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1. Introduction

After the pioneering work of Zadeh [1] and Attanosov [2], a progressive develop-
ments have been made by Bag and Samanta [3], Samanta and Jebril [4], Park [5],
Katsaras [6], Kramosil and Michalek [7] and others in the field of normed linear s-
paces, metric spaces and topological spaces. Researchers in economics, sociology,
medical science and many other several fields deal daily with the complexities of
modeling uncertain data. Classical methods are not always successful because the
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uncertain appearing in these domains may be of various types. While probability the-
ory, theory of fuzzy set, intuitionistic fuzzy set and other mathematical tools are well
known and often useful approaches to describe uncertainty but each of these theories
has it’s different difficulties as pointed out by Molodtsov [8]. In 1999, Molodtsov [8]
introduced a novel concept of soft set theory which is free from the parametrization
inadequacy syndrome of different theories dealing with uncertainty. This makes the
theory very convenient and easy to apply in practice. Then, many authors have de-
signed their research works on several algebraic structures using this noble concept
for instance, Maji et al. [9-12], Aktas and Cagman [13], Dinda et al. [14], Basu et
al. [15, 16], Aygunoglu and Aygun [17], Yaqoob et al. [18], Varol et al. [19], Zhang
[20], Das et al. [21], Beaula and Priyanga [22], Tanay and Kandemir [23] and many
others.

After introduction of Neutrosophic set (NS) by Smarandache [24] which is a gen-
eralisation of classical set, fuzzy set, intuitionistic fuzzy set, Maji [25] has introduced
a combined concept Neutrosophic soft set (NSS). Consequently, several mathemati-
cians have produced their research works in different mathematical structures for
instance, Broumi [26], Bera and Mahapatra [27, 43-46], Broumi et al. [28-39], Pra-
manik [40, 41], Cetkin et al. [47-49]. Later, this concept has been modified by Deli
and Broumi [42].

This paper presents the notion of neutrosophic soft linear space along with inves-
tigation of some related properties and theorems. Section 2 gives some preliminary
useful definitions related to it. In Section 3, neutrosophic soft linear space is defined
along with some properties. Section 4 and Section 5 deal with the cartesian product
of NSLSs and neutrosophic soft subspace, respectively. The concept of neutrosophic
soft vector and neutrosophic soft scalar along with their properties are introduced in
Section 6. Finally, the conclusion of our work has been stated in Section 7.

2. Preliminaries
We recall some basic definitions related to fuzzy set, soft set, neutrosophic set for the
sake of completeness which are found in the literature [8, 14, 24, 25, 42, 45, 46].

Definition 2.1 A binary operation  : [0, 1] X [0, 1] — [0, 1] is continuous t- norm if
= satisfies the following conditions :
(i) * is commutative and associative.
(ii) * is continuous.
(ii)ax1=1xa=a, Yae|0,1].
(iviasb<cx*d if a<c,b<d with a,b,c,d €][0,1].
Some examples of continuous #-norm are a = b = ab, a * b = min{a, b}, a * b = max
{fa+b-1,0}.

Definition 2.2 A binary operation o : [0, 1] X [0, 1] — [0, 1] is continuous t-conorm
( s-norm) if o satisfies the following conditions :

(i) ¢ is commutative and associative.

(>ii) © is continuous.

(iili)ao0=0¢a=a, Yae|0,1].

(iv)aob<cod if a<c,b<d with a,b,c,d€0,1].
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A few examples of continuous s-norm are a ¢ b = a+b — ab,a o b =max{a, b}, a o
b =min{a + b, 1}. = is called an idempotent #-norm and ¢ is called an idempotent
s-norm, ifa*a=a and a¢a=a VYa € [0,1]. The only idempotent r-norm and
idempotent s-norm are min operator and max operator, respectively.

Definition 2.3 Ler X be a space of points (objects), with a generic element in X de-
noted by x. A neutrosophic set A in X is characterized by a truth-membership function
T4, an indeterminacy-membership function 1, and a falsity-membership function F 5.
Ta(x), I4(x) and F4(x) are real standard or non-standard subsets of 170, 1*[. That
is Ta,In, Fa : X =170, 1*[. There is no restriction on the sum of T4(x), [4(x), Fa(x)
and so, 0 < supT4(x) + supls(x) + supF(x) < 3*.

Definition 2.4 Let U be an initial universe set and E be a set of parameters. Let
P(U) denote the power set of U. Then for A C E, a pair (F, A) is called a soft set over
U, where F : A — P(U) is a mapping.

Definition 2.5 Let U be an initial universe set and E be a set of parameters. Let
NS (U) denote the set of all NSs of U. Then for A C E, a pair (F,A) is called an NSS
over U, where F : A — NS (U) is a mapping.

This concept has been redefined by Deli and Broumi [42] as given below.

Definition 2.6 Let U be an initial universe set and E be a set of parameters. Let
NS (U) denote the set of all NSs of U. Then, a neutrosophic soft set N over U is a set
defined by a set valued function fy representing a mapping fy : E — NS (U) where
[ is called approximate function of the neutrosophic soft set N. In other words, the
neutrosophic soft set is a parameterized family of some elements of the set NS (U)
and therefore it can be written as a set of ordered pairs,

N= {(e, {< X, Tﬁ\,(e)(x), ]fN(e)(x)’ FfN(L,)(.X) > |x € U})|e € E},

where T 0 (%), Ly (e)(%), F 5y (0)(%) € [0, 1], respectively are called the truth-membership,
indeterminacy-membership, falsity-membership function of fy(e). Since supremum of
each T, I, F is 1 so the inequality O < T, ) (X) + I5y(e)(X) + Fpy(0)(x) < 3 is obvious.

Example 2.1 LetU = {hy, hy, h3} be aset of houses and E = {e;(beautiful), e;(wooden),
e3(costly)} be a set of parameters with respect to which the nature of houses are de-
scribed. Let

f(e) =1{< hy,(0.5,0.6,0.3) >, < hy, (0.4,0.7,0.6) >, < h3, (0.6,0.2,0.3) >},
fr(ea) = {< hy,(0.6,0.3,0.5) >, < hp, (0.7,0.4,0.3) >, < h3,(0.8,0.1,0.2) >},
fr(es) =1{< hy,(0.7,0.4,0.3) >, < h, (0.6,0.7,0.2) >, < h3, (0.7,0.2,0.5) >}.

Then N = {[ey, fv(e1)], [e2, fn(e2)], [e3, fn(e3)]} is an NSS over (U, E). The tabular
representation of the NSS N is given in Table 1.

Definition 2.7 The complement of a neutrosophic soft set N is denoted by N and is
defined by :

N = {(e,{< x, Fy(e)(0), 1 = Iy (0)(%), Ty (x) > |x € U})le € E}.
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Definition 2.8 Let Ny and N, be two NSSs over the common universe (U, E). Then
N, is said to be the neutrosophic soft subset of N, if

T, ) < Ty, 00 L1y, (0(X) Z L1 () F iy 0(%) 2 Fp, (%), Ve € E, Vx € U.

We write Ny C N, and then N, is the neutrosophic soft superset of N;.

Table 1 : Tabular form of NSS N.
fuler) fu(ed) fn(es)
hy | (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)

hy | (04,0.7,06) (0.7,04,03) (0.6,0.7,0.2)
hs | (0.6,02,03) (0.8,0.1,02) (0.7,0.2,0.5)

Definition 2.9 Let Ny and N> be two NSSs over the common universe (U, E). Then
their union is denoted by Ny U N = N3 and is defined as :

N3 = {(e.{< x, T, (), Ly, @)(0), F iy 0(%) > |x € UDle € E},
where Ty = Ty (00(%) © Ty, (00, L gy (0)(X) = Ty (%) * Iy, 0)(x) and
Fr @) = Fp () % Fpy, 0(%).

Their intersection is denoted by Ny N N, = Ny and is defined as :

Ny = {(e,{< X, Ty, ) (%), Iy, (%), F gy, (%) > |x € UDle € E},
where T, = Ty (%) * Ty @) (), Ly, (0 (%) = Ipy (0(X) @ I ()(x) and
Fr@(0) = Fp () 0 Fy ().

