
Source Code Review
Using Static Analysis Tools

July-August 2015

Author:
Stavros Moiras

Supervisor(s):
Stefan Lüders
Aimilios Tsouvelekakis

CERN openlab Summer Student Report 2015

CERN openlab Summer Student Report September 2015

Abstract

Many teams at CERN, develop their own software to solve their tasks. This
software may be public or it may be used for internal purposes. It is of major
importance for developers to know that their software is secure. Humans are able
to detect bugs and vulnerabilities but it is impossible to discover everything when
they need to read hundreds’ lines of code. As a result, computer scientists have
developed tools which complete efficiently and within minutes the task of analysing
source code and finding critical bugs and vulnerabilities. These tools are called
static analysis and they are able to find, analyse and suggest solutions to the
programmer in the early stages of development.

The goal of this project is to evaluate and compare as many static analysis tools
as possible (both freeware and commercial) according to metrics decided by
CERN Security Team. The final result should not only be a selection of tools per
language that software developers should utilise but also an automated way to use
them and get useful reports that will help developers write better software.

CERN openlab Summer Student Report September 2015

3 | P a g e

Table of Contents

Abstract ... 2

Table of Contents .. 3

1 Introduction .. 5

2 Static Analysis Tools .. 5

3 Advantages and Disadvantages ... 6

3.1 Advantages .. 6

3.2 Disadvantages ... 6

4 Metrics ... 6

4.1 C / C++ ... 7

4.2 Java .. 8

4.3 Python .. 8

4.4 Perl ... 9

4.5 PHP .. 9

5 Types of Reports Generated .. 10

6 Integration with Jenkins .. 11

6.1 Instructions ... 11

7 Future Work ... 15

8 Conclusion ... 15

9 Appendix (Installation Instructions) ... 16

Cppcheck ... 16

Flawfinder .. 16

RATS (Rough Auditing Tool for Security) .. 16

VCG (Visual Code Grepper) .. 17

SonarQube .. 17

Findbugs .. 18

CERN openlab Summer Student Report September 2015

4 | P a g e

PMD ... 18

Codepro Analytix ... 19

Pyflakes ... 19

Pylint .. 19

Perl-Critic ... 19

PHPca .. 20

RIPS .. 20

CERN openlab Summer Student Report September 2015

5 | P a g e

1 Introduction

A bug is a programming error that sometimes can be exploited by an attacker to
subvert the functionality of the vulnerable software by feeding it malformed inputs
such as network packets or web form data that evade the program's error checks
allowing the attacker to execute arbitrary code on the host. In order to exploit a
vulnerability, an attacker must have an opportunity to execute the vulnerable code,
for instance by sending a message to a service listening on a network port. Such
an opportunity is known as an attack vector.

Vulnerabilities could range from buffer overflows, calls to vulnerable library
functions to unguarded access to the root privilege (“root privilege escalation”).
These may lead to a lot of consequences which could be exploited by an attacker
to gain access to the vulnerable system. Fortunately, there are a number of tools
to help the programmer check for these errors. While it is impossible to be
completely secure, it's possible to minimize these errors.

2 Static Analysis Tools

Static analysis tools are designed to analyse a given source code in order to find
programming defects. In an ideal world, such tools would automatically find
programming defects with high confidence. But this is not the case for many types
of programming defects due to the high false positive rate that is reported. As a
result, such tools serve as a help for an analyst to detect flaws more efficiently
instead of a tool that just automatically finds defects.

The tools that have been tested and evaluated at CERN are listed below:

 Codepro Analytix

 Cppcheck

 Findbugs

 Flawfinder

 Perl-Critic

 PHPca

 PMD

 Pyflakes

 Pylint

 RATS (Rough Auditing Tool for Security)

 RIPS

 SonarQube

 VCG (Visual Code Grepper)

 Commercial Vendor 1

 Commercial Vendor 2

CERN openlab Summer Student Report September 2015

6 | P a g e

3 Advantages and Disadvantages

3.1 Advantages

 They are very scalable and can be run repeatedly

 The output is very informative with line highlights

 Automatic scanning of bugs

3.2 Disadvantages

 They have a high false positive rate

 They cannot detect configuration issues

 In some cases code compilation is required

4 Metrics

Some metrics and results are presented below. Results derived from the tools that
we evaluated and they are categorized per programming language (see detailed
installation instructions in the appendix at the end of this report). A notable
difference made a tool named VCG (Visual Code Grepper) which was fully
customizable, the user had the ability to add new patterns for vulnerabilities to be
detected. Also, it provides quick access to the file that is affected highlighting the
exact line with a single click, this drastically increases the process of a manual
review.

