3D Model of Magnetic Reconnection in Sigmoidal Regions

Brianna Douglas

University of North Carolina at Charlotte Mentors: Antonia Savcheva & Edward DeLuca Harvard-Smithsonian Center for Astrophysics

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

Background Info

- Controls all the activity that you can and cannot see on the sun
- Twisting magnetic field lines

Video: UCAR via SOHO (ESA & NASA)

Outline

Jargon: Sigmoids, QSLs, Slip-Running Reconnection

Process: Coronal Modeling System (CMS) via IDL

Analysis: Compare slippage observations with 3D models

JARGON YOU NEED TO KNOW TO MAKE MODELS

Sigmoids

Image: NASA/STFC/ISAS/JAXA

Quasi Separatrix Layers (QSLs)

3D topological features

Pariat (2006)

Slip Running Reconnection

CMS MODELING PROCESS

CMS Modeling

 Compute Potential field (axial flux and poloidal flux)
Relax the solution for ~30,000 to 60,000 iterations

Non-linear force free field (NLFFF) – used for investigating the structure, dynamics and evolution of the coronae of solar active regions (DeRosa et al 2009) 9

Non-linear Force Free Field

- Assume Lorentz force is zero
- $\boldsymbol{J} \times \boldsymbol{B} = (\boldsymbol{\nabla} \times \boldsymbol{B}) \cdot \boldsymbol{B} = 0$, $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$
- J = 0 linear force (potential field)
- $\boldsymbol{J} \mid \mid \boldsymbol{B} = 0$, $\boldsymbol{J} = \alpha * \boldsymbol{B}$ non-linear force
 - $-\alpha = C$ linear force free field ($\alpha = 0$ special linear field)

 $-\alpha \neq C$ non linear force free field

Makes numerical simulations not as complex

Flux Rope Path

AIA 304 Å: 14 June 2015

Viewing Field Lines

AIA 304 Å: 14 June 2015

Fitting the Data

XRT: 14 June 2015 GaodeliEit (0.00525)

ANALYSIS & RESULTS

3 Regions Modeled

14 June 2015

12 July 2012

30 September 2014

Comparing the Data

12 July 2012

Comparing the Data

AIA 94 Å: 12 July 2012

QSL Map

Model27_30000 QSL Map

Plotting best fit data

Model6_30000

20

Model6_40000

Model6_50000

-100> -150 -200 -250 -300-150 -100 -50 0 50 100 150 200

Х

Model 6_50000 SZ Plane

23

Summary

- Sigmoids are areas where eruptive events caused by change in connectivity can occur
- There is a correlation between slipping reconnection and the created models
- NLFFF modeling may be able to capture realistic 3D magnetic structures associated with slipping reconnection

Thank You!

Acknowledgements

- Mentors Antonia Savcheva & Ed DeLuca
- Professor John Johnson and Banneker Institute
- Center for Astrophysics faculty and staff
- Solar REU students 🙂
- NSF-REU Solar Physics Program at SAO, grant number AGS 1263241 and AFOSR Grant Z15-12504 "Toward Improved Space Weather Prediction Through the Observation and Modeling of Coronal Magnetism"