Definition 2.10 Ler N| and N be two NSSs over the common universe (U, E). Then
their ‘AND’ operation is denoted by Ny A N, = Ns and is defined as :

Ns = {[(a,0), {< x, Ty @p)(0): Ly, @by (%), Fpy 0y (%) > |x € U|(a, D) € E X E},
where T, ap)(X) = T gy, @) * Ty, ) (0 L iy @) (%) = Lpy @(%) © Lpy, 0y (x) and
Flgan(X) = Fpy @(X) © Fry (%)

Their ‘OR’ operation is denoted by Ny V N, = Ng and is defined as :

Ne ={[(a,0).{< x, T p @by (%), Iy, () (X)s F gy @y (%) > |x € U}(a, b) € E X E},
where Ty @n(¥) = Try @) 0 T,y (0 Ly @y (¥ = Lpy (%) * Iy, (%) and
Fpyoany(0) = Fy @(X) % Fy, 5)(%).

Definition 2.11 A neutrosophic soft set N over (U, E) is said to be null neutrosophic
soft set denoted by ¢, if

TfN(L,)(.X) =0, IfN(e)(x) = I,Fﬁ\,(e)(x) =1,Vee E,Vxe U
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A neutrosophic soft set N over (U, E) is said to be absolute neutrosophic soft set
denoted by 1, if

TfN(g)(x) = 1, Ifl\,(g)(x) = 0, Fflv(g)(x) = 0, Ye € E, Yxe U

Clearly, ¢;, = 1, and 15, = ¢,,.

Definition 2.12 A neutrosophic soft point in an NSS N over (U, E) is defined as an
element (e, fy(e)) of N, for e € E and is denoted by ey, if fn(e) &€ ¢, and fy(€’) €
¢y, Ve’ € E - {e}.

The complement of a neutrosophic soft point ey is another neutrosophic soft point
ey, such that fy(e) = (fnv(e))".

A neutrosophic soft point ey € M, M being an NSS if for e € E, fn(e) < fu(e) i.e.,

Thye)(®) < Thye)(0), T1ye(X) 2 I5y, (0, Fpye)(%) 2 Fpyye(x), ¥x € U.

Example 2.2 Let U = {x1, X2, x3} and E = {ej, e2}. Then,
ey ={<x1,(0.6,04,0.8) >, < x,,(0.8,0.3,0.5) >, < x3,(0.3,0.7,0.6) >}
is a neutrosophic soft point whose complement is
ey =1{<x1,(0.8,0.6,0.6) >, < x,(0.5,0.7,0.8) >, < x3,(0.6,0.3,0.3) >}.
For another NSS M defined on same (U, E), let
fu(er) ={<x1,(0.7,0.4,0.7) >, < x,,(0.8,0.2,0.4) >, < x3,(0.5,0.6,0.5) >}.

Then fy(e1) < fu(er) ie., ey € M.
3. Neutrosophic Soft Linear Spaces
In this section, we have defined NSLS with suitable examples and have studied some
basic properties related to it.

Unless otherwise stated, V(K) is a vector space over the field K and E is treated as
the parametric set through out this paper, e € E an arbitrary parameter.

Definition 3.1 A neutrosophic set B = {< x,(Tg(x), Ip(x), Fp(x)) > |[x € V}ona
vector space V(K) is called a neutrosophic sub-vector space of V(K) if

Tp(x +y) 2 Tp(x) = Tp(y), Tp(Ax) > Tp(x),
) 1 7p(x +y) < Ip(x) ¢ Ip(y), (i) 1§ Ip(Ax) < Ip(x),
Fp(x+y) < Fp(x) o Fp(y), Yx,ye V. Fp(Ax) < Fp(x), VxeV,VYa1e K.

An NSS N on V(K) is called a neutrosophic soft vector space / linear space (NSLS) if
fn(e) is a neutrosophic sub-vector space on V(K) for each e € E.
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Example 3.1 Let E = {ey, e, e3,.....e,} be the parametric set and R"(R) be the n-
dimensional Euclidean space. Let us define a mapping fy : E — NS(R"), for any
t € R", as following :

T 0= 1/2, if i-th co-ordinate of ¢ is zero,
e =10, otherwise.

] 0= 0, if i-th co-ordinate of ¢ is zero,
W)= 174,  otherwise.

Fro®)= 0, if i-th co-ordinate of r is zero,
fue)\) =174 /10, otherwise.

The ¢t-norm () and s-norm (o) are defined as a b =min{a, b}, a b =max{a, b}. Then,
N forms an NSS as well as NSLS over R"(R) with respect to parametric set E.

For convenience, we take an attempt for the parameter e; and the Euclidean space
R*(R). Then the following four cases arise to choose x,y € R’.
Case 1:ifx =(0,2,4)and y = (0,3,2), then x + y = (0, 5, 6).
Case2:ifx=(0,1,3)and y = (3,0,2), then x + y = (3, 1, 5).
Case3:ifx=(1,3,2)and y = (5,6, 1), then x + y = (6,9, 3).
Case4:if x=(5,2,1)and y = (-5,3,4), then x + y = (0,5, 5).

From these four cases, the first set of conditions can be easily verified and then the
second set, too.

Example 3.2 Consider a real vector space C = {a +ib : a,b € R,i = V—-1} and the
parametric set E = {«, 8,y}. We divide the elements of C into four classes e.g.,

(C1) {ib: b € R —{0}} when real part is zero,

(C2) {a:a e R -{0}} when imaginary part is zero,

(C3) {a+ib:a,b e R —{0}} when both parts are nonzero,
(C4) {0+ i0}, the null vector.

If x € (C1) and y € (C2), then x + y € (C3). We write (C1) + (C2) = (C3). Then
the addition operation table on C can be put as in Table 2.

We now define an NSS N over (C, E) as given by the Table 3. Corresponding #-
norm (x) and s-norm (¢) are defined as a+b =max{a+b— 1,0}, aob =min{a + b, 1};
Then, N forms an NSLS over (C(R), E).

Example 3.3 Let E = N (the set of natural numbers) be the parametric set and R =
{a = (x,y,2)|x,y,z € R} be a real vector space. Define a mapping fi; : N - NS (R,
for any a € R® and n € N, as following :

1 1 1
Tpym(a) = e If,ma) = pt Frum(@ =1- o VaeR’.

The t-norm () and s-norm(¢) are defined as a * b =min{a, b}, a © b =max{a, b}. Then,
M is a neutrosophic soft linear space over (R}(R),N).

Corollary 3.1 Let N be an NSLS over (V(K), E). Then for x € V and A(# 0) € K,
T 1) (A%) = T 000, Tjy(0)(A%) = Ty0)(X)s Fy(e)(A%) = F (%) hold.
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Ty = T A0] 2 Ty (%),
L) = Ly [ (0] < Lo (Ax),
Fiy)(%) = F o[ A7 (0] < F ().

Now, from the 2nd set of conditions in definition of NSLS, the result follows.

Table 2 : Table for addition operation on C.

+ (C1)y (€2) (C3) (€4
(CH | (€1 (€3) (C3) (CD
(€C2) | (€3) (C2) (C3) (€2
(C3) | (€3) (C3) (C3) (C3)
C4) | (C1) (€C2) (€C3) (€4

Table 3 : Tabular form of neutrosophic soft set N.

fn(@) In@B) Inw)
(C1) | (0.69,0.31,0.32) (0.68,0.21,0.76) (0.72,0.21,0.16)
(C2) | (0.62,0.32,042) (0.62,0.31,0.79) (0.84,0.16,0.25)
(C3) | (0.58,0.41,0.66) (0.59,0.42,0.80) (0.69,0.31,0.39)
(C4) | (0.71,0.27,0.53)  (0.67,0.43,0.84) (0.79,0.19,0.41)

Proposition 3.1 Let N be an NSLS over (V(K), E). Then for each x € V, followings
hold.