On the other hand the tool from the Commercial Vendor 2 was also very
customizable, had a reasonable balance between false and true positives and
most of its findings were indeed something that required attention and manual
review.

Below we have a table with some details of the samples that was tested.

Language Files Blank Comment Lines of Code

C++ 18661 1220503 1585615 6935350
C/C++ Header 26775 710417 1086601 3061157

Python 9296 338607 451010 1476867
C 1305 121910 124202 606878

Java 970 24867 36896 89181
PHP 854 16389 48403 144309
Perl 275 239302 176860 190896

CERN openlab Summer Student Report September 2015

7 | P a g e

Below there is a table explaining the values that are used in the following metrics
tables. The false positives were calculated per file in most cases.

VALUES EXPLANATION

LOW Less than 20 false positives
MEDIUM Approximately 20-40 false positives

HIGH More than 40 false positives
YES The application supports this kind of vulnerability

/ report
NO The application does not support this kind of

vulnerability / report

4.1 C / C++

Application False
Positives

True Positives Buffer
Overflows

Memory Leak Uninitialized
Pointer /
Variable

Cppcheck Medium High No No Yes

Flawfinder High Medium Yes No No

RATS High Medium Yes No No

VCG
Medium Medium

Yes Yes No

Commercial
Vendor 1

Medium High Yes Yes Yes

Commercial
Vendor 2

Medium High No Yes Yes

Commercial
Vendor 3

Low High No Yes Yes

CERN openlab Summer Student Report September 2015

8 | P a g e

4.2 Java

Application False
Positives

True
Positives

Document empty
method

Internal
array

exposure

XSS SQL
injections

Codepro
Analytix

Medium Low Yes Yes No No

Findbugs Low Medium Yes Yes No Yes

PMD Low Medium Yes Yes No No

SonarQube Low High Yes Yes No No

VCG Medium Medium No Yes No Yes

Commercial
Vendor 1

Medium Medium No No Yes Yes

4.3 Python

Application False
Positives

True
Positives

Code
Injection

Untrusted
Regex

TOCTOU
Vulnerability

Bad
indentation

Unused
Variable

Pyflakes Medium Medium No No No No Yes

Pylint Medium Low No No No Yes Yes

RATS High Low Yes Yes Yes No No

SonarQube Low High No No No No No

Commercial
Vendor 1

Low High Yes No No No No

CERN openlab Summer Student Report September 2015

9 | P a g e

4.4 Perl

Application False Positives True Positives Insecure
Random
Number

Generator

Untrusted
User Input

Loop iterator
is not lexical

Perl-Critic High Medium No No Yes

RATS Medium Medium Yes Yes No

Commercial
Vendor 1

Low High No Yes No

4.5 PHP

Application False Positives True Positives Cross Site
Scripting

SQL Injection File Inclusion

PHPca High Medium No No No

RIPS Medium Medium Yes Yes Yes

RATS Medium Low No No Yes

SonarQube Low High No No No

VCG High Low Yes Yes Yes

Commercial
Vendor 1

Medium Medium Yes Yes Yes

CERN openlab Summer Student Report September 2015

10 | P a g e

5 Types of Reports Generated

Application PDF XML HTML Program /
Web UI

CSV Command
Line

Email

Cppcheck Yes Yes

Flawfinder Yes Yes

RATS Yes Yes Yes

SonarQube Yes Yes Yes

VCG Yes Yes Yes Yes

Codepro
Analytix

 Yes Yes

Findbugs Yes Yes

PMD Yes Yes Yes Yes

Pyflakes Yes

Pylint Yes

Perl-Critic Yes

PHPca Yes

RIPS Yes

Commercial
Vendor 1

Yes Yes Yes Yes Yes

Commercial
Vendor 2

 Yes Yes Yes

CERN openlab Summer Student Report September 2015

11 | P a g e

6 Integration with Jenkins

Jenkins is an open source continuous integration tool and is used by software
developers to speed up the development process. Using the tool, a build can be
initiated with various ways, for example it can be triggered by commit in a version
control system like GIT. That is why it is ideal for integration with static analysis or
security tools, because the tools can be set up to run every time a build is taking
place and inform the developers if bugs are presented in the code.

6.1 Instructions

In order to integrate our static analysis tools to Jenkins we have to follow the steps
below:

After the installation of Jenkins we can start our browser and navigate to
http://127.0.0.1:8080 where we will we find ourselves into the Jenkins platform
main interface.

First of all we have to install some vital plugins.

