
Processing of the WLCG job
monitoring data using
ElasticSearch

September 2015

Author:
Javier Delgado Fernández

Supervisor(s):
Edward Karavakis
Julia Andreeva

CERN openlab Summer Student Report 2015

Abstract
The Worldwide LHC Computing Grid (WLCG) includes more than 170 grid and cloud
computing centres in 40 countries. More than 2 million computational jobs are being
executed on a daily basis and petabytes of data are transferred between sites. Monitoring
the job processing activity of the LHC experiments, over such a huge heterogeneous
infrastructure, is really demanding in terms of computation, performance and reliability.
Furthermore, the generated job monitoring flow is constantly increasing, which
represents another challenge for the monitoring systems.
While existing solutions are traditionally based on Oracle for data storage and processing, recent
developments in the SDC monitoring team evaluate different NoSQL solutions for processing
large-scale monitoring datasets. Among those solutions is ElasticSearch – an open source
distributed real time search and analytics engine. The aim of this project is to prototype the
WLCG Job Monitoring applications to store and retrieve data using ElasticSearch.

Table of Contents
	

1	
 Introduction .. 5	

1.1	
 Experiment Dashboard .. 5	

1.2	
 WLCG job monitoring ... 5	

2	
 ElasticSearch ... 6	

3	
 Project Overview .. 6	

3.1	
 Objectives .. 6	

3.1.1	
 Reduce the latency of dashboard job monitoring web page. 6	

3.1.2	
 Increase the time-­range limitation on the queries ... 6	

3.1.3	
 Reduce the dependency of external tools ... 7	

3.2	
 Architecture .. 7	

3.2.1	
 Collectors involved in importing ATLAS Jobs ... 7	

3.2.2	
 Job import workflow .. 8	

4	
 Project Results ... 9	

4.1	
 Job collector improvement ... 9	

4.2	
 Modified User Interface .. 10	

4.3	
 Dashboard responsiveness ... 10	

5	
 Future work .. 12	

5.1	
 Extend the system to job accounting ... 12	

5.2	
 Fix some parsing problems .. 12	

5.3	
 Port the CMS collectors to store data in ElasticSearch and the User Interfaces to
retrieve data from ElasticSearch ... 12	

6	
 Conclusions .. 12	

7	
 References ... 13	

4 | P a g e

Acknowledgments

My sincere thanks to my supervisor, Edward Karavakis who spent a lot of time helping me in
each detail of my project, verifying the correctness of all my tasks, motivating myself in every
moment and taking into account all my suggestions or ideas. But I would like to say him thanks
also for all the help he gave me in a lot of topics out of my job.

Thanks also to my office mates because they welcomed me and took me into their group of
people in CERN. And also to Pablo because of his help with some parts of the project and for
being so attentive.

And finally, I am very grateful to my section (specially to Julia) for make me feel part of their
team.

5 | P a g e

1 Introduction
The purpose of this project consist on the improvement of the persistence system in terms of
performance. To achieve this goal, the new implementation relies the data on other paradigm of
persistence based on documents (JSON) instead of relational schemas.

1.1 Experiment Dashboard
The Experiment Dashboard[1] system is a python framework that provides powerful tools
allowing us to know a lot of information about the data transfer, the job processing and the status
of the distributes sites and services of the WLCG. The system is heavily used by the LHC
experiments in order to follow job and data transfer execution, detect and investigate
inefficiencies and failures, assisting in commissioning new sites and services and identifying
trends in the WLCG. The solutions that the Experiment Dashboard offers are used by different
categories of LHC users; from physicists running their jobs on the Grid and user support teams to
site administrators, shifters and LHC management.

These solutions are generic and were designed to be used in several LHC experiments, keeping as
much code as possible shared in order to reduce the maintenance cost and the effort for the
development of new features.

1.2 WLCG job monitoring
The Worldwide LHC Computing Grid is a collaboration between several countries around the
world providing computational resources required in the LHC environment. The reason to build
this complex structure was the huge amount of data that LHC needs to deal. It is estimated that
LHC experiments are currently generating 25 PB[2] which should be accessed by 7000 physicists.