@ Trye) (=) = Ty (X, Lpyie)(=%) = L1y (%), Fpye)(=%) = Fpy()(%).
(1) Trye)(0) = T ey 10)(O) < Ty (%), Frye)(0) < Fry(e)(X).
if a * b =min{a, b} and a © b =max{a, b}. (6 being the null vector of V)

Proof (i) For A = —1, the result directly follows from above corollary.
(ii) For the null vector 6 € V,

Te)(0) = Ty (X + (=2)) 2 Ty ()(X) * Tye)(—%) = Tpye)(X) * Ty () = Tpye)(%),
T@)(O) = Ity (x + (=X) < T5y0)(X) 0 Tpyo)(=%) = T1ye) (%) © Tpye)(X) = Tpye) (%),
Fry@(0) = Frye)(x + (=) £ Fry)(X) ¢ Fpye)(=%) = Fre)(%) © Fry(0)(X) = Fpye)(%).

Hence, the proposition is proved.

Proposition 3.2 An NSS N on V(K) is called an NSLS space with respect to the set
E iff followings hold on the assumption that a = b =min{a, b} and a © b =max{a, b}.

Thye)(Ax + 1) 2 Ty e)(X) * Thye) (),
IfN(ﬁ’)(/l'x + ll.y) < Iﬁv(e)(x) < IfN(e)(y)v
Frox+uy) < Fre(X) o FroO), Yx,yeV,YA,ue F, Ve € E.
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Proof  First suppose N be an NSLS on V(K) with respect to the set E. Then,

Tfiyo(Ax + 11y) 2 T, (0)(A%) * Ty ) (1Y) 2 Tie(X) * Ty 00)s
Ty o) (Ax + py) < pyy0)(A%) © Loy (y) < Lpyye)(2) © L),
Frye)(Ax + 1y) < Fpye)(Ax) © Fye)(1y) < Frye)(%) © Frye()-

Conversely, by Proposition 3.1,

T1y()(A%) = Ty (0 + A%) 2 T 0)(0) * Tye)(¥) 2 Ty(0)(X) * T(0)(X) = Ty (),
Ty (e)(A%) = L1 ()(0 + Ax) < T50)(0) © T(e)(X) < Ty (%) © Lpyo)(X) = Ly ()(X),
Fru@)(A%) = F (0 + Ax) < F)(0) © Fpye)(%) < Fye)(%) © Fye)(%) = Fpye) (%)
Thue(x + ) = Trye(x + (=1D(=3) 2 T )(X) * Tye)(=Y) 2 Tpy0)(X) * Ty (),
I o(x +3) = I (x + (=D(=Y) < I e)(%) © Iy (=) < LX) ¢ 00,
Fro@x+Y)=Fpe(x+ (D) < FreX) 0 Fre(=y) < Fre(X) o FreO).

Hence, the proof is completed.

Theorem 3.1 Let M and N be two an NSLSs over (V(K), E). Then, M N N is also
an NSLS over (V(K), E).

Proof Let M NN = P.Now, forx,yeV,

Troo(x + ) =Tpyo(x + ) * T (x +y)
2 [Ty * Ty * [T (0 * Ty (0]
=T, * Ty * [T @) * Trye(*)] (as * is commutative)
=T, X) * [Tr, 0 * Thye) ] * Tye(x) (as * is associative)
=Ty @) * T ) * Ty (%)
=T10(X) * Trye)(X) * Te)(y) (as * is commutative)
=T 10 * T 0.

Hence, Te)(x +¥) 2 Te) (%) * T () ()

Also, T, e)(Ax) = T e)(A%) * Ty ()(AX) 2 Tpy,0)(X) * Ty (%) = Tpype) ().
Thus, T/',,(L,)(/lx) > Tﬁ,((,)(x) for 1 € K.

Next,

I+ ) = 110X +y) ¢ I (x +)
< Upe)(X) © Ly © Upyye)(%) © L)1
=1, (X) © I oW1 o Upe () ¢ Ie(0)] (as ¢ is commutative)
=I5, © Uz 00 © I o Ine(x) (as o is associative)
=50 (%) © L) () @ Lfyie) (%)
=I5, (%) © Ijye)(X) © L1, (¥) (as ¢ is commutative)
= 1oy (0) @ L0 )-
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Thus, I/P(e)(x + y) < I/-P(F)(x) <o Iﬁ,(,?)(y) and

Ifoe)(A%) = I, e)(AX) © T (e)(AX) < T(0)(X) © Ty (e)(%) = Ly (e)(X),
ie., If,,(())(/lx) < pr(e)(x) fordeF.

Similarly, FfP(e)(x +y) < Ff,,(e)(x) o Ffp(g)(y) and FfP(e)(/lx) < F/;D(e)(x)~
This ends the theorem.

The theorem is also true for a family of NSLSs over (V(K), E).
Remark 3.1 For two NSLSs M and N over (V(K),E), M U N is not generally an
NSLS over (V(K), E). It is possible if any one is contained in other.

For instance, let us consider two NSLSs M and N over the real vector space V = R3
and the parametric set E = {¢;|i = 1,2, 3} as following :

1/2, if i-th co-ordinate of xe€ R? is nonzero only,

Tfyen(x) = {0

otherwise.

I ()= if i-th co-ordinate of x e R> is nonzero only,
Juter) 1/4 otherwise.

2/5 if i-th co-ordinate of x € R’ is nonzero only,
Ffucer) = otherwise.
T ()= 2/5, if i-th co-ordinate of xeR? is zero only,
Fted 1/10, otherwise.
Lo () = if i-th co-ordinate of x e R> is zero only,
Jwte) 1 / 5, otherwise.

F (x) = 1/6, if i-th co-ordinate of x e R> is zero only,
W= 173, otherwise.

Corresponding 7-norm () and s-norm(¢) are defined as a*b =min{a, b}, aob =max{a, b}.
Let M U N = P. Then for x = (1,0,0), y=(0,1,1) e R® and ¢ € E,

1
Then(x + ) = Tyen(1,1,1) 0 Ty y(1,1, 1) = max{0, E} =10’
T1oen®) # T ey ) ={T fy ey (%) © Tf~<c.>(x)l * {Tf;w(el)(y) O Tfy(enM}
= min[max{= ! } max{0, }] min{= ! 2 2
B 210 - 2’ 5 5

Hence, Tj,e)(x + ) < Toiey(X) * Tppe)(v), i€, M U N is not an NSLS here.
Now, if we define N over (R?, E) as following :

T foten(x) = 1/6, if i-th co-ordinate of x € R® is zero only,
W70, otherwise.

I ) = 3/4, if i-th co-ordinate of x € R? is zero only,
fue )= 1/2, otherwise.

Fro()= 7/10, if i-th co-ordinate of x € R® is zero only,
et =1 otherwise.
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Then, it can be easily verified that N € M and M U N is an NSLS over (R*(R), E).

Theorem 3.2 Let M and N be two NSLSs over (V(K), E). Then, M A N is also an
NSLS over (V(K),E X E).

Proof Let M AN = Q. Thenforx,yeV and (a,b) € EXE,

T oy X + ) = Try@) (X + ) * T (x +y)
= [T 1)) * Ty @] # [Ty () * T3]
=[T5,0®) * T W] * [T ) * Trp(x)] (as * is commutative)
=T, @) * [Th@®) * Ty * Tryp(x) (as * is associative)
=T1y@ * T ryanyO) * T gy (X)
=T @0 = Tiy)(0) * Trpan)(y) (as * is commutative)
=T 1pah)X) * Ty 3)-

Hence, T ya0)(x +¥) 2 T fy(a.)(X) * Tpyap)(y) and for 1 € F,
T fota)(A%) = T 1) (A%) * Ty 0y(A%) 2 T gy, )(X) * Tyy(%) = Ty (%)
Similarly, Lroaby(X +3) < L1pan)(%) © Lip@ny)s Lip(a)(A%) < Lpyap)(x) and
Fro@nx+Y) < Fryab)(X) © Fryab)(0)s Fro@n)(A%) < Frya6)(X).
This completes the proof.

