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Abstract: In this paper, we are developing Quadrature Methods (numerical integration

method) of continuous function f(x) on a compact interval [a, b] and deriving a polynomial

Pm(x) of degree m such that integration of Pm(x) from a to b is equal to integration of f(x)

from a to b. We are using least square method to fit the polynomial Pm(x). Also derive

Newton-Cotes formulas and composite formula from this method, estimate errors and given

MATLAB codes.
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§1. Introduction

With the advent of the modern high speed electronic digital computers, the Numerical Integra-

tion have been successfully applied to study problems in Mathematics, Engineering, Computer

Science and Physical Sciences. Numerical integration, also called Quadrature, is the study of

how the numerical value of an integral can be found. The purpose of this paper is quadrature

methods for approximate calculation of definite integrals

I[f ] =

∫ b

a

f(x)dx (1.1)

where f(x) is integrable, in the Riemann sense on [a, b]. The limit of the integration may

be finite. Numerical integration is always carried out by mechanical quadrature and its basic

scheme is as follows: ∫ b

a

f(x) =
n−1∑

i=0

Aifi +R[f ], (1.2)

where fi = f(xi) is continuous function in[a, b]. Aiand xi are called Coefficients(Weights) and

nodes for Numerical Quadrature, respectively, and R[f] is error of Quadrature method. Once

the coefficients and nodes are set down, the scheme (1) can be determined.
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§2. Preliminaries

2.1 Order of Quadrature Method

Order of accuracy, or precision, of a Quadrature formula is the largest positive integer n such

that the formula is exact for xk, for each k = 0, 1, · · · , n.

2.2 Error of Quadrature Method

The integration (1.1) is approximated by a finite linear combination of value of f(x) in the form

(1.2). The error of approximation of (1.2) is given as

Rn =
C

(m+ 1)!
f (m+1)(ξ), (2.1)

where ξ = (a, b), m ≥ n is order of (1.2) and error constant of (1.2) is

C =

∫ b

a

xm+1 −
n−1∑

i=0

Aix
m+1
i . (2.2)

2.3 Interpolation Polynomial

Let f(x) be a continuous function defined on some interval [a, b], and be prescribed at n + 1

distinct tabular points x0, x1, · · · , xn such that a = x0 < x1 < x2 < · · · < xn = b. The distinct

tabular points x0, x1, · · · , xn are equispaced, that is xk+1 − xk = h, k = 0, 1, 2, · · · , n− 1. The

problem of polynomial approximation is to find a polynomial Pn(x), of degree≤ n, which fits

the given data exactly, that is,

Pn(xi) = f(xi), i = 0, 1, 2, · · · , n. (2.3)

The polynomial Pn(x) is called the interpolating polynomial. The conditions given in

(5)are called the interpolating conditions.

2.4 Least Squares Interpolation Polynomial

Let the polynomial of the mth degree

Pm(x) = a0 + a1x+ a2x
2 + · · · + amx

m

be fitted to the data points (xi, f(xi)) i = 0, 1, 2, · · · , n, where m < n and a′is are satisfy the

the system of equations

(n+ 1)a0 + a1

n∑

i=0

xi + a2

n∑

i=0

x2
i + · · · + am

n∑

i=0

xm
i =

n∑

i=0

f(xi), (2.4)
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a0

n∑

i=0

xi + a1

n∑

i=0

x2
i + · · · + am

n∑

i=0

xm+1
i =

n∑

i=0

xif(xi)

· · · · · · · · · · · · · · · · · · · · ·

a0

n∑

i=0

xm
i + a1

n∑

i=0

xm+1
i + · · · + am

n∑

i=0

x2m
i =

n∑

i=0

xm
i f(xi).

There are m+ 1 equations in m+ 1 unknowns.

Lemma 2.1 Let Pm(x) be the least squares interpolation equation of f(x) on [a, b]. Then

n∑

i=0

Pm(xi) ≈
n∑

i=0

f(xi), (2.5)

where x0 = a, xn = b , xi = a+ ih and h = (b− a)/n.

