
CMS Data-Services Ingestion
into CERN’s Hadoop Big Data
Analytics Infrastructure

August 2015

Author: Anirudha Bose

Supervisor(s): Domenico Giordano
Antonio Romero Marin
Manuel Martin Marquez

CERN openlab Summer Student Report 2015

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

Abstract
This document introduces a new data ingestion framework called HLoader, built around
Apache Sqoop to perform data ingestion jobs between RDBMS and Hadoop Distributed
File System (HDFS). The HLoader framework deployed as a service inside CERN will
be used for CMS Data Popularity ingestion into Hadoop clusters. HLoader could also be
used for similar use cases like CMS and ATLAS Job Monitoring, ACCLOG databases,
etc. The first part of the report describes the architectural details of HLoader, giving some
background information about Apache Sqoop. The rest of the report focuses on the
HLoader programming API, and is meant to be an entry point for developers describing
how HLoader works, and possible directions of extending the framework in future.

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

Table of Contents
1	
 Introduction .. 5	

2	
 Apache Sqoop ... 5	

2.1	
 Sqoop Connectors and JDBC Drivers ... 6	

3	
 HLoader Architecture ... 7	

3.1	
 Overview .. 7	

3.2	
 Security .. 8	

3.2.1	
 CERN SSO Authentication .. 8	

3.2.2	
 Authorization .. 8	

3.2.3	
 Kerberos SSH Tunnelling .. 8	

3.2.4	
 Secure password input .. 8	

3.3	
 Modularity .. 8	

3.3.1	
 Database Connector Agnostic ... 8	

3.3.2	
 Interchangeable scheduler .. 9	

3.3.3	
 Interchangeable runner .. 9	

3.3.4	
 REST Interface .. 9	

3.4	
 Infrastructure .. 9	

4	
 API ... 10	

4.1	
 Entities ... 10	

4.2	
 Database Manager .. 10	

4.3	
 Agent .. 11	

4.3.1	
 Schedule Manager ... 11	

4.3.2	
 Scheduler ... 11	

4.3.3	
 Runner ... 12	

4.3.4	
 Monitor ... 12	

5	
 Recommendation for Future Work ... 12	

6	
 Workflow tools ... 14	

7	
 Acknowledgements .. 14	

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

Appendix I: Infrastructure .. 15	

Appendix II: Database Schema .. 16	

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

5 | P a g e

1 Introduction
The processing of enormous amount of data is a fundamental challenge for research in
High Energy Physics (HEP) at CERN. Various databases and storage systems are needed
to store the large amounts of control, operation and monitoring data in order to run the
LHC accelerator and its experiments. The Hadoop ecosystem developed by the Apache
Software Foundation provides a powerful set of tools for storing and analysing data in
petabyte scale. There is an increasing interest in Hadoop based solutions at CERN in
many areas including experiments, accelerator controls, archives, etc. The IT-DB group,
in collaboration with IT-DSS is rolling out a Hadoop production platform for big data
systems at CERN, integrating it with the current online RDBMS systems.

Most of the data services at CERN are based on relational data storage systems, which
are centrally managed by CASTOR. For big data analysis on the data stored in these
relational stores, it is important to transfer it to Hadoop-friendly storage systems, like the
Hadoop Distributed File System (HDFS), Hive or HBase tables. This data ingestion is
particularly complex process for an organization like CERN, and mechanical due to the
volume, and frequency of incoming data.

The goal of the project is to automate the process of data ingestion between RDBMS
systems and Hadoop clusters by building a framework that acts as a data pipeline, and
interfaces with both systems via dedicated tools like Apache Sqoop, and applies all
necessary actions in order to deliver ready-to-read data on Hadoop file system for high-
end frameworks like Impala or Spark

2 Apache Sqoop
Sqoop is a Top-Level Apache Software Foundation project designed to efficiently
transfer bulk data between structured data stores such as relational databases and Hadoop
Distributed File System (HDFS), Hive or HBase. Sqoop automates most of the data
ingestion process, relying on the database to describe the schema for the data to be
imported. Data ingestion using Sqoop is much faster than conventional “query-and-
dump”, since it performs the transfers in parallel using Hadoop MapReduce.