The theorem is true for a family of NSLSs over (V(K), E).
4. Cartesian Product of Neutrosophic Soft Linear Spaces

Here, the concept of cartesian product of NSLSs has been introduced along with a
basic theorem and it’s verification by an example.

Definition 4.1 Let M and N be two NSLSs over (V(K), E) and (W(K), E), respec-
tively. Then their cartesian product is M X N = S where fs(a,b) = fy(a) X fy(b) for
(a,b) € E X E. Analytically,

fs(a,b) ={< (,Y), Tf; @)% V) L) (6 V)5 F s 0 (%,Y) > |(x,y) € V X W} with

T Y) = Tru@ () * Try)(),
I 0)(%,Y) = L1 0)(%) © L)),
Fo@ny (6 Y) = Fru@(x) © FrpO).

This definition can be extended for more than two NSLSs.

Theorem 4.1 Let M and N be two NSLSs over (V(K), E) and (W(K), E), respectively.
Then their cartesian product M X N is an NSLS over ([V x W](K), E X E).

Proof Let M x N =S where fs(a,b) = fy(a) X fy(b) for (a,b) € E X E. Then for
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(x1,31), (x2,y2) € VX W,

Triaplx1,y1) + (2, ¥2)] = T gy (X1 + X2, y1 +y2)
=Th(x1 + x2) * T (V1 + ¥2)
2 [T @) * T 2] # T ey * Ty (v2)]
= Ty (x1) * Trmy D] [Ty (x2) * T gy (02)]
=T @ *1, 1) * T g o) (%2, ¥2)-

L (x1,y1) + (2, y2)] = L (apy (X1 + X2, ¥1 + ¥2)
=Ip,(x1 + x2) © L1 + y2)
< Upy@(x1) © L)1 © a0 © Ly (2)]
= Upyy(x1) © Iy © Uy (x2) © Ty)(v2)]
=Ifsahy (%1, 51) © Loy (X2, y2)-

Similarly, F@nl(x1,y1) + (x2,2)] < Froap)(x1,51) © F g ap(x2, y2)-
Next,

T st (A1 YD1 = T gy 0y (Ax1, 1)
= Tt (A%1) * T gy (Ay1)
2 Ty@n) * Ty 1)
=T fs@h(X1,51)-

Similarly,
Tt @A, YD1 < Tpgapy(x1, 1) and F g iy [A0x, 31)] < Fpyap (X1, y1)-

Hence, the theorem is proved.

Example 4.1 Consider the real vector space V = R and the parametric set E =
{ey, ex}. We divide R? in four halves viz. A : the origin, B: X-axis/A, C :Y-axis/A,
D: Rz/{A,B,C}. IfbeBandce C,thenb + ¢ € D and so on.

We now define two NSSs M and N over (R?, E) as given by Table 4 and Table 5.

Table 4 : Tabular form of NSS M.
fn(er) fn(e2)

(0.71,0.27,0.53)  (0.67,0.43,0.84)
(0.62,0.32,0.42) (0.62,0.31,0.79)
(0.69,0.31,0.32) (0.68,0.21,0.76)
(0.58,0.41,0.51)  (0.59,0.42,0.80)

O aOw >

The #-norm (*) and s-norm(¢) are definedas: axb=ab,aob=a+ b - ab.

Then, M and N both form NSLSs over (R%(R), E). Their cartesian product MxN =
S over ([R? x R*|(R), E x E) is given in Table 6 (T, I, F being round off upto two
decimal places).
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Table 5 : Tabular form of NSS N.

fuler)

fn(e2)

QO w >

(0.79,0.19,0.41)
(0.84,0.16,0.25)
(0.72,0.21,0.16)
(0.69,0.31,0.29)

(0.42,0.38,0.61)
(0.32,0.47,0.49)
(0.25,0.53,0.51)
(0.59,0.68,0.73)

Table 6 : Tabular representation of S = M X N.

fs(er,er)

fs(e1,e2)

fs(ea, e1)

fs(ez, e2)

AXA
AXB
AXC
AXD

BxA
BXxB
BxC
BxD

CxA
CXxXB
cxC
CxD

DxA
DxB
DxC
DxD

(0.56,0.41,0.72)
(0.60,0.39,0.65)
(0.51,0.42,0.61)
(0.49,0.50,0.67)

(0.49, 0.45,0.66)
(0.52,0.43,0.57)
(0.45,0.46,0.51)
(0.43,0.53,0.59)

(0.55,0.44,0.60)
(0.58,0.42,0.49)
(0.50,0.45,0.43)
(0.48,0.52,0.52)

(0.46,0.52,0.71)
(0.48,0.50,0.63)
(0.42,0.53,0.59)
(0.40,0.59,0.65)

(0.30,0.55,0.82)
(0.23,0.61,0.76)
(0.18,0.66,0.77)
(0.42,0.77,0.87)

(0.26,0.58,0.77)
(0.20, 0.64,0.70)
(0.16,0.68,0.72)
(0.37,0.78,0.84)

(0.29,0.57,0.73)
(0.22,0.63,0.65)
(0.17,0.68,0.67)
(0.40,0.78,0.82)

(0.24,0.63,0.81)
(0.19,0.69,0.75)
(0.15,0.72,0.76)
(0.34,0.81,0.87)

(0.53,0.54,0.91)
(0.56,0.52,0.88)
(0.48,0.55,0.87)
(0.46,0.61,0.89)

(0.49,0.44, 0.88)
(0.52,0.42,0.84)
(0.45,0.45,0.82)
(0.42,0.52,0.85)

(0.54,0.36,0.86)
(0.57,0.34,0.82)
(0.49,0.38,0.80)
(0.47,0.45,0.83)

(0.47,0.53,0.88)
(0.50,0.51,0.85)
(0.42,0.54,0.83)
(0.41,0.60, 0.86)

(0.28,0.65,0.94)
(0.21,0.70,0.92)
(0.17,0.73,0.92)
(0.40,0.82,0.96)

(0.26,0.57,0.92)
(0.20,0.63,0.89)
(0.16,0.68,0.90)
(0.37,0.78,0.94)

(0.29,0.51,0.91)
(0.22,0.58,0.88)
(0.17,0.63,0.88)
(0.40,0.75,0.94)

(0.25,0.64,0.92)
(0.19,0.69, 0.90)
(0.15,0.73,0.90)
(0.35,0.81,0.95)

Clearly, S forms an NSLS over (IR? x R*](R), E X E). For the sake of convenience,
one discussion is provided here.
Letx; = (1,0),x, = (-1,0) € Band y; = (0, 1),y, = (0,—1) € C. Then,

x5, y1) + Oy, (1L, YD + 02, 1), (x1,2) + (01, ¥2), (X1, ¥2) + (72, 2),
(x2, 1) + 1, 1), (X2, y1) + 02, 1), (X2, ¥2) + (Y1, ¥2), (X2, ¥2) + (02, y2) € DX C

and

(X1, YD) + 01, 32)s (x1, Y1) + (72, ¥2), (x1,¥2) + (1, Y1) (X1, ¥2) + (02, 1),

(x2, Y1) + (1, ¥2)s (32, Y1) + (2, ¥2)5 (%2, ¥2) + (1, ¥1)> (X2, 2) + (02, 1) € D X A.

Thus (BXC)+(CxC) = DXA or DXC. In any case, all the inequalities of Definition
3.1 are obvious.

5. Neutrosophic Soft Subspace

In this section, we have defined neutrosophic soft subspace with suitable examples.
Then, we have discussed some related basic properties.
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Definition 5.1 Let Ny and N, be two NSLSs over (V(K),E). Then N is neu-
trosophic soft subspace of N> if Ni € Ny, i.e, Tp, (X)) < Tpy (%), Ipy (X) 2
Iﬁv:(g)(x), Ff;\,‘ (E)(x) > Ff‘;\,z(e)(x), VxeV,VecE.