Taking into account this large amount of data that should be stored, analysed and processed by
the WLCG infrastructure in more than 180 computing centres with different configurations, we
should realize that there are a lot of different kind of issues that can occur. For this reason, we
need to monitor all the processes that are being executed along the time, providing us a good
knowledge about the performance and reliability of this enormous infrastructure.

The monitoring of the job processing activity is one of the several services that Experiment
Dashboard is offering. It is providing a complete picture of the jobs processing status over the
WLCG. Currently, the grid infrastructure receives more than 2.0 million of jobs per day to be
processed, and this number continues to grow.

ATLAS and CMS are the current users of the job monitoring provided by Experiment Dashboard
and have different ways to submit and analyse jobs. In the case of ATLAS, they are using a
centralized Workload Management System called PanDA[3] and for the CMS use-case, they are
using a system called CRAB3 to submit analysis jobs and WMAgent to submit production jobs.
The Experiment Dashboard Job Monitoring applications are sharing the same database schema in
Oracle and the same Web-based User Interfaces. For the purpose of this report, we will only
cover the ATLAS job monitoring activity.

6 | P a g e

2 ElasticSearch
ElasticSearch[5] is a new system designed to provide all the components required in order to add
search capabilities to software projects. ElasticSearch is build on the top of Lucene and is using
Java as a platform. It offers a RESTful interface to query data and uses the JSON format not only
for the documents but also to query the data contained on it.

Internally, this technology stores the JSON documents that we insert and also creates an index for
every field that it has. This behaviour produces a really low latency queries even when the data to
analyse is enormous.

Due to this, ElasticSearch is an ideal candidate when you need to deal with huge amounts of time-
series data and you can adapt your project to work with this kind of NoSQL documental database.
Particularly, they are focusing their attention in real time data, multitenacy and text search,
bundled with the advantages of NoSQL document databases such as schema less, distributed
computing and storage, high availability and fault tolerant.

In the case of the current project, ElasticSearch is used as a NoSQL document database and it is
not used to perform queries on free text.

Some studies were conducted before the start of this project[4] that were testing the performance
of several technologies with the Experiment Dashboard monitoring data showing that
ElasticSearch is the best approach to our current problem in terms of performance.

3 Project Overview
When you need to deal with such amount of data, like in our current problem, and return the
result within a few seconds, you are being prompted to research other ways to solve it. A regular
query on this system, for example, to show the landing page, consist on several aggregations of
one million records with one hundred fields per each record.

3.1 Objectives
This project has as a main objective the performance improvement of ATLAS job monitoring in
the Experiment Dashboard.

3.1.1 Reduce the latency of dashboard job monitoring web page.
Although the job monitoring web page of dashboard has a good responsiveness, it was obtained
thanks to the use of other complementary techniques such as distributed caching with
memcached. This project aims to improve the performance of the queries executed against the
storage system, making the user interface more responsive for its users.

3.1.2 Increase the time-­range limitation on the queries
Due to the improvements in the terms of performance, now you can execute other queries with
much more data getting the results in a reasonable time. So ultimately, the job monitoring web
application can offer aggregation of big ranges of dates.

7 | P a g e

3.1.3 Reduce the dependency of external tools
Making use of less external tools reduces the huge effort required to maintain all the modules.
Another benefit is the reduction of problems in our system originating from third parties software.

3.2 Architecture
The code evolving this project is developed mainly in Python but also in ElasticSearch DSL. It is
based in a lot of independent applications but sharing a lot of common code. Each one of these
applications is called a dashboard agent or “collector” and has a well defined interface based in a
constructor with the parameters specified in an XML configuration file and a method called “run”
where the collector executes its work.

3.2.1 Collectors involved in importing ATLAS Jobs
To enable ElasticSearch as a new persistence system instead of the previous solution with Oracle,
we need to complete the information of a job that is caused by the lack of information in the
primary information source when we are parsing a job. So the collector needs to look for
additional data in other parts of the system.

The main collector in our solution is called “Panda”, which is reading the data from ATLAS
PanDA system and parsing it to store in ElasticSearch, but this collector can not do its work
properly because it requires to decode some fields that are incomplete. To show an example, we
receive from Panda the ATLAS PanDA[6] queue name of a site and not the official WLCG site
name, but when we are using the Dashboard, we want to know the official name of the site. For
this reason, we first need to import the association between the ATLAS PanDA queue names and
the WLCG sites using the ATLAS Grid Information System (AGIS) and then to perform the
translation which is executed when the job is parsed in order to achieve a great performance.

