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1 Introduction

Partial differential equations (PDEs) are differential equationswhich contain a-priori un-
kown multivariable functions and their partial derivatives. They are used to model var-
ious physical phenomena, such as heat, fluid dynamics or quantum mechanics. There
are several numerical methods to solve PDEs. A common one is the finite-difference
method (FDM), which approaches the differential equation by discretizing the problem
space and converting the PDE to a system of linear equations. The obtained linear sys-
tem can be solved using an iterative procedure which updates the solution until conver-
gence is reached.
The original paper proposes to use machine learning techniques in order to find high
performing update rules instead of designing them by hand [1], while still guaranteeing
convergence. In order to fulfill these requirements the learned solver is an adapted ex-
isting standard solver, from which the convergence property is inherited by enforcing
that a fixed point of the original solver is a fixed point for the trained solver as well. We
stress that the goal is not to find a new solver, but to optimize an existing one. To be
precise the learned part operates with the residuals after applying the standard solver.
This construction allows application to other existing linear iterative solvers of equiva-
lent design.
Since a linear iterative solver can be expressed as a product of convolutional operations,
it is not far fetched to use the similar techniques used in deep learning in order to find
such an optimal operator. In order to test this approach a solver was trained to solve a
2D Poisson equation on a square-shaped geometry with Dirichlet boundary conditions.
This solver is then tested on larger geometries of two shapes and different boundary
values. No significant loss of performance was observed; generalization is thus reached.
For more information we kindly refer to the original paper [1].

2 Background

In this section, we give a short introduction to the Poisson problem and iterative solvers,
which will help to understand the justification of using a convolutional neural network
to obtain a solver.

2.1 Poisson Equation
The Poisson equation is a second order linear partial differential equation (PDE). In or-
der to guarantee the existence and uniqueness of a solution, appropriate boundary con-
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ditions needs to be prescribed [[2]]. In this paper only Dirichlet boundary conditions
were considered. The Poisson problem hence reads:

Find u : Ω = Ω ∪ ∂Ω→ R s.t

{
∇2u =

∑
i

∂2

∂x2
i
= f(x) in Ω

u = b(x) on ∂Ω
(1)

Where Ω ⊂ Rk is a bounded domain with boundary ∂Ω. More specifically we consider
Ω = [0, 1]2.

2.2 Finite Difference Method
In order to solve complex, real-world PDEs a numerical approach must be used, as ana-
lytic solutions can be seldom found. As a first step the problem is discretized by trans-
forming the solution space from u : Rk → R to uh : Dk → R, where Dk is a discrete
subset of Rk. In this paper k = 2 and denoting by N the domain size, we introduce a
regular grid Ωh ⊂ Dk on Ω:

Ωh = {xi,j = (ih, jh) i, j = 0, ..., N − 1}
Ωh = {xi,j = (ih, jh) i, j = 1, ..., N − 2}

∂Ωh = Ωh \ Ωh

with h = 1/(N − 1) and denoting by Ωh the interior points, and by ∂Ωh the boundary
points. Equation 1 can be approximated as follows, discretizing and approximating∇2:

Find uh : Ωh → R s.t.

{
1
h2 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j) = fi,j in Ωh

ui,j = bi,j in ∂Ωh

(2)
It can be shown that the discrete approximation in equation 2 is stable and that ||u −
uh||L2 ≤ ch2 with c being a constant ([3]). Introducing a matrix A ∈ RN2×N2

and a
vector f ∈ RN2

problem definition 2 can be written as a linear system:

Au = f (3)

WithA being a pentadiagonal matrix:

Ai,j =


1 if i = j,

− 1
4 else if j ∈ {i± 1, i±N},

0 else

and defining i⋆ = ⌊i/N⌋, j⋆ = (i mod N) we have:

fi =
h2

4
f(xi⋆,j⋆)

In order to prescribe the boundary conditions we introduce a reset operator G:

G(u, b) = Gu+ (I −G)b

whereG ∈ RN2×N2

is a diagonal matrix and b ∈ RN2

is the boundary values vector:

Gi,i = 1, bi = 0 xi⋆,j⋆ ∈ Ωh

Gi,i = 0, bi = b(xi⋆,j⋆) xi⋆,j⋆ ∈ ∂Ωh

We note that the proposed approach to enforce boundary conditions is restricted to it-
erative methods solving linear systems equivalent to equation 3. Moreover we have not
investigated how this approach can be generalized to other type of boundary conditions
other than Dirichlet or to different iterative methods such as the Gauss-Seidel method.
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2.3 Iterative Solvers
A linear iterative solver finds the solution of a linear system by iteratively updating an
initial solution guess u0. The updating step can be expressed as:

uk+1 = Tuk + c

Where T is a constant update matrix and c is a constant vector. A common approach to
build T and c is to splitA intoA = M −N and by rewritingAu = f asMu = Nu+f
the following updating rule naturally arises:

uk+1 = M−1Nuk +M−1f

For more details we refer readers to [4] or to [1].