Example 5.1 Let us consider two NSLSs M and N over the real vector space V = R®
and the parametric set E = {e} as following :

1/4, ifxe{(a,b,c)eR*:a+b+c=0)}
otherwise.

1/10, ifxe{(@ab,c)eR’:a+b+c=0},

1/2, otherwise.
7,

Ty e(¥) = {
{

Fpye(x) = {0 if x€{(a,b,c) eR’:a+b+c=0}
(i

I =

ifxe{(a,b,c)eR*:a+b+c=0},

otherwise.
T X
e (%) otherwise.

2

0, ifxe{abc)eR:a+b+c=0},
1/3, otherwise.

1fx€{(abc)eR3 a+b+c=0}
otherwise.

Tjo(0) =

Frieo(x)=

The t-norm (*) and s-norm (o) are defined as a * b =max{a + b — 1,0} and a ¢
b =min{a + b, 1}. Then M is a neutrosophic soft subspaces of N over (R*(R), E).

Example 5.2 We consider the Example 3.2 and define another NSLS M over (C(R), E)
given by the Table 7.

Obviously, M is a neutrosophic soft subspace of N over (C(R), E).

Corollary 5.1 Let N be an NSLS over (V(K), E). Then for arbitrary but fixed A € K,
AN = {(e,Afn(e))le € E} is also a neutrosophic soft linear space over (V(K), E)
where Afy(e) = {< Ax, T 1y ¢)(A%), Iy (e)(AX), F fy(e)(Ax) > |x € V}. Moreover AN is a
neutrosophic soft subspace of N.

Proof Clearly Ax € V for x € V, 2 € K. Since N be an NSLS over (V(K), E), so by
construction of AN,

T jyo)(Ax + Ay) 2 T ) (A%) * T py () (),
I e(Ax + Ay) < Ie)(A%) © L 0)(AY),
FfN(e)(/lx + /ly) < FfN(e)(/l)C) < FfN(e)(/ly), V/bC, /ly € V, Ye e E.

Ty (u(Ax)) 2 Tgye)(A%),

o) (%)) < Ipy()(A%),
F/N(e)(y(/lx)) < F/;V(e)(/lx), YAxeV, ME K,ecE.
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Hence, AN is a neutrosophic soft linear space over (V(K), E). Next,

T o) = Ty (Ax)) = Ty (Ax),
o) = Ly oA (A2)) < Iy (A%),
F (%) = F (7 (A0) < Frx), YA(#0) e K, xe Ve € E.

Thus, AN is a neutrosophic soft subspace of N and this ends the proof.

Table 7 : Tabular form of NSLS M.

fu(@) (B @)
(C1) | (0.59,0.38,0.62) (0.63,0.51,0.79) (0.70,0.31,0.32)
(C2) | (0.41,0.49,0.64) (0.56,0.63,0.89) (0.67,0.41,0.39)
(C3) | (0.56,0.43,0.68) (0.45,0.52,0.88) (0.60,0.36,0.48)

(4

(0.49,0.50,0.70)

(0.60,0.49,0.91)

(0.48,0.52,0.54)

Corollary 5.2  Let N be an NSLS over (V(K),E). Then for arbitrary but fixed
A p € K, AN+uN = {(e, (Afy+ufy)(e))le € E} is again an NSLS over (V(K), E) where
(Afn+pfw)@) = {< (Ax+uy), T gy o) (Ax+uy), Ly o) (Ax+1Y), F o) (Ax+py) > |x,y € V.
Moreover (AN + uN) is a neutrosophic soft subspace of N.

Proof Since V(K) is a vector space, so x+y, Ax+uy € Vforx,ye Vand l,u € F.
Hence the proof is similar to the above corollary.

Corollary 5.3 Let fy(e), e € E be a neutrosophic subspace on V(K) where N is an
NSLS over (V(K), E). Then {Afy(e)|d € K} is also a neutrosophic subspace on V(K)
where /lfN(e) = {< /lx, Tﬂ\,@)(/lx), I/;V(e)(/lx), F/;\,@)(/lx) > Ix € V}

Proof 1Itis obvious.

For instance, if V = {x,y,z} and K = {4, u}, then Ax, Ay, Az, ux, uy, uz € V and so
AX + Ax, Ax + Ay, Ax + ux, Ax + uy,--- € V. Now since fy(e), e € E is a neutrosophic
subspace on V(K), so all the inequalities hold good.

Theorem 5.1 Let N be an NSLS over (V(K), E) and N, N, be two neutrosophic soft
subspaces of N. If T, 1, F of neutrosophic soft linear space N obey the disciplines of
idempotent t-Norm and idempotent s-norm, then,

(1) N1 N Ny is a neutrosophic soft subspace of N.

(ii) N1 A N, is a neutrosophic soft subspace of N A N.

Proof The intersection(N), AND(A) of two NSLSs is also so by Theorems 3.1 and
3.2. Now to complete this theorem, we only verify the criteria of neutrosophic soft
subspace in each case.

(1) LetN3 =N NN, .ForxeV,e€E,

T, =Ty (%) * Ty, (0)(%) < Tye) () * Ty () = Tpyer (%),
T, 00 = Iy (%) © Ipy, 0)(0) 2 Trye)(X) 0 Tpyo)(X) =I5y ()(%),
Fr @) =Frp (%) © Fry, 0)(X) 2 Fpye)(%) © Frye)(%) = Fye)(%).
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(ii) Let N3 =Ny ANy and x €V, (a,b) € E X E. Then,

Tty @hy®) = Ty @ (%) * Ty ) (%) < Ty (%) # T )X = T pyay (%),
Iy @b (¥ = Ly @(X) © Lpy, )(X) 2 Ly (@(X) © Ly )(X) = Lpyaiy (),
Fpany(X) = Fpy @(X) © Fry, 19(%) 2 F0)(X) 0 Ff0)(X) = Fpya) (%)

The theorems are also true for a family of neutrosophic soft subspaces of N.

6. Vectors in Neutrosophic Soft Linear Space

Here, first we have defined neutrosophic soft field and then neutrosophic soft vector,
neutrosophic soft scalar, vector addition, scalar multiplication and have studied some
related basic properties.

Definition 6.1 A neutrosophic set A = {< x, T4(x), [5(x), Fa(x) > |x € K} over a
field (K, +, ) is called a neutrosophic subfield of (K, +, -) if the followings hold.

Ta(x+y) 2 Ta(x) = Ta(y),
D) §Ia(x +y) < La(x) o L),
Fa(x+y) S Fa(x) o Fa(y), Vx,y € K.
Ta(=x) = Ta(x),
(i) {Za(=x) < Tx(0),
Fa(—x) < Fp(x), Yx € K.

Ta(xy) = Ta(x) * Ta(y),
(i) §ZaCxy) < Ia(x) © 1a(y),
Fa(xy) < Fa(x) o FAo(y), Yx,y € K.
Ta(x™") 2 Ta(x),
(iv) {Ia(x7) < L),
Fa(x™h) < Fa(x), Y x(# 0) € K.

An NSS N over a field (K, +, ) is called a neutrosophic soft field if fy(e) is a neutro-
sophic subfield of (K, +,-) for each e € E.

Example 6.1 Let E = N (the set of natural numbers) be the parametric set and
K = (R, +,) be the field of all rational number. Define a mapping f); : N = NS(R)
where, for any n € N and x € R,

0, if x is rational,
1/n, if x is irrational.

Ty (X) = {

Ion(x) = 1/2n, if x is rational,
M0, if x is irrational.
1-1/n, if x is rational,

Fy =
St () {0, if x is irrational.

The t-norm () and s-norm (¢) are defined as a*b =min{a, b}, aob =max{a, b}. Then,
M forms an NSS as well as a neutrosophic soft field over [(R, +, -), N].
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Example 6.2 Let us consider the field Z; = {0,1,2) and E = {ey, e2, €3, €4} be the
set of parameters. We define fy(e;), fnv(e2), fn(es), fn(es) as given by the following
Table 8.