1. Manage Jenkins  Manage Plugins  Available Tab
2. Install “Email Extention Template Plugin”
3. Install “Publish HTML Reports”
4. Optional: Install “Findbugs”, “PMD”, “Cppcheck” plugins
5. Restart Jenkins

Figure 1 – Jenkins Plugin Installation

http://127.0.0.1:8080/

CERN openlab Summer Student Report September 2015

12 | P a g e

6. Jenkins main interface  New Item  Freestyle Project
7. Advanced  Check “use custom workspace”
8. Enter the directory where the sources and the reports are going to be

stored.
9. Add build step  Execute shell
10. Enter our project's build command followed by the analysis command.

Example: rats --quiet --resultsonly --html /your_directory > /your_directory/report.html

Figure 2 – Jenkins Project Configuration Interface

CERN openlab Summer Student Report September 2015

13 | P a g e

It is important to not forget to add the report like the figure below:

Figure 3 – Jenkins Project Configuration Interface

Also, we have to add the report as an attachment to make the manual review
process easier for the developer.

Figure 4 – Jenkins Project Configuration Interface

CERN openlab Summer Student Report September 2015

14 | P a g e

Finally, to complete our project we have to configure the email settings (SMTP
server, credentials) in order to send each email with the report of the static analysis
tool without any problems.

Figure 5 – Jenkins Email Plugin Configuration Interface

CERN openlab Summer Student Report September 2015

15 | P a g e

7 Future Work

There are many things to be done to have a complete automated system scanning millions
lines of code. At first, we should integrate as many static analysis tools as we can in
Jenkins, because as we obverse from the results all the tools have their strength and
weaknesses. Furthermore, since not all of them are working both in Windows and Linux
we have to research how we can integrate windows tools on a Jenkins instance.

Moreover, there are valuable security tools that have not been tested for this project and
could be integrated in Jenkins platform with the same process described above.

8 Conclusion

In conclusion, source code static analysis tools help us to spot and eliminate bugs
in the early stages of development when they are easy to fix. Many serious bugs
can be only detected by analysing the source code which is also called “whitebox
testing”. The integration with Jenkins automates this process so the code can be
scanned on regular basis and repeatedly like nightly builds while it keeps the
output suitable for developers. In the near future, this will lead to better software
quality, faster development and easier testing.

CERN’s Computer Security Team provides a web page with the most recent
recommendations for static analysis tools along with installation instructions:
https://security.web.cern.ch/security/recommendations/en/code_tools.shtml

https://security.web.cern.ch/security/recommendations/en/code_tools.shtml

CERN openlab Summer Student Report September 2015

16 | P a g e

9 Appendix (Installation Instructions)

Cppcheck

1

2

Download the installer from http://cppcheck.sourceforge.net/

Run the installer

Flawfinder

1

2

3

4

wget http://www.dwheeler.com/flawfinder/flawfinder-1.31.tar.gz

tar -xzvf flawfinder-1.31.tar.gz

cd flawfinder-1.31

./flawfinder

RATS (Rough Auditing Tool for Security)

1

2

3

4

5

6

7

8

9

Installing Dependencies – Expat Library

wget http://downloads.sourceforge.net/project/expat/expat/2.0.1/expat-2.0.1.tar.gz

tar -xvf expat-2.0.1.tar.gz

cd expat-2.0.1

./configure && make && sudo make install

Installing RATS

wget https://rough-auditing-tool-for-security.googlecode.com/files/rats-2.4.tgz

tar -xzvf rats-2.4.tgz

cd rats-2.4

./configure && make && sudo make install

./rats

http://cppcheck.sourceforge.net/
http://www.dwheeler.com/flawfinder/flawfinder-1.31.tar.gz
http://downloads.sourceforge.net/project/expat/expat/2.0.1/expat-2.0.1.tar.gz
https://rough-auditing-tool-for-security.googlecode.com/files/rats-2.4.tgz

CERN openlab Summer Student Report September 2015

17 | P a g e

VCG (Visual Code Grepper)

1

2

Download the installer from http://sourceforge.net/projects/visualcodegrepp/

Run the installer

SonarQube

1

2

3

3a

3b

4

5

6

7

Installing SonarQube

Download http://www.sonarqube.org/downloads/

Unzip the distribution ie: "C:\sonarqube" or "/etc/sonarqube"

Windows / Other OS Execution

Execute StartSonar.bat in sonarqube\bin folder

Navigate and execute /etc/sonarqube/bin/[OS]/sonar.sh console

Installing SonarQube Runner

Download http://www.sonarqube.org/downloads/

Unzip the SonarQube Runner

Create Configuration File sonar-project.properties

Java Configuration File Sample

Required metadata

sonar.projectKey=UNIQUE:CHOOSE_ANY_UNIQUE_KEYWORD_FOR _PROJECT

sonar.projectName=LANGUAGE::PROJECT_NAME_HERE

sonar.projectVersion=1.0

Comma-separated paths to directories with sources (required), enter
'.' for current directory

sonar.sources=.