Jacobi method — SettingM = diag(A) leads to the so called Jacobimethod. In the case of
the Poisson problemM = I and T = I−A, hence relying on the previously introduced
reset operator the Jacobi method reads:

uk+1 = Ψ(uk)

= G((I −A)uk + f , b)

= G((I −A)uk + f) + (I −G)b

= G((I −A)uk + f − b) + b

The Jacobi method can also be implemented by convolution and point-wise operations,
as we explain in the following. We define by ωJ ∗u the 2D convolutionwith zero padding
of the kernel ωJ and u ∈ RN×N , with:

ωJ =

(
0 1/4 0

1/4 0 1/4
0 1/4 0

)
We can also define a new reset operator G denoting by ◦ the Hadamard product:

G(u, b) = G ◦ u+ b

whereG, b ∈ RN×N :

Gi,j = 1, bi,j = 0 xi,j ∈ Ωh

Gi,j = 0, bi,j = b(xi,j) xi,j ∈ ∂Ωh

Finally the Jacobi method can be written as

uk+1 = Ψ(uk)

= G(ωJ ∗ uk + f , b)

= G ◦ (ωJ ∗ uk + f) + b

3 Learning Process

Wewant to find an operatorH to optimize the convergence of the Jacobi method for the
Poisson problem of the form:

uk+1 = ΦH(uk)

= Ψ(uk) +H(Ψ(uk)− uk)
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We defineH as the composition ofK operations:

H(w) = HK ...(H3(H2(H1(w))))...)

Hi(w) = G ◦ (ωi ∗w)

As in the Jacobi method ωi ∗ w represents a 2D convolution with zero padding and no
bias term of a 3 × 3 kernel ωi with w. The operation with G ensures that the residuals
are always zero at the boundary points.

3.1 Interpretation ofH
The operator H can also be expressed as a matrix vector multiplication. We call H ∈
RN2×N2

the equivalent matrix:

H = GHKGHK−1...GH1

Hi is a banded matrix which is obtained from the corresponding 3 × 3 kernel ωi as
follows:

Hi,i−N−1 = ω0,0 Hi,i−N = ω0,1 Hi,i−N+1 = ω0,2

Hi,i−1 = ω1,0 Hi,i = ω1,1 Hi,i+1 = ω1,2

Hi,i+N−1 = ω2,0 Hi,i+N = ω2,1 Hi,i+N+1 = ω2,2

So the new method can be written using only matrix multiplications as:

uk+1 = ΦH(uk) = Ψ(uk) +H(Ψ(uk)− uk)

This interpretation is useful because if the following holds:

ρ(GT +H(GT − I)) < 1 (4)

then the method is guaranteed to convergence to a fixed point. Which can be used
during training time to enforce the convergence requirement.

4 Training and Generalization

4.1 Training
In order to find the optimal operatorH the corresponding linear neural network is cre-
ated. Each 2D convolutional layer has a kernel size 3 × 3 and zero bias, without any
activation function. The training phase is done on a set of Poisson problem instancesD.
A problem instance is uniquely defined byG, f , and b. We set f = 0 andwe use a square
domain with a 16× 16 grid. Each side exhibits a different but constant boundary value
chosen fromauniformdistribution on the interval [-1, 1]. For each problem instance the
error between the ground truth solution u⋆(G,f , b) and the computed solution using
ΦH with k iterations contributes to the loss function. The ground truth solution is ob-
tained using the Jacobi method operatorΨwith a sufficiently high number of iterations
k = 2000. The optimization objective is then defined as:

min
H

∑
G,b,f∈D;k∈DU(1,20)

∥∥∥Φk
H(u0,G,f , b)− u⋆(G,f , b)

