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Abstract. About 200 words

In this paper we present a structural analytical model for a capacitive
micromachined ultrasonic transducer (CMUT), based on a sacrificial release
fabrication process and comprised of electro-mechanical plate actuators
transferring their motion to a coupling roof structure on top. The structure
features a larger average displacement compared to conventional designs at lower
operational frequencies.

Low operational frequencies in the range of 40 kHz to 1 MHz are beneficial for
airborne applications due to their frequency-dependent strong wave attenuation
in air, limiting the signal-to-noise ratio.

The eigenfrequency in dependence of the roof mass is calculated analytically
and lumped elements, which can be used in equivalent circuits, are extracted.
In addition, finite element analyses utilizing a shell-beam model are conducted.
Experimental results, based on digital holographic microscopy, reveal the usability
of the deduced model within an uncertainty of 8 %.

The developed dimensionless form of the analytical model can be used for
future design purposes.
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1. Introduction

Capacitive micromachined ultrasonic transducers
(CMUTs), fabricated with sacrificial release technol-
ogy, are limited regarding the operational frequency
and the generated sound pressure. Especially for air-
borne applications, such as touchless gesture recogni-
tion [1], low operational frequencies between 40 kHz
and 1 MHz are beneficial because the wave attenua-
tion in air increases with increasing frequency, approx-
imately proportional to the square of the frequency
[2, 3]. Hence, a reduction of the operational frequency
improves the signal-to-noise-ratio of ultrasound devices
at a measurable distance.

CMUTs, presented by Haller et al. [4], have been
part of active research for more than 20 years. A
conventional CMUT consists of a fixed and a flexible
electrode, which is deformed by an electrical excitation
signal [2]. A free movement of the flexible electrode is
possible, since it is located above a vacuum or gas-filled
gap. An insulation layer ensures electrical separation
(Fig. 1).
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Figure 1. Conventional capacitive micromachined ultrasonic
transducers (CMUTs) consist of a fixed and flexible, acoustically
transmitting and receiving electrode, which is excited by the
force generated in an electrostatic field. An applied DC and
AC signal modulates the electrostatic field while a field change
induced current is measured during reception.

The acoustic advantage of a CMUT is its
good impedance matching without matching layers,
especially to water [5]. The positive implication is a
broadband transducer, allowing short acoustic pulses,
resulting in improved image resolution. As MEMS
device, advantages of microtechnologies are inherently
present in CMUTs [6]. Scalibility as well as CMOS
compatibility are only two well known advantages,
increasing the reliability and the ease of use due to
integrated signal generation and processing [6].

Regarding the disadvantages, devices fabricated
with sacrificial release technology have a limited
frequency range and restricted sound pressure. Larger
plate actuators for lower frequencies, required in
airborne applications, are not feasible due to stress
related issues.

Furthermore, CMUT plates are electrically con-
nected in parallel to achieve larger sound pressure and
to form a larger acoustic aperture [Fig. 2(a)]. Remain-
ing non-active areas do no contribute to acoustic radi-
ation and receiving performance. Moreover the vibrat-
ing plates have a specific deflection shape [7], which
additionally limits the radiated sound pressure.

Mechanically coupled actuators, discussed in
this paper, are already a common approach in the
application field of adaptive optics. Spatial light
modulators are used here to correct aberrations of
optical systems [8] by adjustments of the phase of an
incoming wave. A common approach for those light
modulators are membrane deformable mirrors (MDM)
[8, 9], also fabricated as MEMS devices [10, 11]. These
structures comprise a continuous mirror surface and
underlying actuator units, which are capable to deform
the mirror. Such systems avoid undesired diffraction
and benefit from a better phase manipulation. The
mechanical coupling of the actuators allows a smooth
deformation of the mirror surface while exciting several
actuators to enable a reflection without scattering
[9, 11]. For ultrasound devices however, a piston-like
motion is desired to increase the overall deflection.

The simulation of several coupled actuators and
the fabrication of such free-standing structures are
challenging. Multiphysical simulations are extensively
performed with finite element methods (FEM) for
CMUTs [5]. This approach is especially beneficial in
order to calculate parameters of complex geometries
or to investigate the interactions between physical
domains in detail. In case of mechanically coupled
systems, this modelling approach requires extensive
computational power due to the size of a model.

Hence, analytical models provide a fast insight
into parameter dependencies and can estimate crucial
parameter, such as the eigenfrequency of a system. For
the mechanically coupled actuators, the distribution of
the mass needs to be regarded as it has a significant
impact on the system behavior.