Proof Let the Pm(x) = a0 + a1x + a2x
2 + · · · + amx

m is least squares interpolation

equation of f(x) on [a, b]. Then Pm(x0) = a0 + a1x0 + a2x
2
0 + · · · + amx

m
0 and Pm(x1) =

a0 + a1x1 + a2x
2
1 + · · · + amx

m
1 , and so on Pm(xn) = a0 + a1xn + a2x

2
n + · · · + amx

m
n . Adding

all we get
n∑

i=0

Pm(xi) = (n+ 1)a0 + a1

n∑

i=0

xi + a2

n∑

i=0

x2
i + · · · + am

n∑

i=0

xm
i

apply Equation (2.4), we get
n∑

i=0

Pm(xi) ≈
n∑

i=0

f(xi). 2
Theorem 2.2 Let Pm(x) is least squares interpolation equation of the integrable function f(x)

on finite interval [a, b] and
n∑

i=0

Pm(xi) ∼=
n∑

i=0

f(xi),

where x0 = a, xn = b if and only if

∫ xn

x0

Pm(x)dx ∼=
∫ xn

x0

f(x)dx. (2.6)

Proof Multiplying with h = (b− a)/n and take limit h −→ 0 in (2.5), we get

lim
h−→0

h

n∑

n=0

Pm(xn) = lim
h−→0

h

n∑

n=0

f(xn).

This completes the theorem. 2
§3. Least Square Quadrature Method

Consider the integral in the form (1.2) for each i = 0, 1, 2, · · · , n. Now we are dividing the
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interval [a, b] into n (finite) equal sub interval and take the nodes x′s are equispaced points such

that xi = x0+ih ∈ [a, b], i = 0, 1, 2, · · · , n, where x0 = a, xn = b and h = (b−a)/(n). So we have

data points (xi, f(xi)) i = 0, 1, 2, · · · , n for fit a polynomial Pm(x) = a0+a1x+a2x
2+· · ·+amx

m.

we have

∫ xn

x0

f(x)dx =

∫ xn

x0

Pm(x)dx

= a0(xn − x0) + a1
x2

n − x2
0

2
+ a2

x3
n − x3

0

3
+ · · · + am

xm+1
n − xm+1

0

m+ 1
. (3.1)

This method is called Ln
m -Quadrature method(Ln

m − rule), here m is donate degree of

polynomial and n is donate number of data points. To solve the least square Quadrature

method we have at least m+1 points. Order of this method is greater then or equal to m, since

it’s exact for polynomial of degree m. The error constant of (3.1) is

C =

∫ xn

x0

xk − a0 +

n∑

i=1

xi
n − xi

0

i
ai

and error

R =
C

k!
f (k)(ξ),

where k > m, a 6 ξ 6 b. Now following cases arise:

Case 1. m = 0, that is P0 is a constant function.

From (2.4) we have a0(n+ 1) =
∑n

i=0 f(xi) and a1 = a2 = · · · = am = 0, substituting this

values in (9) web get ∫ xn

x0

f(x)dx =
(xn − x0)

n+ 1

n∑

i=1

f(xi). (3.2)

Case 2. m = 1, that is P1 is a linear polynomial.

From (2.4) we have

a0(n+ 1) + a1

n∑

i=0

xi =
n∑

i=0

fi, a0

n∑

i=0

xi + a1

n∑

i=0

x2
i =

n∑

i=0

xifi

and a2 = a3 = · · · = am = 0. Solving for a1 and a2 we get

a0 =

∑n
i=0 fi

∑n
i=0 x

2
i −

∑n
i=0 xi

∑n
i=0 xifi

(n+ 1)
∑n

i=0 x
2
i − (

∑n
i=0 xi)2

,

a1 =
(n+ 1)

∑n
i=0 xifi −

∑n
i=0 xi

∑n
i=0 fi

(n+ 1)
∑n

i=0 x
2
i − (

∑n
i=0 xi)2

.

After simplification we get

a0 =
2

nh(n+ 1)(n+ 2)

[
n(3x0 + h(n+ 1))

n∑

i=0

fi − 3(x0 + xn)
n∑

i=0

ifi

]
,
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a1 =
6

nh(n+ 1)(n+ 2)

[
2

n∑

i=0

ifi − i

n∑

i=0

fi

]
.

Substituting this values in (3.1), and simplification we get

∫ xn

x0

f(x)dx =
nh

n+ 1

n∑

i=1

f(xi).

This is same as m = 0. The method (3.2) is called Ln
1 - Quadrature method and the error

constant of (3.2) is

C =

∫ xn

x0

x2dx− nh

n+ 1

n∑

i=0

(x+ ih)2 =
−h3n2

6
=

−(xn − xa)3

6n
= − (b− a)3

6n

and error of (3.2) is

R =
−(b− a)3

6n · 2!
f (2)(ξ) =

−(b− a)3

12n
f (2)(ξ), (3.3)

where x0 6 ξ 6 xn. To solve this method, we have at least 2 data points and the order of (3.2)

is 2.

Case 3. m = 2, that is P2 is a polynomial of degree two.