∥∥∥2
2

(5)
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With k ∈ DU(1, 20) we denote the sampling of k from a discrete uniform distribution
on the interval [1, 20]. The initial guess u0 is sampled from a Gaussian distribution:
u0 ∼ N (0, 1). We have not enforced the any constraint to guarantee that the obtained
operatorΦH converges to a fixed point. Since it is not possible to express analytically the
spectral radius in Inequality 4 it is not clear how a regularization term could be added
to the objective function. A possible solution would be to check the spectral radius at
each iteration and if > 1 under-relax the weights of the convolutional kernels ωi. How-
ever this technique is highly computationally expensive since it requires to compute
the eigenvalues of a N2 ×N2 matrix at each iteration. We showed however that empir-
ically, without explicitly enforcing this constraint, the optimization yields an operator
ΦH which indeed converges for the tested problems.

Optimizer —We are using Adadelta as the optimizer of our model, because of its ability
to adapt over time and its minimal computational overhead. The method requires no
manual adjustment of a learning rate and is robust to various selection of hyperparame-
ters. Adadelta adjusts the learning rate by slowing down learning around a local optima,
when the accuracy changes by a small margin. Adadelta also uses the idea of momen-
tum to accelerate progress along dimensions in which the gradient consistently point in
the same direction. This idea is implemented by keeping track of the previous parame-
ter update and applying an exponential decay with a decay factor of ρ = 0.9 ([5]).

Table 1. Parameters used in the training process.

Grid size N ×N 16× 16
Number of problems |D| 50

Batch size |B| 10
Max epochs 1000
Tolerance 1e-6
Optimizer Adadelta

ρ 0.9

The training was done with batch optimization of size |B| = 10. At each epoch the set of
problem instancesD is randomly split in ⌈|D|/|B|⌉ subsets. The loss for these batches is
defined as the sum over all losses in the batch. The pseudo code for our training process
is given in Algorithm 1.

4.2 Hyper Parameter Search
In order to find the optimal number of layers and learning rate a simple grid search is
performed. As a first step we fix the number of layersK = 3 and compare the loss evolu-
tion for different learning rates γ. From Figure 1 it is evident the the loss decay is highly
dependent on the choice of the learning rate. For γ small the loss tends to converge to
what probably is a local minimum while for high values it can lead to divergence prob-
lems; note that in Figure 1 the loss for γ = 1e− 4 is not displayed since the optimization
diverged.
We hence decided to use the Adadelta optimization method for its ability to adapt to
the specific problem. We report in Table 1 the parameters used for the training process.
The number of layers K chosen was from 1 to 5. Figure 2 compares the loss evolution
for the different models. It is evident that the improvement on the total loss at conver-
gence diminishes withK increasing, in particular it seems that there is not a substantial
difference when k > 3.
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Parameter
:

ConvNetH

Data :G,b,f
Result :Optimal ConvNetH
for {G,f , b} ∈ D do

Compute u⋆(G,f , b)
Randomly sample ki from DU(1, 20)
Sample u0 from a Gaussian with µ = 0 and σ = 1

end
repeat
D⋆← randomly split D in ⌈|D|/|B|⌉ subsets
for B ∈ D⋆ do

lossbatch ←
∑

p∈B

∥∥∥Φk
H(p)− u⋆(p)

∥∥∥2
2

Compute the gradient of the loss function
Update weights ofH

end

lossepoch ←
∑

p∈D

∥∥∥Φk
H(p)− u⋆(p)