Language

sonar.language=java

Encoding of the source files

sonar.sourceEncoding=UTF-8

http://sourceforge.net/projects/visualcodegrepp/
http://www.sonarqube.org/downloads/
http://www.sonarqube.org/downloads/

CERN openlab Summer Student Report September 2015

18 | P a g e

8

8a

8b

9

10

Analyse a Project

Windows / Other OS Execution

Navigate to the Sonar-Runner dir and execute \bin\sonar-runner.bat

Navigate and execute /etc/sonar-runner/bin/sonar-runner

Scan Results are in http://localhost:9000

Credentials for logging into the system are admin/admin

Findbugs

1

2

3

4

wget http://prdownloads.sourceforge.net/findbugs/findbugs-3.0.1.tar.gz

tar -xfz findbugs-3.0.1.tar.gz

cd findbugs-3.0.1/bin

./findbugs

PMD

1

2

3

4

4a

4b

5

5a

Download pmd-bin-5.3.3.zip from here http://sourceforge.net/projects/pmd/

unzip pmd-bin-5.3.3.zip

cd pmd-bin-5.3.3/bin

Windows / Linux Execution

In Windows execute pmd.bat

In Linux execute run.sh

Windows / Linux Example

C:\>pmd-bin-5.3.2\bin\pmd.bat -dir c:\my\source\code -format text -R
java-unusedcode,java-imports -version 1.5 -language java –debug

C:\>pmd-bin-5.3.2\bin\pmd.bat -dir c:\my\source\code -f xml -rulesets
java-basic,java-design -encoding UTF-8

C:\>pmd-bin-5.3.2\bin\pmd.bat -d c:\my\source\code -rulesets java-
typeresolution -auxclasspath commons-collections.jar;derby.jar

C:\>pmd-bin-5.3.2\bin\pmd.bat -d c:\my\source\code -f html -R java-

http://localhost:9000/
http://prdownloads.sourceforge.net/findbugs/findbugs-3.0.1.tar.gz
http://sourceforge.net/projects/pmd/

CERN openlab Summer Student Report September 2015

19 | P a g e

5b

typeresolution -auxclasspath c:\my\classpathfile

pmd-bin-5.3.2/bin/run.sh pmd -dir /home/workspace/src/main/java/code
-f html -rulesets java-basic,java-design,java-sunsecure

pmd-bin-5.3.2/bin/run.sh pmd -d ./src/main/java/code -f xslt -R java-
basic,java-design -property xsltFilename=my-own.xsl

pmd-bin-5.3.2/bin/run.sh pmd -d ./src/main/java/code -f html -R java-
typeresolution -auxclasspath commons-collections.jar:derby.jar

List of Rulesets with Description

http://pmd.sourceforge.net/pmd-5.3.2/pmd-java/rules/java/

Codepro Analytix

1

2

3

4

Download and Install Eclipse 3.7 Indigo

Open Eclipse and go to: Help  Install New Software  Add

In Name field enter: http://dl.google.com/eclipse/inst/codepro/latest/3.7

Click Next and finish the installation.

Pyflakes

1

2

yum install python-pip

pip install pyflakes

Pylint

1 sudo yum install pylint

Perl-Critic

1 sudo yum install perl-Perl-Critic

http://pmd.sourceforge.net/pmd-5.3.2/pmd-java/rules/java/
http://dl.google.com/eclipse/inst/codepro/latest/3.7

CERN openlab Summer Student Report September 2015

20 | P a g e

PHPca

1

2

3

4

5

Download PHPca https://github.com/spriebsch/phpca

Extract all the files in your home directory

Step if you do not have PHP installed

sudo yum install php

Navigate to the directory where you extracted the files

Use PHPca like this: php src/phpca.php -p "path" "file or directory"

Where "path" is the path of the php binary such as /usr/bin/php

RIPS

1

2

3

Download package http://sourceforge.net/projects/rips-scanner/files/

Unzip the rips-0.XX.zip in your public html directory of Apache

Browse to 127.0.0.1 (localhost) using your browser

https://github.com/spriebsch/phpca
http://sourceforge.net/projects/rips-scanner/files/