Table 8 : Tabular form of neutrosophic soft field N.
Su(er) Su(ea) Su(es) Su(es)
(0.65,0.34,0.14)  (0.88,0.12,0.72) (0.72,0.21,0.16)  (0.69,0.31,0.32)

(0.71,0.22,0.78)  (0.71,0.19,0.44) (0.84,0.16,0.25) (0.62,0.32,0.42)
(0.75,0.25,0.52)  (0.83,0.11,0.28)  (0.69,0.31,0.39)  (0.58,0.41,0.66)

(NSl ]|

Corresponding #-norm () and s-norm () are defined as a = b =max{a + b — 1,0},
a o b =min{a + b, 1}. Then, N forms a neutrosophic soft field over [(Z3, +, -), E].
Definition 6.2 A neutrosophic soft scalar in a neutrosophic soft field N over (K, E),
K being scalar field, is defined by a neutrosophic soft element (e, fy(e)) of N fore € E
and is denoted by éy.

A neutrosophic soft scalar éy € M, M being a neutrosophic soft field over (K, E)

if fn(e) < fule), ie.,

Tfe)(®) < Tpye)(0); L1 ((X) 2 Iy (0)(X), Frye)(%) 2 Fryye(x), VX € V.

Example 6.3 In the Example 6.2, there are four neutrosophic soft elements (e, fy(e;)),
(e2, fn(e2)), (e3, fn(e3)), (ea, fy(es)) of the neutrosophic soft field N over (K, E). Hence,
the neutrosophic soft scalars in N are &y, éxy, €3y, €an-

Definition 6.3 A neutrosophic soft vector in an NSLS N over (V(K), E) is defined by
a neutrosophic soft element (e, fy(e)) of N for e € E and is denoted by &y.

A neutrosophic soft vector &y € M, M being a neutrosophic soft linear space over
(V(K), E) if fn(e) < fule).
Example 6.4 Consider the Example 3.1. Take the points x; € R", 1 <i < n (whose
i-th co-ordinate is zero) and y € R" (otherwise). Then,

fwlen) = {<x,(1/2,0,0) >, <y,(0,1/4,1/10) >},
fv(e2) = {<x2,(1/2,0,0) >, <y,(0,1/4,1/10) >},

Inlen) = {< x,,(1/2,0,0) >, < y,(0,1/4,1/10) >}.

are the neutrosophic soft elements in the neutrosophic soft linear space N. Hence, the
neutrosophic soft vectors in N are &y, &, - , -

Definition 6.4 A neutrosophic soft vector &y in an NSLS N over (V(K), E) is called
a null neutrosophic soft vector denoted by © if ey € ¢,. Otherwise it is non-null
neutrosophic soft vector. The zero element of the neutrosophic soft field N over (K, E)
is denoted by <Z>3N.

A neutrosophic soft vector éy in an NSLS N over (V(K), E) is called an absolute
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neutrosophic soft vector denoted by Y if ey € 1,. The absolute element of the neutro-
sophic soft field N over (K, E) is denoted by Teh,.

If ey be a neutrosophic soft element of an NSS N over (U, E), then

—en = {< X, (F ) (%), 1 = L1 )(X), Ty (%)) > |x € U}

Obviously, -® = Y, =7 = © and —éeN = ieN, —iL,N = (]Aﬁ(,l\,.

Definition 6.5 Let &)y, &y be two neutrosophic soft vectors in an NSLS N over
(V(K), E) and ey be a neutrosophic soft scalar in a neutrosophic soft field M over
(K, E). Then the vector addition &,y ® éy and the scalar multiplication &y © &y are
respectively defined as :

{<x, Tﬁv(el)(x) * Tf]v(é’z)(x)’lf}v(el)(x) ¢ IfN(t’z)(x)’ Ff)\'(el)(x) © Fﬁv(fz)(x) >lx eV}
(<0, T o)) * T pen)0: Ly () © Lpy(en) (), Ffigie) (1) @ F ey (%) > |
(u,x) € K x V}.

Example 6.5 We consider the Example 6.4. Then,
v @&y = {< x1,(0,1/4,1/10) >, < x2, (0, 1/4,1/10) >, < y,(0,1/4,1/10) >}.

The #-norm (*) and s-norm (o) are defined as a * b =min{a, b}, a © b =max{a, b}.

Example 6.6 In the Example 6.2, (Z3(Z3), +, -) is a vector space and so N is an NSLS
defined by same table also over [(Z3(Z3), +, -), E]. Then,

Ziv ® & = {< 0,(0.53,0.46,0.86) >, < 1,(0.42,0.41, 1) >, < 2,(0.58,0.36,0.80) >},

21y O & =1{< (0,0), (.53, .46, .86) >, < (0, 1), (.36,.53,.58) >, < (0,2), (.48, .45, 42)
>< (1,0),(.59,.34,1) >, < (1,1), (.42, 41,1) >, < (1,2),(.54,.33,1) >
<(2,0),(.63,.37,1) >, < (2,1), (.46, 44, .96) >, < (2,2),(.58, .36, .8) >}.

Corresponding #-norm (*) and s-norm (o) are defined as a * b =max{a + b — 1,0},
a o b =min{a + b, 1}.

Theorem 6.1 Let N be an NSLS over (V(K), E) and M be a neutrosophic soft field
over (K, E). Then, the followings hold.

(1)O®ey =0, Yéy e N.

(i) T@éy = éy, Yéy € N.

(ili) dyy © &y = ©, Véy € N.

(iv) ey ©0@ =0, Véy € M.

(V) iMOé’N =éy, VZN eN.

Vi) ey ©Y =2y, Yey € M.

(vii) Ty @&y = -, Véy € N.
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Proof For all the proofs, we shall use the Definition 6.5.

i) Oeeéy
=< 2, (0% Ty (@), 10 Iy, 16 Fpo(x) > | x € V)
={<x,0,1,1)>|xeV}
=0.

(i) Teoeéy
={< X, (1 % Ty )(2),0 0 Iy () (), 0 0 Fpy () (x)) > | x € V}
={< X, (T, I5e) (%), Frye)(x) > [ x € V}
=éy.

(i) Guoey
={< (i, ), 0 # Ty (0), 1 0 Ty (x), 1 0 Fyoy () > | (, x) € K XV}
={< (4, x),(0,1,1) > | (u,x) € Kx V}
=0.

iv) eyo0
={< W), T @) = 0, 15,0 ¢ 1, @ o 1) > | (u,x) € KX V}
={< (4, x),(0,1,1) > | (u, x) € Kx V}
=0.

W Inoey
={< (, %), (1 % Ty (x),0 0 L1 ¢)(%), 0 © F (%)) > | (u, x) € K X V}
={< (U, %), (T 1y (e)(0), Ly (0)(X), Fpe)(2)) > | (1, x) € K X V}

y.

(vi) eyoT
={< (@, ), T * 1, Iy (1) 0 0, F (1) 0 0) > | (1, %) € K XV}
={< (W, ), (T W): Ly )W), F o) > | (1, x) € K XV}

:ZM.
i) -1y =1{< #,(0,1,1) > | € K} and so,
—iM(DgN

={< (W, %), (0= Ty (1), 1 0 Ly ()5 1 0 Fryo(W)) > | (u, x) € K X V}
={< (4, x),(0,1,1) > | (u, x) € Kx V}
=-T=0.

Remark 6.1 However, &), © éy = © does not necessarily imply that either &), = qAﬁgM
oréy = 0.

For example, if &3y = {< y, (0,0.2,1) >, <, (0,0.4,1) >} and éy = {< x,(0.5,1,
0.1) >, <,(0,1,0.6) >}, then &y © &y = {< (4, x),(0,1,1) >, < (,y),(0,1,1) >,
< (1,x),(0,1,1) >, < (1,y),(0,1,1) >} = ® with respect to a * b =min{a, b}, a ¢
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b =max({a, b} but neither &y = @,,, nor &y = O.