From (2.4) we have

(n+ 1)a0 + a1

n∑

i=0

xi + a2

n∑

i=0

x2
i =

n∑

i=0

fi = A,

a0

n∑

i=0

xi + a1

n∑

i=0

x2
i + a2

n∑

i=0

x3
i =

n∑

i=0

(x0 + ih)fi = Ax0 + hB,

a0

n∑

i=0

x2
i + a1

n∑

i=0

x3
i + a2

n∑

i=0

x4
i =

n∑

i=0

(x0 + ih)2fi = Ax2
0 + 2Bhx0 + Ch2,

where A =
∑n

i=0 fi, B =
∑n

i=0 ifi, and C =
∑n

i=0 i
2fi. we have a3 = a4 = · · · = am = 0.

Solving the three linear system of equation for a0, a1 and a2 by MATLAB, we get

a0 =
3

(n+ 1)(n3 + 4n2 + n− 6)h2n

×(3Ah2n4 + 12Ahn3x0 − 12Bh2n3 −Ah2n2 − 6Ahn2x0 + 10An2x2
0

+6Bh2n2 − 64Bhn2x0 + 10Ch2n2 − 2Ah2n− 6Ahnx0 − 10Anx2
0

+6Bh2n− 8Bhnx0 − 60Bnx2
0 − 10Ch2n+ 60Chnx0 + 12Bhx0 + 60Cx2

0)

a1 = −{6(6Ahn3 − 3Ahn2 + 10An2x− 32Bhn2 − 3Ahn− 10Anx

−4Bhn− 60Bnx+ 30Chn+ 6Bh+ 60Cx)}/h2n(n2 + 3n+ 2)(n2 + 2n− 3)
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and

a2 =
30(An2 −An− 6Bn+ 6C)

h2n(n4 + 5n3 + 5n2 − 5n− 6)
.

Substituting these values in (3.1), and simplification we get

∫ xn

x0

f(x)dx =
hn(An3 −An2 + 6An+ 30Bn− 6A− 30C)

(n− 1)(n+ 3)(n+ 2)(n+ 1)
.

Substituting A,B and C we get

∫ xn

x0

f(x)dx =
hn

(n− 1)(n+ 3)(n+ 2)(n+ 1)

n∑

i=0

(n3 − n2 + 6n− 6 + 30ni− 30i2)fi. (3.4)

This method is called Ln
2 -Quadrature method. To solve this method, we have at least 3 data

points.

Case 4. m = 3, that is P3 is a polynomial of degree three.

Following previous case we get the same as (3.3). The error constant of (3.4) is

C =

∫ xn

x0

x4dx− hn

(n− 1)(n+ 3)(n+ 2)(n+ 1)

n∑

i=0

(n3 − n2 + 6n− 6 + 30ni− 30i2)(x + ih)4

= − (3n2 − 8n+ 18)n2h5

210
= − (3n2 − 8n+ 18)(xn − x0)

5

210n3
= − (3n2 − 8n+ 18)(b− a)5

210n3
.

The error of (3.4) is

R = − (3n2 − 8n+ 18)(b− a)5

210n3 · 4!
f (4)(ξ), (3.5)

where a 6 ξ 6 b. The order of (3.4) is 4.

Note 3.1 If m > 0 is even number then Ln
m method same as Ln

m+1 method.

§4. Newton-Cotes Formulas from Least Square Method

We can derive trapezoidal rule, Simpson 1-3rd rule and Simpson 3-8th rule from least square

method.

Taking n = 1 in (3.2) we get

∫ x1

x0

f(x)dx =
h

2
(f0 + f1).

This formula is called trapezoidal rule. The error of trapezoidal rule is, from (3.3)

R =
−(b− a)3

12
f (2)(ξ), a 6 ξ 6 b.



38 Mahesh Chalpuri and J Sucharitha

Taking n = 2 in (3.4) we get

∫ x2

x0

f(x)dx =
2h

1 · 5 · 4 · 3
2∑

i=0

(10 + 60i− 30i2)fi

=
h

30
(10f0 + 40f1 + 10f2) =

h

3
(f0 + 4f1 + f2).

This formula is called Simpson 1-3rd rile rule. The error Simpson 1-3rd rule of is, from (3.5)

R =
−(b− a)5

90
f (4)(ξ), a 6 ξ 6 b.

Similarly, Simpson 3-8th rule come from (3.4) with n = 3, that is

∫ x3

x0

f(x)dx =
3h

8
(f0 + 3f1 + 3f2 + f3)

and error come from (3.5), R = −(3/80)h5f (4)(ξ), a 6 ξ 6 b.