A by-product of the import process is a generated Java class, each instance of which can
encapsulate one row of the imported table. This class is not only used during the import
process by Sqoop, but the Java source code for this class is also provided to the user as
well, for use in subsequent MapReduce processing of the data. This allows developers to
quickly write MapReduce programs that use the HDFS-stored records in the processing
pipeline.

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

6 | P a g e

Figure 1: MapReduce job with Sqoop

Sqoop supports data imports to multiple output formats like plain text (default),
SequenceFiles, Avro Data files, and Parquet files. While this data on HDFS is
uncompressed by default, Sqoop can be set to compress the data using available Hadoop
codecs like GZip (default), BZip2, Snappy in order to reduce the overall disk utilization.

2.1 Sqoop Connectors and JDBC Drivers
A “connector” is a plugin that fetches metadata from the database server to optimize the
transfers. Apart from the Generic JDBC Connector, Sqoop also ships with specialized
fast connectors for popular database systems like MySQL, PostgreSQL, Oracle Database,
Microsoft SQL Server, IBM DB2, and Netezza. Additional connectors can likewise be
installed and configured with Sqoop to support other database systems or to improve the
performance of built-in connectors.

Drivers are database-specific pieces, created and distributed by the various database
vendors. Drivers need to be installed on the machine where Sqoop is executed because
they are used by connectors to establish the connection with the database server.

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

7 | P a g e

3 HLoader Architecture

Figure 2: HLoader architecture overview

3.1 Overview

At the core of HLoader is an agent, which is closely coupled with the scheduler, runner,
and monitor. The Agent is responsible for polling the meta-database for any newly added
jobs, or job modifications, and notify the scheduler of the changes. While adding a new
job to the meta database, the user provides all the information required by Sqoop to
perform a transfer. If the user requested incremental Sqoop transfers, the job is scheduled
to run in specified intervals.

At the requested time, the scheduler fires a transfer and invokes the runner to execute the
job on behalf of the user. The transfer initiates a Sqoop MapReduce job which imports
data from the source Oracle database to the target Hadoop cluster. The meta-database
also stores all the information related to the transfers, including logs and execution status.

The users interact with the HLoader client through a RESTful interface, which exposes
some of the data in the meta-database to authenticated users, allowing basic CRUD
operations.

Client

Meta	
 DB

REST	
 API Agent

Oracle	
 Databases

FIM

Hadoop	
 C lusters

… 	

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

8 | P a g e

3.2 Security

3.2.1 CERN SSO Authentication

In its current deployment at CERN, HLoader uses CERN Single Sign-On to authenticate
users, without any exchange of passwords. The Single Sign-On solution allows any web
application hosted using CERN Central IT Web Services to authenticate users and
receive their information including their group membership to manage authorizations.
CERN SSO is powered by the Shibboleth software package.

3.2.2 Authorization

After a user is authenticated with CERN SSO, HLoader queries the FIM database to get a
list of all servers for which the user has access rights. HLoader will allow only those
database servers to be used which are both in this list, as well as configured in the meta-
database. For new Oracle servers to be configured and included in the meta-database, the
user can submit a request to the administrators. Use of this authorization mechanism
allows HLoader to access the database on behalf of the user, without knowing or having
to store their credentials.

3.2.3 Kerberos SSH Tunnelling

HLoader uses a separate CERN service account user to remotely log in to the destination
cluster without passwords. This is made possible by using Kerberos tickets for
authentication, with all the principles and encrypted keys stored in a keytab file. The
keytab file allows automatic authentication using Kerberos, without requiring human
interaction or access to password stored in plain-text file.

3.2.4 Secure password input

The password needed by Sqoop to access the source Oracle database is passed securely
so that it doesn’t appear anywhere in the transfer logs, or command history as plain-text.

3.3 Modularity

3.3.1 Database Connector Agnostic

Database connectors are the access points to the meta-database. Every database connector
must implement the hloader.db.IDatabaseConnector, which defines a set of functions
for the inheriting class to override. This design makes it possible for individual
components of HLoader to function without having to know which connector is being
used to access the meta-database.