These helper collectors are:

• AppGenericStatus: Used to decode the error exit-code originating from the application,
the specific reason of failure for a job and a more general category of error reasons.

• GenericStatus: Used to decode the error exit-code coming from different grid and
ATLAS services. Just like the AppGenericStatus, it includes the error exit-code, the
specific reason of failure for a job and a more general category of failures.

• PatternAGIS: Used to retrieve the association between ATLAS PanDA queues and
official WLCG site names using the AGIS system.

• PatternOracle: Used to import historical association entries between ATLAS PanDA
queues and official WLCG site names by querying the appropriate table in the current
production persistency solution implemented in Oracle.

• GenericType: Used to import the task types (i.e. analysis, production, test) by querying
the appropriate table in Oracle.

• SitesResolver: Used to import site names, tiers, countries and WLCG Federations by
querying the appropriate table in Oracle.

• ProdSimulation: Querying the production system of ATLAS (ProdSys2) to retrieve
metadata for the simulation type of production jobs, i.e. Fast Simulation or Full
Simulation.

These previous side-collectors are needed to allow the Panda collector to work accurately. But
panda collector is aided by some other related collectors, like an archive collector that parses the
historical data with the same behaviour of PandaCollector or PandaUnparsedJob that is trying to

8 | P a g e

reprocess the jobs that were not parsed in previous attempts due to incomplete information for a
specific job. The last collector, called “Menu” is used to quickly retrieve all the unique values that
can be found in the filters view of the real-time job monitoring user interface. It is reading all the
jobs and looking for all the unique values in order to show the options you have available in each
filter field.

Figure 1 Panda collectors disposition.

3.2.2 Job import workflow
The job collector has been designed to parse jobs in a fault tolerant way ensuring that it will keep
on working even under unexpected conditions.

Figure 2 Job collector workflow.

In case of one of the steps showed in the above figure fails, the process will start again from the
beginning with the same parameters of the previous execution. Depending on the error type, the
system could restart the complete parsing or throw the package to a special storage with all the

9 | P a g e

relevant information regarding the insertion/parsing problem. The project also provides a system
that monitors this special storage for any failed insertion attempts. It will then try to re-parse them
as the failure might have been caused due to some missing information during the first collector
attempt that could have been inserted by now.

Due to the fact that the persistence system is too different from the previous implementation, this
project also provides another collector that works with historical PanDA data, with the same
behaviour of the real-time panda collector.

4 Project Results
After the execution of this project, we have reduced the number of the technologies required in
job monitoring module of dashboard. Furthermore, we are keeping more consistency in terms of
languages and technologies that are being used in this module.

4.1 Job collector improvement
The new job collector is developed in Python instead of Python and PL/SQL as the previous
module. And in terms of performance, the new collector gets a speed up of 2.6x the performance
of the previous implementation using a PL/SQL procedure to translate the PanDA raw data into
the common Experiment Dashboard Job Monitoring schema.

Figure 3 Performance of job collector.

This improvement will aid to fix some problems occurred due to peak values. On average, the
new collector will deal with 180 updates per second but for times that the data received is higher
than expected, the new collector will have more leeway.

The new collector has been tested importing successfully all ATLAS jobs from the beginning of
2015 until the end of August which corresponds to more than 175 million job records.

223

584

0 100 200 300 400 500 600 700

Maximum	
 updates	
 per	
 second

Collector	
 Python	
 (New) Collector	
 PLSQL	
 +	
 Python	
 (Old)

10 | P a g e

4.2 Modified User Interface
The project also required to modify the User Interface in order to provide access to ElasticSearch
(the new persistence system) instead of Oracle. This task consists of modifying the parts of the
data access object previously developed to work with Oracle to use ElasticSearch by generating
the queries on the fly, taking into account all the selected filters and the sorting by attributes.

Figure 4 Screenshot of the current user interface.

The picture above shows the current view of the main application of this project, which is
dynamically generated on the client side. All the filter fields have autocomplete features using the
possible values from the data stored.

4.3 Dashboard responsiveness
With the new implementation of this persistence system, we are getting a user interface that is
more responsiveness, more dynamic and more interactive. The previous implementation also was
limiting the possibilities due to the time of execution. This is for example the case of queries with
a range of more than one month.

