Drying of saline porous-media in contact with the free-flow

Vishal A. Jambhekar¹, Emna Mejri¹ Natalie Schröder¹ Nima Shokri² Rainer Helmig¹, Sorin Pop³

1. Dept. of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart 2. School of Chemical Engineering and Analytical Science, University of Manchester 3. Dept of Mathematics and Computer Science, Eindhoven University of Technology

Motivation

• Focus: Modeling atmospheric processes for evaporative salinization

• State-of-the-art: Free-flow porous-media coupled REV-scale model concept

Numerical experiments

Validation (Homogeneous case) [1]:

Figure: Irrigated agricultural lands

Figure: Salinized abandoned land

Model concept

- Non-isothermal porous-medium flow and transport (phases: solid, liquid and gas)
- Non-isothermal Stokes free-flow (gas phase)
- Implementation within the modeling framework of DuMu^x

Salt precipitation **Heterogeneous case:**

Water loss

For each component conservation equation is solved:

$$\begin{split} \sum_{\alpha \in \{l,g\}} & \frac{\partial (\phi \varrho_{mol,\alpha} S_{\alpha} x_{\alpha}^{\kappa})}{\partial t} - \sum_{\alpha \in \{l,g\}} \nabla \cdot \left\{ \frac{k_{r\alpha}}{\mu_{\alpha}} \varrho_{mol,\alpha} x_{\alpha}^{\kappa} \mathbf{K} (\nabla p_{\alpha} - \varrho_{\alpha} \mathbf{g}) \right\} \\ & - \sum_{\alpha \in \{l,g\}} \nabla \cdot (D_{pm,\alpha}^{\kappa} \varrho_{mol,\alpha} \nabla x_{\alpha}^{\kappa}) - \sum_{\alpha \in \{l,g\}} = \mathbf{q}^{\kappa} \,\forall \,\kappa \,\in \{w, a, s\} \\ & = \begin{cases} k_{p} \phi \varrho_{mol,l} S_{l} (x_{l}^{s} - x_{l,max}^{s}) \,\forall \,\kappa = s \\ 0 & \text{else} \end{cases} \quad \mathbf{q}^{\kappa} = k_{p} A_{p} (S_{w}) \mid 1 - \Omega_{n}^{\theta} \mid^{\eta} \end{split}$$

One energy balance equation (Local thermal equilibrium)

Conservation of the precipitated salt and porosity and permeability change [1] :

$$\frac{\partial(\phi_S^s \varrho_{mol,S}^s)}{\partial t} = q^s \left(\phi = \phi_0 - \phi_S^s, \ \frac{K}{K_0} = \left(\frac{\phi}{\phi_0}\right)^3 \left(\frac{1 - \phi_0}{1 - \phi}\right)^2, \ \frac{p_c}{p_{c0}} = \sqrt{\frac{K}{K_0}}\right)$$

Free-flow

 q^κ

Stokes equation for momentum balance [1]:

$$\frac{\partial(\varrho_g \mathbf{v}_g)}{\partial t} + \nabla \cdot \left[p_g \mathbf{I} - \mu_g (\nabla \mathbf{v}_g + \nabla \mathbf{v}_g^T) \right] - \varrho_g \mathbf{g} = 0$$

Additional work

- Reactive precipitation approach for mixed salts (e.g. Na⁺, Cl⁻ and l⁻)
- Formation of hydrates
- Consequence of variation in porous-media and free-flow properties

Interface

Normal and tangential traction contribution [1]:

• Continuity of fluxes:

$$[\mathbf{q}\cdot\mathbf{n}]^{\mathsf{ff}}=[\mathbf{q}\cdot\mathbf{n}]^{\mathsf{pm}}$$

• Local thermal equilibrium:

$$[T]^{\mathsf{ff}} = [T]^{\mathsf{pn}}$$

• Local chemical equilibrium:

$$[x_g^{\kappa}]^{\mathsf{ff}} = [x_g^{\kappa}]^{\mathsf{pm}} \qquad \forall \, \kappa \, \in \{w, a\}$$

Support of the German Research Foundation is gratefully acknowledged.

Influence of surface saturation, flow velocity and radiation on salinization

Literature

[1] V. Jambhekar, N. Schröder, R. Helmig, N. Shokri.

Free-Flow-Porous-Media Coupling for Evaporation-Driven Transport and Precipitation of Salt in Soil, Transport in porous media (June, 2015).

[2] M. Rad, M. Dyonisius and N. Shokri.

Nonlinear Effects of Dissolved NaCl Concentrations on Water Evaporation From Porous Media. General Soil Physics: II, 117-38 (October 17, 2011).

[3] M. Zeidouni, M. Pooladi-Darvish and D. Keith

Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers., International Journal of Greenhouse Gas Control, 3:600-611 (2009).

 $DuMu^{x}$ The simulations are preformed using $DuMu^{x}$.