∥∥∥2
2

until ∥lossepoch−1 − lossepoch∥ < Tolerance;
Algorithm 1: Training Process

5 Experiments & Results

The hypothesis of the original paper is that a general solver can be found by training
on simple domains. The simplest Laplace equation ∇2u = 0 on a square boundary
shape was therefore chosen as training data. The model was trained on 16 × 16 grid,
and evaluated on grids of size 32 × 32 and 64 × 64 for both a square and an L-shaped
domain. The L-shaped domain is created by removing a smaller square from one of
the edges. Each side exhibits a different but constant boundary value chosen from a
uniform distribution on the interval [-1, 1]. Thus an L-shaped domain has 6 different
boundary values. The ground truth solution is obtained using the Jacobi method with a
sufficient number of iterations k = 5× 104. See Figure 4 for an example solution.
In Figure 3 we shows how the error w.r.t the ground truth solution evolves with the num-
ber of iterations k for the obtained solvers (K = {1, 2, 3, 4, 5}) and the Jacobi method.
The learned solvers clearly outperform the Jacobi method, however we need better met-
rics in order to fairly compare the different models.
Both solvers were evaluated on three metrics: the number of iterations, ratio of FLOPS
and ratio of CPU-time until required tolerance is reached. The number of flops were cal-
culated assuming both solvers would be implemented using convolutional operators.
This results in 4 multiply-add operations for each element in the grid for the Jacobi it-
eration, whereas the learned solvers exhibit 4 + 9K multiply-add operations. This is
the same measurement as reported in the original paper, which is an estimation of the
FLOPS taken. In addition to the paper we measured the CPU-time, which deemed us to
be a less error-prone and more reliable measure, nevertheless both ratios gave compa-
rable results.
As can be seen in Table 2 the trained solver was considerably faster than the existent
solver, showing a much quicker conversion than the baseline model. Thus replicating
the given results in the original paper. The highest speed-up is achieved by the 5-layer
network.
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Figure 1. Loss evolution for different learning rates
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Figure 3. Error evolution w.r.t. solver iterations for different number of layers K
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Figure 4. Example solutions for the two domains.

Table 2. Test results of solver trained on a 16× 16 grid with Adadelta as optimizer. Sample size for
each test of 20, number of iterations was counted until a difference to the ground truth solution of
1e−6 or a convergence difference of 1e−12were achieved. Shown are themean and the standard
deviation.

ratios: trained solver
existent solver

K Grid size Geometry FLOPS CPU time [s] #iterations k

1
32 l_shape 0.688± 0.001 0.308± 0.064 0.212± 0.000

square 0.688± 0.000 0.332± 0.097 0.212± 0.000

64 l_shape 0.689± 0.001 0.351± 0.053 0.212± 0.000
square 0.686± 0.011 0.327± 0.025 0.211± 0.003

2
32 l_shape 0.518± 0.001 0.161± 0.032 0.094± 0.000

square 0.518± 0.001 0.171± 0.051 0.094± 0.000

64 l_shape 0.521± 0.001 0.165± 0.026 0.095± 0.000
square 0.519± 0.008 0.183± 0.031 0.094± 0.001

3
32 l_shape 0.421± 0.001 0.106± 0.012 0.054± 0.000

square 0.421± 0.001 0.101± 0.013 0.054± 0.000

64 l_shape 0.426± 0.001 0.115± 0.017 0.055± 0.000
square 0.425± 0.007 0.116± 0.019 0.055± 0.001

4
32 l_shape 0.401± 0.002 0.109± 0.028 0.040± 0.000

square 0.401± 0.002 0.095± 0.022 0.040± 0.000

64 l_shape 0.408± 0.001 0.097± 0.013 0.041± 0.000
square 0.407± 0.007 0.098± 0.016 0.041± 0.001

5
32 l_shape 0.402± 0.002 0.078± 0.016 0.033± 0.000

square 0.402± 0.002 0.083± 0.016 0.033± 0.000

64 l_shape 0.412± 0.001 0.088± 0.012 0.034± 0.000
square 0.410± 0.007 0.091± 0.023 0.033± 0.001
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6 Related Work

Recently, there have been several works on applying deep learning to solve the Poisson
equation. However, to the best of our knowledge, previous works used deep networks
to directly generate the solution; they have no correctness guarantees and are not gen-
eralizable to arbitrary grid sizes and boundary conditions. This is the reason why our
work was focused on reproducing the results of [1], and on empirically proving the gen-
eralization of their model to arbitrary shapes and grid sizes.

7 Conclusion & Future work

Wecould partially confirm the results reported in the original paper, not every resultwas
reproducible either through lack of time or certainty in how these results were achieved
or measured. The trained solver was able to generalize well to the presented different
sizes, geometries and boundary values, while using less resources compared to the stan-
dard solver.
In the futureworkwewould like to improve the design of the solver and the experiments
in order to gain more confidence in the presented approach. For example H is fixed
for each iteration, one could imagine a solver with different H for different iterations
up to a certain threshold. We did not have the opportunity to test the solver using the
MultiGrid method, nor the square-Poisson problem. It is not clear how the cylinder
domain was implemented in a finite difference framework, whether radial coordinates
or a non uniform grid were used.
We estimate that investigating how this approach can be generalized to other type of
boundary conditions other than Dirichlet or to different iterative methods such as the
Gauss-Seidel method would lead to interesting results and a more applicable approach
in general, as well as trying to solve different PDEs.
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