In the initial version of HLoader, the default connector for the PostgreSQL meta-database
uses SQLAlchemy as an ORM to communicate with the server. SQLAlchemy is a Python
SQL toolkit and Object Relational Mapper that gives application developers the full
power and flexibility of SQL. It provides a full suite of well-known enterprise-level
persistence patterns, designed for efficient and high-performing database access, adapted
into a simple and Pythonic domain language. SQLAlchemy includes dialects for SQLite,
PostgreSQL, MySQL, Oracle, MS-SQL, Firebird, Sybase and others, allowing HLoader

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

9 | P a g e

to support these dialects with little or no change in the existing codebase. Support for
NoSQL databases like MongoDB and CouchDB is also possible.

3.3.2 Interchangeable scheduler

The scheduler is responsible for triggering Sqoop transfers at specific timestamps.
However, the type of scheduler would largely depend upon the complexity of the
requirements. If there is a need for prioritized scheduling, or special task queues, it could
be easily implemented with HLoader without having to change the API of other
components.

3.3.3 Interchangeable runner

The runner is responsible for executing the Sqoop commands on the remote cluster, upon
activation of a trigger by the scheduler. It is possible to replace the current SSH runner
with something else which is more fault tolerant. With the migration to Sqoop 2, it should
be possible to use Oozie and remove the runner component entirely by merging it with
the scheduler.

3.3.4 REST Interface

HLoader exposes some data in the meta-database through a RESTful interface, making it
possible to build a web UI client on top of it. The client cannot directly access the meta-
database, but only via the REST API which is protected with CERN SSO.

The modular architecture also makes it possible to logically separate the REST API from
the agent, so that they can reside in different servers and function independently. Both the
REST API and the Agent use the same mechanism of accessing the meta-database, but
with different instances of the same database connector.

3.4 Infrastructure
Meta-database
The meta-database is a PostgreSQL server deployed using the CERN Database on
Demand Service with PostgreSQL and SQLAlchemy connector.

Client
REST API is served using Flask microserver framework with Python 2.7, and hosted
using CERN Central IT Web Services on Microsoft IIS 8.5 and DFS with FastCGI
interface. The web user interface is built on top of the REST API backed with AngularJS.

Agent
The agent can reside on the same Web Services DFS server, but since it is decoupled
from the REST interface, it could well be hosted on any locally managed server. Running
the agent on a dedicated server is important for performance reasons, since it requires an
active thread pool during execution.

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

10 | P a g e

As the SSH tunneling is done by Paramiko, a pure python SSH interface (depending on a
C low-level cryptography library), it could run virtually anywhere. We will probably use
an UNIX OpenStack VM for the agent.

4 API

4.1 Entities
HLoader entities are Python classes, having the ability to represent objects in the meta-
database. HLoader has the following base entity classes, and all entities, e.g.,
SQLAlchemy entities, must derive from them.

hloader.entitites.Job.Job
hloader.entitites.HadoopCluster.HadoopCluster
hloader.entitites.OracleServer.OracleServer
hloader.entitites.Log.Log
hloader.entitites.Transfer.Transfer

The overriding entity class can also define helper functions and relationships with other
entities. Implementation of the overriding class would largely depend upon the type of
meta-database connector used.

4.2 Database Manager
The Database Manager provides a meta-connector to connect to a database using a
connector of choice. When accessing the meta-database, the meta-connector should be
used to access all the member functions of the connector. The Database Manager defines
all connectors to be used in the DatabaseManager.connect_meta() static method as
follows:

@staticmethod
def connect_meta(type, address, port, username, password, database):
 DatabaseManager.meta_connector = {
 "PostgreSQLA": PostgreSQLAlchemyConnector(address, port,
username, password, database)
 }.get(type, None)

Adding a new connector can be done by updating the above function as:

@staticmethod
def connect_meta(type, address, port, username, password, database):
 DatabaseManager.meta_connector = {
 "PostgreSQLA": PostgreSQLAlchemyConnector(address, port,
username, password, database),
 "MongoDB": MongoDBConnector(address, port, username, password,
database)
 }.get(type, None)

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

11 | P a g e

Initializing the Database Manager with a specific connector can be done as:

DatabaseManager.connect_meta("Databasename", "server",
 port, "user", password, hloader)

4.3 Agent
The HLoader Agent runs on a separate thread, and is responsible for initializing and
communicating with the Schedule Manager. Since the REST API based client and the
agent are decoupled from one another, therefore the agent must poll the meta-database to
keep track of any new jobs or modification to existing jobs.

