Tyndall[°]Centre for Climate Change Research

Figure 2. The possibility space for future EU energy systems. Left panel shows a 2x2 scenario typology varying two critical uncertainties; right panel represents four storylines spanning the possibility space.

entrenchment

entrenchment

national control &

particularities

www.PosterPresentations.co

Storylines of future change in the EU energy technology innovation system

Indicators of Innovation System Processes

Table 1. Indicators of innovation system processes which are
 strengthened or weakened in four storylines of future change in the EU energy system. Orange cell = strengthened; Purple cell = weakened; blank cell = no distinctive effect of the storyline.

ETIS indicators d variables in panel regression)	Diversification	Directed Vision	National Champions	Localisation
lic energy RD&D enditure		strengthened		strengthened
of patents				
gy technology orts (trade)				strengthened
ning rate nnology costs)				
ility in energy RD&D enditure			strengthened	
ability of policy ruments: innovation, Ilatory, market- ed, and roadmaps	weakened	strengthened	strengthened	
ersity of policy ruments				strengthened
ility of policy ruments			strengthened	
ONS				
nt co-inventions a-EU)	strengthened			weakened
ket share (actual ket size as % of				

Method

Estimate empirically the influence of innovation system processes on three distinct innovation outcomes (patents, coinvention, technology cost).

 $Patents = \beta_1 + \beta_2 \times RDD_{t-1} + \beta_3 \times RDD_{volatility} + \beta_4 \times$ Coinvention + $\beta_5 \times Stock_Patent + \beta_6 \times Policy_{duration} +$ $\beta_7 \times Policy_{stability/diversity} + \gamma_i + \varepsilon_{i,t}$

 $Coinvention = \beta_1 + \beta_2 \times RDD_{t-1} + \beta_3 \times RDD_{volatility} + \beta_{t-1} + \beta_{t-1} \times RDD_{volatility} + \beta_{t-1} + \beta_{t-1} \times RDD_{volatility} + \beta_{t-1} \times RDD_{vol$ $\beta_4 \times Policy_{duration} + \beta_5 \times Policy_{diversity} + \beta_6 \times Trade +$

Cost of technology = $\beta_1 + \beta_2 \times Capacity_{cumulative} +$ $\beta_3 \times RDD_{cumulative} + \beta_4 \times Policy_{duration} + \beta_5 \times$ $Policy_{diversity} + \beta_6 \times Trade + \gamma_i + \alpha_t + \varepsilon_{i,t}$

To run a Monte Carlo simulation, we need to assume Orange and Purple cells in Table 1. We generate random draws from a truncated standard normal distribution which cuts off both

Orange cell: Strengthened RD&D expenditure(t-1) is represented by as below:

E.g. RD&D expenditure(t-1)*[Left truncation point(1), right truncation point(2)]

Purple cell: Weakened co-invention is represented by as

E.g. Co-invention*[Left truncation point(0), right truncation

And then we simulate the Monte Carlo simulation 1,000 times. The simulated mean and standard deviations of the coefficients of the column (1) is in Table 2-4.

Now we can compare the deterministic estimation results in <u>column (1)</u> and <u>column (2)-(5)</u> to see whether the effects of strengthened or weakened coefficients has changed on the outcome variable: number of patents, co-invention, and the cost of technology.

Monte Carlo Simulation Estimation Results

Overall effect in each cell is summarized: Sky blue(changed to insignificant), Green(changed to significant)

Table 2. No. of patents (2001-2013)

	Base regression	Diversification	Directed Vision	National Champion	Localisation
RDD(t-1)	0.00113***	0.0011334**	0.0011723*	0.0012093*	0.00113*
RDD volatility	-0.0331**	-0.0334419	-0.0345167	-0.0340144	-0.0332442
Coinvention	0.000372**	0.0003735*	0.0003375**	0.0003274**	0.0003449**
Cum_patent	0.0000674***	0.0000647*	0.0000706**	0.000068**	0.0000682*
Policy durability	-0.00658	-0.0064176*	-0.0066888	-0.0074227	-0.0070249*
Policy stability	-0.266***	-0.2595303	-0.2596585	-0.2647871	-0.270636
Standard errors in parentheses					