Definition 6.6 Let @y, &y, -+ , & be a finite number of neutrosophic soft vectors
in an NSLS N over (V(K), E). Then for a finite number of neutrosophic soft scalars
e1m, €M, »eum in a neutrosophic soft field M over (K, E), the expression (&1y ©
i) B (eay ©@EaN) B - - - B (8pps © Euy) s called a linear combination of the respective
neutrosophic soft vectors.

Example 6.7 In the Example 6.2, (Z3(Z3), +, -) is a vector space and so N is an NSLS
defined by same table also over [(Z3(Z3), +, ), E]. Here, the neutrosophic soft vec-
tors and the neutrosophic soft scalars are {€|y, v, €3y, €4n} and {81y, ean, &35, ean},
respectively. Then,

Table 9 : Tabular form of scalar multiplication on N.

eiyO ey

2v O &y

23y 0y

24y © sy

0,0
0,1
©,2)
(1,0)
LD
1,2)
2,0
271
2,2

(0.65,0.34,0.14)
(0.65,0.34,0.78)
(0.65,0.34,0.52)
(0.65,0.34,0.78)
(0.71,0.22,0.78)
(0.75,0.25,0.78)
(0.65,0.34,0.52)
(0.71,0.25,0.78)
(0.75,0.25,0.52)

(0.88,0.12,0.72)
(0.71,0.19,0.72)
(0.83,0.12,0.72)
(0.71,0.19,0.72)
(0.71,0.19,0.44)
(0.71,0.19, 0.44)
(0.83,0.12,0.72)
(0.71,0.19, 0.44)
(0.83,0.11,0.28)

(0.72,0.21,0.16)
(0.72,0.21,0.25)
(0.69,0.31,0.39)
(0.72,0.21,0.25)
(0.84,0.16,0.25)
(0.69,0.31,0.39)
(0.69,0.31,0.39)
(0.69,0.31,0.39)
(0.69,0.31,0.39)

(0.69,0.31,0.32)
(0.62,0.32,0.42)
(0.58,0.41, 0.66)
(0.62,0.32,0.42)
(0.62,0.32,0.42)
(0.58,0.41, 0.66)
(0.58,0.41, 0.66)
(0.58,0.41, 0.66)
(0.58,0.41, 0.66)

Hence,

@INOeIN)® 2oy © &) ® (83y O &3n) ® (8an © Ean)

=1{< (0,0),(.65,.34,.72) >, < (0, 1), (.62, .34,.78) >, < (0,2), (.58, .41, .72) >,
< (1,0),(.62,.34,.78) >, < (1,1), (.62, .32, .78) >, < (1,2),(.58, 41,.78) >,
< (2,0),(.58,.41,.72) >, < (2,1), (.58, 41,.78) >, < (2,2), (.58, .41, .66) >}.

The #-norm (*) and s-norm (o) are defined as a * b =min{a, b}, a © b =max{a, b}.
Example 6.8 We consider the NSLS defined in Example 3.3 and the neutrosophic
soft field described in Example 6.1. Suppose, {€1, @xu1, €30, €4n} is 2 finite set of
neutrosophic soft vectors and {&;, é2um, €3, €4y} is a finite set of neutrosophic soft
scalars. In the following tables (Tables 10, 11 and 12), a € R’ and g, r denote rational
and irrational number, respectively.

Hence,

(213 © @1a1) ® (2211 © E2pp) © (8311 © E3p1) B (8apg © Eanr)
={<(q,a),(0,1/2,3/4) >, < (r,a),(1/4,1/2,3/4) >}.

The ¢-norm (x) and s-norm (o) are defined as a * b =min{a, b}, a © b =max{a, b}.
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Table 10 : Tabular form of NSLS M.

> = 2 >
eim em €M €am

a | (1,1/2,0) (1/2,1/4,1/2) (1/3,1/6,2/3) (1/4,1/8,3/4)

Table 11 : Tabular form of neutrosophic soft field M.

eim érm ey eim

q | (0,1/2,0) (0,1/4,1/2) (0,1/6,2/3) (0,1/8,3/4)
r| (1,0,0) (1/2,0,0) (1/3,0,0) (1/4,0,0)

Table 12 : Tabular form of scalar multiplication on M.

21081y 221 © &y 231 O &3y 2401 O 84y

(g.a) | (0,1/2,0)  (0,1/4,1/2) 0,1/6,2/3) 0,1/8,3/4)
(r,a) | (1,1/2,0) (1/2,1/4,1/2) (1/3,1/6,2/3) (1/4,1/8,3/4)

Proposition 6.1 Let N be an NSLS over (V(K), E) and M be a neutrosophic soft
field over (K, E). Then, the followings hold.
@) eiNn®épNENAN, Vg]N,gzN e N.
(ii) e1p OEZN €N, Ve € M, Vé,y € N.
(iii) (@1 © E1§) ® (8aps © &35) € N AN, Ve y, eay € M, Y&y, &y € N.
Proof  For all the proofs, we shall use the Definition 6.5.
() &in @ & = fule1) N fy(es) € NAN.
(ii) Yu € K and Yx € V, we have ux € V. Now, for ej,e; € E, &1y © &y =
fu(er) N fn(ez) = fn(ez) € N, by the sense of Definition 6.3.
(iii) It directly follows from above two cases.
Remark 6.2 Clearly, &y ® @y is a neutrosophic soft vector in the NSLS N over
([K x VI(K), E) and (2131 © &1n) ® (é21 © &>n) is also a neutrosophic soft vector in the
NSLS N A N over ([K X VI(K), E X E).
Definition 6.7 A finite set of neutrosophic soft vectors {€\n, &, -+ , €.} in an NSLS
N over (V(K), E) is called linearly dependent if there exists neutrosophic soft scalars
{€1m>@2m, -+ » e} not all zero elements (i.e., not all <2>(,M) in a neutrosophic soft field
M over (K, E) such that (é1y © &) ® (a1 © gg[\/) DD O gnN) = O, the null
neutrosophic soft vector of (N AN A --- A N), n times.

For all non-null vectors, if the above identity implies éyyy = éyy =+ = eyy =
qAﬁeM, then the set of neutrosophic soft vectors is called linearly independent in N.

Example 6.9 We consider the NSLS N over [(Z3(Z;), +, -), E] and the neutrosophic
soft field M over [(Z,, +,-), E] for E = {ej, 3, €3} defined as in the following tables
(Tables 13, 14 and 15).

Table 13 : Tabular form of NSLS N.
ZIN Z2N é’3N

(0.4,05,0.7) (0.7,0.2,0.3) (0.8,0.6,0.3)
(0.6,0.3,0.8) (0.5,0.3,04) (0.4,0.5,0.5)

=l
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Table 14 : Tabular form of neutrosophic soft field M.

eim em &M

(0.7,04,0.3) (0.6,0.5,0.4) (0.3,0.5,0.4)
(05,0.7,02) (0.7,0.3,02) (0.4,0.6,0.7)

—| Ol

Table 15 : Tabular form of scalar multiplication on N.

Py > A - A -
eim O €N e3y O &N ey O €3y

0,0) | (0.1,09,1) (0,0.7,0.7) (0.4,1,0.7)
0,1 | 03,07,1) (0,0.8,0.8)  (0,1,0.9)
1,0) | (0,1,09) (0.1,08,1) (0.5,0.9,0.5)
IQ,D| ©.1,1,1)  (0,09,1) (0.1,0.8,0.7)

Now,

(@1m @ E1n) ® (8341 © &2y) @ (&2 © 3y)
={<(0,0),(0,1,1) >, < (0,1),(0,1,1) >, < (1,0),(0,1,1) >, < (1,1), (0, 1,1) >}
:@5

but none of the neutrosophic soft scalars is qZM i.e., {€iv, @, @3y} is linearly depen-
dent in N. Corresponding 7-Norm (*) and s-Norm (¢) are defined as a * b =max{a +
b—-1,0},ao b =min{a + b, 1}.

Example 6.10 The absolute neutrosophic soft vector T and the null neutrosophic soft
vector O defined in any NSLS over (V(K), E) are linearly independent and dependent
vector, respectively.