The duration of time for which the agent busy-waits is stored in the polling_factor
variable. This duration along with the job_last_update field in the Job entity is used to
determine whether any new job has been created, or which jobs were modified while the
agent was waiting.

4.3.1 Schedule Manager

The Schedule Manger functions more or less the same way as the Database Manager, by
providing a daemon which can be initialized with the scheduler of choice. The Schedule
Manager is also responsible to start the daemon upon initialization.

4.3.2 Scheduler

The default transfer scheduler used by HLoader is the Advanced Python Scheduler.
Advanced Python Scheduler (APScheduler) is a Python library to schedule Python code
to be executed later, either just once or periodically. New jobs can be added or old jobs
can be removed on the fly. APScheduler also offers some level of persistence, by storing
the jobs in a database, allowing them to survive scheduler restarts and maintain their
state. When the scheduler is restarted, it can be configured to run all the jobs it should
have run while it was offline.

The Schedule Manager initializes a non-blocking, background scheduler which triggers
jobs according to the job description stored in the meta-database. APScheduler offers the
following three built-in scheduling systems:

• Cron-style scheduling (with optional start/end times)*
• Interval-based execution (runs jobs on even intervals, with optional start/end

times)
• One-off delayed execution (runs jobs once, on a set date/time)

* Not tested with HLoader

hloader.schedule.schedulers.APScheduler.APScheduler is the main Scheduler
class which implements the
hloader.schedule.ITransferScheduler.ITransferScheduler interface. The
method tick() contains the code to be run when a trigger is fired. It must be noted that
the tick() method must be outside any class for serialization, and getting a textual

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

12 | P a g e

reference of the function at runtime. This, however, is an APScheduler specific
limitation.

APScheduler also provides some event listeners for the following events:

• EVENT_SCHEDULER_START
• EVENT_SCHEDULER_SHUTDOWN
• EVENT_ALL_JOBS_REMOVED
• EVENT_JOB_ADDED
• EVENT_JOB_REMOVED
• EVENT_JOB_MODIFIED
• EVENT_JOB_EXECUTED
• EVENT_JOB_ERROR
• EVENT_JOB_MISSED

Default APScheduler configuration:

• Job store: SQLAlchemyJobStore with local SQLite database at
sqlite:///jobs.sqlite

• Executor: ThreadPoolExecutor(20)
• Coalescing: False
• Max number of instances for one transfer: 1
• Time zone: Europe/Zurich

4.3.3 Runner

Runners are the components which execute the Sqoop job remotely on the destination
cluster. Every runner in HLoader must implement the
hloader.transfer.ITransferRunner.ITransferRunner interface, which constructs
the Sqoop command to be executed. The Runner spawns a new thread for each transfer
for parallelising multiple Sqoop jobs.

HLoader currently uses an SSHRunner, with the tunnelling performed by Paramiko with
GSS-API/Kerberos v5 authentication support.

4.3.4 Monitor

Sqoop transfers are fundamentally MapReduce jobs, which can be tracked using YARN
API. As soon as the runner detects the tracking URL of a transfer, it invokes the REST
Monitor to check the progress of the MapReduce job. For this purpose, the REST
Monitor spawns a new thread for tracking each transfer.

5 Recommendation for Future Work

With a view to the original goals of the project, HLoader could be extended in the
following directions.

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

13 | P a g e

Alternative database connectors
In addition to the current SQLAlchemy based connector for PostgreSQL, more
connectors based on other SQLAlchemy dialects could be implemented. The ‘classic’
dialects like MySQL, Oracle, SQLite, Firebird, and Microsoft SQL Server which are in
the SQLAlchemy Core are the prospective candidates.