The weights of the integration method of (3.4) with equispaced point for n ≤ 6 are given

in Table 1.

n comman ratio Newton-Cotes weight common ratio Ln
2 Method

1 1/2 1 1 — —

2 1/3 1 4 1 1/3 1 4 1

3 3/8 1 3 3 1 3/8 1 3 3 1

4 2/45 7 32 12 32 7 4/105 11 26 31 26 11

5 5/288 19 75 50 50 75 19 5/336 31 61 78 78 61 31

6 1/140 41 216 27 272 27 216 41 1/14 7 12 15 16 15 12 7

Table 1. Weight of Newton-cote rules and Weights of Ln
2 Quadrature Method

Figure 1 a, b, c
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§5. Graphically Meaning of Least Square Integration Method

Let the polynomial Pm(x) of degree m is fitted by least square interpolation method by using

data points (xi, fi) i = 0, 1, 2 · · · , n,. If m=1, take n is large number then the the polynomial

P1(x) is going to exact fit polynomial such that the area A+C=B (fib : 1(a)). That’s way the

integration of P1(x) on [a, b] is gives exact value of integration of f(x) on [a, b]. Similarly P2(x)

(or P3(x)) is best interpolation polynomial such that the area A+C=B, such as those shown in

Figure 1.

§6. Problems

Problem 6.1 Find approximate value of

I =

∫ 3

1

sin(x)exdx

fit a straight line y(x) such that
∫ 3

1 y(x)dx = I.

Solution Let f(x) = sin(x)ex and yn be the straight line by fit n+1 data points (xi, f(xi)),

i = 0, 1, 2, · · · , n. Now we divide the interval [1 3] into two equal subinterval, that is n = 2

or h = 1. then 3 data points are (1, f(1)), (2, f(2)) and (3, f(3)). we fit a straight line y2 by

normal equation (5) we get

y2 = 0.27x+ 3.4

following this we get

y4 = 0.78x+ 3.15,

y8 = 1.17x+ 2.77

y16 = 1.39x+ 2.51

y32 = 1.51x+ 2.36

and

y64 = 1.57x+ 2.28.

But we know if n → ∞ then
∫ 3

1
yn(x)dx →

∫ 3

1
f(x)dx. Therefore, I =

∫ 3

1
(1.57x + 2.28)dx =

10.84.

Problem 6.2 Fit quadratic equation P2(x) such that

∫ 1

0

P2(x)dx =

∫ 1

0

x
√
x+ 1dx

and find approximate value of
∫ 1

0 x
√
x+ 1dx.

Solution Let P2n
be the quadratic equation by fit n equal space data points in [0, 1]. By
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least square method we have

P23
(x) = 0.37893738x2 + 1.03527618x+ 3.61400724(E − 20),

P211
(x) = 0.37892845x2 + 1.03956285x− 0.00227848,

P251
(x) = 0.37839273x2 + 1.04141576x− 0.00304322,

P2101
(x) = 0.3783134x2 + 1.0416701x− 0.00314653.

Let In =
∫ 1

0
P2n

(x)dx then I3 = 0.643950551, I11 = 0.643812428, I51 = 0.643795564 and

I101 = 0.643792992. The exact value of
∫ 1

0 x
√
x+ 1dx upto five decimal is 0.64379.

Problem 6.3 Find the approximate value of

I =

∫ 1

0

1

2 + x
dx,

using Ln
1 and Ln

2 rules with different equal subintervals. Using the exact solution, find the

absolute errors.

Solution Results for the Ln
1 and Ln

2 rules to estimate the integral of f(x) = 1/(2+x) from

x = 0 to 1. The exact value is Iexact =
∫ 1

0 1/(2+x)dx = ln(x+2)]10 = ln(3)− ln(2)=0.4054651.

We get

n In
1 = Ln

1 method Error=In
1 − Iexact

1 0.4167 0.0112

2 0.4111 0.0056

4 0.4083 0.0028

8 0.4069 0.0014

16 0.4062 0.0007

32 0.4058 0.0003

64 0.4056 0.0001

n In
2 = Ln

2 method Error=In
2 − Iexact

2 0.4055556 0.0000905

4 0.4054930 0.0000279

8 0.4054801 0.0000150

16 0.4054735 0.0000084

32 0.4054696 0.0000045

64 0.4054675 0.0000024

128 0.4054663 0.0000012

§7. Conclusion

We develop this new method for easy to solve Definite Integral of finite interval with equispaced

nodes and derived Simpson 1/3rd rule and Simpson 3/8th rule from Ln
2 Quadrature Method.

In this method (Ln
2 ) weights are increasing from a to midpoint(i.e (a + b)/2) of interval and

decreasing from midpoint to b. The advances is the weights of Ln
2 − method are positive

(since(n3−n2+6n−6+30ni−30i2) ≥ 0 for all n ≥ 2 for all i) . We have given the MATLAB code

also, give any continuous function f(x) on [a, b] that will be give an approximation integration

value of f(x) from a to b. Also, we are developing this concept to high degree polynomials and

high dimension.
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