*** p<0.01, ** p<0.05, * p<0.1

Table 3. Coinvention (2001-2013)

	Base regression	Diversification	Directed Vision	National Champion	Localisation
RDD(t-1)	0.00172***	0.0017044**	0.00174**	0.001731**	0.00174**
RDD volatility	-0.0109	-0.0110632	-0.012372	-0.0111662	-0.0124395
Policy durability	-0.00934	-0.0092552	-0.0099039	-0.0093851	-0.0088173*
Policy diversity	0.0768	0.0858564**	0.0707475*	0.0921282**	0.0701551*
Trade	0.0000157***	0.0000162**	0.0000162*	0.0000176**	0.0000161*

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 4. Cost of technology (2011-2015)

	Base regression	Diversification	Directed Vision	National Champion	Localisation
Cum_marekt share	-0.0000000332**	-0.00000000330	-0.0000000352	-0.00000000336	-0.00000000305
Cum_RDD	-0.000219**	-0.0002253	-0.000222	-0.0002252	-0.0002153
Trade	-1.69e-07	0.000000240	0.00000182	0.000000455	-0.00000319
Policy durability	-0.00829	-0.0072822	-0.0066993	-0.007571	-0.0116525
Policy diversity	0.573	0.7992782	0.2717717	0.7480483	0.5461742

tandard errors in parentnese *** p<0.01, ** p<0.05, * p<0.1

Combining the Monte Carlo Simulation Results with the **Storyline Interpretations**

Problem solving capacity: Changes in the number of patents and co-invention affect the technological problem-solving capacity of the EU innovation system for new energy technologies.

Learning capacity: Changes in RD&D expenditure (t-1) and volatility affect the learning capacity of the EU innovation system for new energy technologies.

System-integration capacity: Changes in policy environment such as durability, stability and diversity affect the system integration capacity of the EU's energy innovation system with respect to new energy technologies.

EMP-E 2018 Modelling clean energy pathways

Informing Energy Systems Analysis and Modelling

Table 5. Problem-solving, learning, and system-integration capacity under each storyline

Overall effect in each cell is summarized as follows: Strengthen; Neutral; Weaken

	Diversification	Directed Vision	National Champion
Problem-solving capacity (patent, coinvention)	Weaken	Neutral	
Learning capacity (RD&D(t-1), RD&D volatility, trade)		Weaken	Weaken
System integration (policy durability, stability, and diversity)	Neutral <mark>Strengthen</mark>	Neutral	Weaken Neutral

*Cost of technology regressions include only three of the six technology areas (renewable energy, sustainable transport, energy efficient appliances) due to limited data availability, so results from the cost of technology

- **Diversification** story sees a consistent weakening process of problem-solving. However, there is no consistent effects of the system integration capacity, which can be nonnegative. Heterogeneous actors in a highly distributed series of learning experiments weaken problem solving capacity, particularly coinvention. Granular and modular technologies may enhance system integration capacity.
- **Directed Vision** storyline sees overall consistent findings: neutral problem-solving capacity, weakening learning capacity and neutral system integration capacity. It is a bit difficult to find explanations.
- **National Champion** storyline sees a consistent weakening process of learning capacity, but <u>system integration capacity ranges from weak</u> to neutral. Emphasis in a centralized energy system weaken learning capacity of new energy technologies. Also, it may weaken system integration capacity because of a huge influence of incumbents.
- **Localisation** storyline sees a consistent neutral problem-solving capacity and system integration capacity. However, learning capacity changes from weak to neutral. A differentiated national and subnational energy policy may weaken learning capacity because direction of national and subnational RD&D can be misaligned.

Acknowledgements

We acknowledge funding support from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 691843 (SET-Nav). We are grateful for constructive comments and suggestions from Anna Wieczorek, Fionn Rogan, Matt Hannon, Laura Diaz Anadon.

Contact information

Dr. Yeong Jae Kim Senior Research Associate Tyndall Centre for Climate Change Research University of East Anglia Norwich Research Park Norwich NR4 7TJ Email: y.kim@uea.ac.uk

