Analysis
- Modelling/Machine Learning

Excel

Data Science Upskilling

Beginner

.

Advanced

Excel main tool

- Filter
- Basic calculations

Excel and BI tool

- Pivots
- Advanced Calculation

Intermediate

- Visualisation
- Data Analysis Reporting

Tools including Programming

- Data Wrangling/Munging
- Visualisation
- Data Analysis
- Modelling/Machine Learning

Excel

BI tools/dashboard

Data Science Upskilling

Beginner

.

Advanced

Excel main tool

- Filter
- Basic calculations

Excel and BI tool

- Pivots
- Advanced Calculation

Intermediate

- Visualisation
- Data Analysis Reporting

Tools including Programming

- Data Wrangling/Munging
- Visualisation
- Data Analysis
- Modelling/Machine Learning

Excel

BI tools/dashboard

Programming: R/Python

@alice_data

listen & or empathy

Listen to your stakeholders

Help them formulate

De-complicate keep it simple

communicate

Comms series "Did you know"

Outreach[®]

Encourage data ambassador

process

The British Museum

Big Data Team: 12 step Analytical Process

Identify a problem or question

Agree the business questions and/or hypothesis with stakeholders

Identify the data available

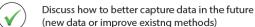
Decide how best to capture the data

Decide how to clean, transform and deal with gaps

Decide on how the data will be managed, stored, accessed, manipulated and scheduled

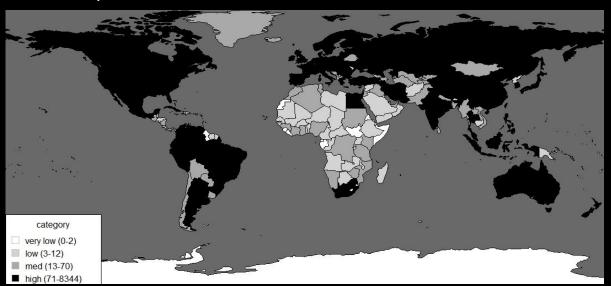
Analyze

Create report or visualization


(🕬) Provide insights & storytelling back

Discuss how to embed these results into the business and/or future decision-making processes

Can we close the project, or is there a new question?


Vision for the future

55,000 museums 180 countries

Business Problems

Data opportunity

Visitor Engagement

Objects

Operations

Buildings

Retail & ecommerce

Exhibitions

HR

Finance

Thank you & Questions

adaish@britishmuseum.org @alice_data

Many thanks to museum departments for their support and data access, Siorna Ashby, the big data team and my best friend R.