Definition 6.8 If &)y, 2,p, )¢ be three neutrosophic soft scalars over (K, E), then
eim ® e1p and &1y © &y¢ are defined, respectively, as :

(<1 (T pyeny U * T ey W L ey () © Ippiery (s F ey () © Froey ()] > lu € K,
(<1 (T pyeny WD * T rye) (D ey () © Lryen) s F ey () © Fro(en ()] > |ue € K}

Clearly, &, ®&;p and &, ©&,¢ are also neutrosophic soft scalars belonging to M NP
and M A Q, respectively.

Theorem 6.2 Let S = {&y,én, - ,éu} be a finite set of neutrosophic soft vectors
in an NSLS N over (V(K), E). Then the collection of all linear combinations of the
vectors in S forms a subspace of the NSLS (N AN A---AN), n times, over [K X V](K)
in the sense of classical set theory.

Proof LetW = {14 ©&1n)® (2on © &) ® -+ @ (8pmt © Eun)Ie1ar, 22157+ » 8umt
are neutrosophic soft scalars over (K, E)}. Suppose,

ey, =@ MOEIN) B (o OEN) D @ (8uy O Ey),

ey, =@M OEIN) B (Loy O&N) @ - ® (8uy O Eyy).
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Then,

éy, ®éy,
=[@Cin@eip)OEIN]® - ®[(eay ® &,p) O Eun]

= (é]T Oé’]/\/)@ s ﬂa(énr anN), for é,‘T = éiM ﬂ;éip, 1<i<n
and for a neutrosophic soft scalar &y over (K, E),

2 O @y,
=200[@CInO&N) D@y OEN)D - B (8uy O Eun)]
=[O eim)OENI® - ®[(8g O 2uuy) O Eun].

Clearly, éy, ® éy,, ép © &y, € W and so W is a subspace of (N AN A ... A N),
n times, over [K X V](K) in classical sense.

Example 6.11 We take the NSLS N over [(R3(R), +, -), E] described in Example 3.1.
Let {x; = (0,1,1),x, = (1,0, 1), x3 = (1,1,0)} c R* and E = {e}, €5, e3}. The tabular
representation of N is given in Table 16.

Table 16 : Tabular form of NSLS N.
é’]N ZZN g}N
X1 (0.5,0,0) (0,0.25,0.1) (0,0.25,0.1)

% | (0,025,0.1)  (0.5,0,00 (0,0.25,0.1)
x| (0,025,0.1) (0,0.25,0.1)  (0.5,0,0)

Next, we consider two neutrosophic soft fields P and T over (R,E) for E =
{e1, ez, e3} given in Table 17 and Table 18 respectively. The elements of R are di-
vided into two kinds i.e., ¢ (rational number) and r (irrational number).

Table 17 : Tabular form of neutrosophic soft field P.

erp exp e3p

q | (0,05,0) (0,0.25,0.5) (0,0.2,0.7)
r| (1,0,0) (0.5,0,0) (0.25,0,0)

Table 18 : Tabular form of neutrosophic soft field 7.

err ér ér

q | (04,0.6,0.3) (0.2,05,0.7) (0,0.6,0.7)
r | (0.6,0.2,0) (0.4,0,0.3) (0.7,0.2,0.3)

The ¢t-norm (*) and s-norm (¢) are taken here as a*b =min{a, b}, aob =max{a, b}.
Tabular form of scalar multiplication on N by P and N by T are given in Table 19 and
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Table 20 respectively.

So, gNI =(@1pOEIN) D (Lrp O &) D (e3p O &3xy) € NAN AN over (KX V),
={<¢x1,(0,0.5,0.7) >, < gx,,(0,0.5,0.7) >, < gx3,(0,0.5,0.7) >,
< rx,(0,0.25,0.1) >, < rx,,(0,0.25,0.1) >, < rx3,(0,0.25,0.1) >}.

Table 19 : Tabular form of scalar multiplication on N by P.

eipOeiy 2p O 8oy 23p O &3y
qx; (0,0.5,0) (0,0.25,0.5) (0,0.25,0.7)
gxy | (0,0.5,0.1) (0,0.25,0.5) (0,0.25,0.7)
g | (0,05,0.1) (0,025,05) (0,0.2,0.7)
rXx (0.5,0,0) (0,0.25,0.1) (0,0.25,0.1)
rxy | (0,0.25,0.1) 0.5,0,0) (0,0.25,0.1)
rxz | (0,0.25,0.1) (0,0.25,0.1) (0.25,0,0)

Table 20 : Tabular form of scalar multiplication on N by 7.

;1 08y 2y © &y &7 O &3y
gx; | (0.4,0.6,0.3) (0,0.5,0.7) (0,0.6,0.7)
qx; (0,0.6,0.3) (0.2,0.5,0.7) (0,0.6,0.7)
qx; (0,0.6,0.3) (0.2,0.5,0.7) (0,0.6,0.7)
rXx (0.5,0.2,0) (0,0.25,0.3) (0,0.25,0.3)
o | (0,025,001)  (0.4,0,03)  (0,0.25,0.3)
rxz | (0,0.25,0.1) (0.4,0.25,0.3) (0.5,0.2,0.3)

So, éy, =(e1r © ZIN)® (67 © &) B (637 ©&3y) € NAN AN over (KxV)
={<¢x1,(0,0.6,0.7) >, < gx,,(0,0.6,0.7) >, < gx3,(0,0.6,0.7) >,
< rxi,(0,0.25,0.3) >, < rx;,(0,0.25,0.3) >, < rx3,(0,0.25,0.3) >}.

Now, 2y, ® &y, = {< qx1.(0,0.6,0.7) >, < gx,,(0,0.6,0.7) >, < gx3,(0,0.6,0.7) >,

< rx1,(0,0.25,0.3) >, < rx2, (0,0.25,0.3) >, < rxs, (0,0.25,0.3) >}.

Next, for a neutrosophic soft scalar &;p = {< ¢,(0.3,0.6,0.8) >, < ,(0.5,0.3,0.4) >

}over (K, E),

819 @21p = {< ,(0,0.6,0.8) >, < r,(0.5,0.3,0.4) >},
819 @ 22p = {< ,(0,0.6,0.8) >, < 1,(0.5,0.3,0.4) >},

e1p O e3p =1{<¢,(0,0.6,0.8) >,<r,(0.25,0.3,0.4) >}

and so the scalar multiplication on N can be put in a tabular form as in Table 21.

Thus,
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Table 21 : Tabular form of scalar multiplication on N.

(21p021p) O8Iy (21900 2p) Oy (219 O 23p) O &3y
qx (0,0.6,0.8) (0,0.6,0.8) (0,0.6,0.8)
g | (0,0.6,0.8) (0,0.6,0.8) (0,0.6,0.8)
qx3 (0,0.6,0.8) (0,0.6,0.8) (0,0.6,0.8)
r | (05,0.3,04) (0,0.3,0.4) (0,0.3,0.4)
rX) (0,0.3,0.4) (0.5,0.3,0.4) (0,0.3,0.4)
rx3 (0,0.3,0.4) (0,0.3,0.4) (0.25,0.3,0.4)

219 @&y, =219 O [(é1p O E1n) ® (é2p © Eay) ® (3P O E3v)]
=[(t1p@21p) O EIN] ® [(210 O 22p) © &an] ® [(19 © &3p) © E3y]
={< ¢x1,(0,0.6,0.8) >, < gx2,(0,0.6,0.8) >, < gx3,(0,0.6,0.8) >,
< rx1,(0,0.3,04) >, < rx,,(0,0.3,0.4) >, < rx3,(0,0.3,0.4) >}.

Clearly, ey, ® éy, = éy, and &1 © @y, C éy,, €y, by sense of Definition 2.8.

7. Conclusion

The theoretical point of view of NSLS has been introduced and illustrated by suit-
able examples in the present paper. Here, we also have defined the cartesian product
of NSLSs, neutrosophic soft subspaces and neutrosophic soft vector in NSLS. Some
related theorems have been established and verified by suitable examples. We expect
the future works on neutrosophic soft vector upon this concept.
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