When we analysed the performance, we have encountered a real improvement in the application.
The first benchmark revealed that the response time of the landing page has been greatly
improved as Figure 5 shows. The new implementation performs the query in less than one second
and taking into account that the previous implementation was using around 12 seconds we can
talk about noticeable improvement.

11 | P a g e

Figure 5 Opening the landing page chart.

But, a query of historical data will convince us totally that this new implementation is greatly
improving the system. If we need to retrieve information about 6 months ago, the previous
persistence system, will spend more than 700 seconds as we can see in Figure 6, but
ElasticSearch is only spending 0.8 seconds.

Figure 6 Query data from 6 month ago.

And finally, when we query large term periods, we have again the same results, the previous
implementation can not be used to this purpose meanwhile the new implementation using
ElasticSearch keeps offering a good response times as we can see in Figure 7.

Figure 7 Time spent in a query with one month of data.

0.6

11.8

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

ElasticSearch

Oracle

Opening	
 the	
 landing	
 page	
 (s)

0.81

762.07

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0

ElasticSearch

Oracle

Historical	
 data	
 -­‐ 1	
 day	
 (s)

14.1

1084.3

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0

ElasticSearch

Oracle

One	
 month	
 query	
 (s)

12 | P a g e

5 Future work
As in every project, there are always a list of tasks to be done. In the current project, we have four
big tasks to be completed in the long term to get the system fully migrated and in production:

5.1 Extend the system to job accounting
The next task to do related to this project should be the extension to the job accounting system.
This other system is aggregating individual job records together and creates accounting
summaries allowing the users to view job accounting data over long time periods. Actually, this
system that creates aggregated job summaries will use the new real-time job monitoring system
that was implemented in this project.

5.2 Fix some parsing problems
Testing our parsing system, we have encountered around 2e-5% of jobs with problems during its
parsing. It is not a representative number but the parser should be improved in order to achieve a
proper parsing of as many records as possible.

5.3 Port the CMS collectors to store data in ElasticSearch and the
User Interfaces to retrieve data from ElasticSearch

Since the ElasticSearch schema is common between ATLAS and CMS, a future work project
would be to also port the CMS collectors to store data in ElasticSearch and to modify the User
Interfaces to query data from ElasticSearch. This project has shown that ATLAS users will
benefit a lot from using the User Interfaces that are running on top of ElasticSearch. It would be
nice to repeat this exercise for CMS as well so that their users will benefit from the great speed
improvements.

6 Conclusions
As a result of this project, we can conclude that ElasticSearch has a great performance, even
dealing with huge amounts of data and this study has shown that by using ElasticSearch in the
ATLAS Job Monitoring project, the speed of the system has been greatly improved. This speed
improvement will also benefit the individual ATLAS users using the real-time Experiment
Dashboard User Interface.

Also is noteworthy to mention the easy adaptation of classic workflows with relational databases
into the schema of a documental NoSQL system like ElasticSearch.

By using ElasticSearch, an open source project, the costs can be reduced as there are no licencing
costs. Also, it is easy to handle extra load by scaling-up the system by adding more servers in the
cluster without having to pay for any licence.

13 | P a g e

7 References
1. Andreeva J et al, “Experiment Dashboard - a generic, scalable solution for monitoring of

the LHC computing activities, distributed sites and services”, 2012 J. Phys.: Conf. Ser.
396 032093 doi:10.1088/1742-6596/396/3/032093

2. http://wlcg-public.web.cern.ch/about
3. Andreeva J et al, “ATLAS job monitoring in the Dashboard Framework”, 2012 J. Phys.:

Conf. Ser. 396 032094 doi:10.1088/1742-6596/396/3/032094
4. J Andreeva et al, “Processing of the WLCG monitoring data using NoSQL”, 2014 J.

Phys.: Conf. Ser. 513 032048 doi:10.1088/1742-6596/513/3/032048
5. https://www.elastic.co/products/elasticsearch
6. E Karavakis et al, “Common Accounting System for Monitoring the ATLAS Distributed

Computing Resources”, 2014 J. Phys.: Conf. Ser. 513 062024 doi:10.1088/1742-
6596/513/6/062024