The modular design of HLoader would also allow the integration of NoSQL database
connectors like MongoDB. The partially implemented connector using psycopg2, the
PostgreSQL adapter for Python also needs to be completed.

Alternative runners
Apache Oozie is a server based workflow scheduler engine specialized in executing
actions that run Hadoop MapReduce jobs. Actions in a workflow job of Oozie are
arranged in a control dependency DAG (Direct Acyclic Graph). A "control dependency"
from one action to another implies that the second action can't run until the first one has
finished.

HLoader’s current runner which uses SSH tunnelling to execute Sqoop commands on a
remote cluster could be replaced with Oozie, which could also manage the scheduling
functions.

Prepare for Sqoop 2
Sqoop 2 is essentially the future of the Apache Sqoop project. It has some interesting
features, the most important being the REST API, which is desirable for a project like
HLoader. However, since Sqoop 2 lacks some of the crucial features in Sqoop 1,
HLoader was built on top of the Sqoop 1 structure. A list of CERN relevant feature
differences between Sqoop 1 and Sqoop 2 are given below:

Feature Sqoop 1 Sqoop 2
Connectors for all major
RDBMS

Support for specialized fast
connectors available.

Many Oracle DB services
used at CERN.

Only generic JDBC
Connector supported.

Kerberos Security
Integration

Supported.

HLoader relies on Kerberos
tickets to get access into
remote Hadoop clusters.

Not supported.

Data transfer from RDBMS
to Hive or HBase

Supported.

HLoader should supported
this at some point.

Not supported.

REST API Not supported.

HLoader currently uses

Supported.

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

14 | P a g e

Sqoop CLI to submit jobs,
but a REST interface would
make the process more
clean, fault tolerant, and
Oozie friendly.

Support data ingestion into Hive and HBase
HLoader could start supporting imports into Hive and HBase tables with Sqoop 1. The
change to the existing codebase of HLoader would be trivial in this case.

Resolve restrictions
Restrictions imposed upon HLoader users are primarily meant for hardened security.
Some of them might be implemented differently, or removed entirely with the migration
to Sqoop 2.

HLoader as a FOSS
The long-term goal of HLoader is to be available to the developer community as an open-
source software. This will be gradually done in a phased manner, after HLoader is mature
enough and well tested inside CERN.

6 Workflow tools
To coordinate a project of this size, we needed some development and workflow tools.
We used the local CERN GitLab service and GitHub to collaborate, JIRA as an issue
tracker for the project, Slack for everyday communication and Jenkins for continuous
integration and testing.

7 Acknowledgements
The author would like to thank all the people at CERN who collaborated in this project.
Below is a list of collaborators in no particular order:

• Daniel Stein, Summer Student, IT-DB-DBF
• Antonio Romero Marin, IT-DB-DBF
• Domenico Giordano, IT-SDC-MI
• Kacper Surdy, IT-DB-DBF
• Katarzyna Maria Dziedziniewicz-Wójcik, IT-DB-DBF
• Manuel Martín Márquez, IT-DB-BDF
• Zbigniew Baranowsk, IT-DB-DBF
• Luca Menichetti, IT-DSS-DT

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

15 | P a g e

Appendix I: Infrastructure

CERN	
 openlab	
 Summer	
 Student	
 Report	
 	
 2015	

16 | P a g e

Appendix II: Database Schema

HL_S ERVERS HL_CLUS TERS

HL_JOBS HL_TRANS FERS

HL_LOGS

server_idPK

server_address

server_name

c lus ter_idPK

c lus ter_address

c lus ter_name

job_idPK

source_server_idFK

source_schema_name

source_objec t_name

des tination_c lus ter_idFK

des tination_path

owner_username

sqoop_nmap

sqoop_splitting _column

sqoop_incremental_meth
od

sqoop_direct

start_time

interval

job_las t_update

trans fer_idPK

scheduler_trans fer_id

job_idFK

log_idPK

trans fer_idFK

log_source

trans fer_status

trans fer_start

trans fer_las t_update

las t_modified_value

log_path

log_content