This paper presents a CMUT with mechanically
coupled plate actuators and its analytical modeling.
The model is validated by FEM simulations of
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an exemplary structure and experimental motion
measurements.

The structure is organized as follows: Section
two outlines the idea of the MEMS structure. The
analytical model with the underlying assumptions, the
definition of the mathematical model and the solution
approach for the mechanically coupled structure is
deduced in the third section. Section four covers
the verification of the analytical model by means
of FEM calculations. Experimental investigations in
comparison to the simulations are presented in section
five, focusing on the displacement of the structure.
Finally, conclusions are drawn and future research
activities are outlined.

2. Mechanically coupled CMUT concept

Our approach of mechanically coupled actuators in
CMUTs is inspired by the MEMS mirror technology,
which uses large flat moving plates. Our CMUT
plates [Fig. 2(a)], acting as electro-mechanical drive,
are coupled via pillars and a roof structure on top
[Fig. 2(b)]. Note that in this configuration the large
maximum deflection in the center of a plate actuator
is transferred to the roof structure. Similar concepts
were contrived by Huang [12], but a thorough design
and analysis of such CMUT structures are not known
to be published yet.

As one can easily observe, the acoustically
radiating surface is separated from the electro-
mechanical transforming geometry. The thereby
gained design freedom enables new designs for the
electro-mechanical actuator, such as spring-mass
structures that are commonly used for acceleration
sensors and other MEMS devices.

A piston-like motion of the roof structure is
desired, which increases the fill factor of the device
and thereby the output pressure [?]. In addition
the large active area performs as large pressure
receiver, transforming the incoming pressure into a
large mechanical force for the transduction actuators.

The additional roof mass increases the mass of the
entire system, and, thus, reduces its eigenfrequency.
While the roof mass adjusts the eigenfrequency, the
lateral dimensions of the plate actuators are kept as
small as possible to reduce the stress sensitivity of the
plates.

3. Analytical model for rigidly coupled
systems

3.1. Model assumptions and desciption

The advantages of an analytical model are a faster
simulation and insight in physical relationships,
which are not easily recognizable by experiments

Separated plate

Acoustically non-active regions

(a)

Roof plate

Electro-mechanical transducer
(b)

Figure 2. a) Conventional CMUT of separated plates and b)
CMUT with mechanically coupled plate actuators. Electrostatic
excited motion of plate actuators is transferred to a roof plate
via the center pillars.

or time consuming FEM simulations. Furthermore,
a fast parameter simulation estimates a plausible
parameter space for numerical calculations and serves
as validation of more complex calculations. The herein
derived model also can be used to develop a multiphyics
model with lumped parameters according to Wygant
et al [7]. The basis of the presented model is the
mathematical description of P. A. A. Laura et al [13].

Sufficient and plausible model assumptions, which
are assumed to describe the physical behavior, are:

(i) A uniform motion of the roof plate;

(ii) Local stiffening due to the roof pillar attached to
the bottom plate actuator is neglected;

(iii) The actuator is a thin circular plate [14];

(iv) An isotropic material is used;

(v) Fixed clamping of the plate actuator.

The assumption (i) is deduced from the desire to
build a piston radiator emitting large sound pressure
waves. The roof plate can be modeled as additional
point mass mc (Fig. 3).

Assumption (ii) is valid, if the radius of the pillar
is significantly smaller than the plate radius. The
flexural rigidity of a conventional plate approximates
the stiffness of the pillar-coupled structure. In our
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Fixed clamping
Point mass mC

Plate actuator with
mass mP

Figure 3. Approximation of a mechanically coupled structure
with uniform roof plate motion as clamped circular plate, holding
a geometrical mass mP, with point mass mC in the center.

chosen designs the ratio between pillar radius and the
plate radius is only 4 %.

A circular plate actuator [assumption (iii)] has
a significantly larger bending stiffness than in-plane
stretching stiffness of a pure membrane [14]. Nonlinear
effects such as stress stiffening [15] are neglected in this
model for convenience.

The material of the oscillating system is assumed
to be isotropic [assumption (iv)], which is valid due to
the used amorphous plate material [16, 17].

Fixed clamping [assumption (v)] is modelled with
zero deflection, i.e.

w(r = a) = 0 (1)

and no structural rotation

dw(r)

dr

∣∣∣∣
r=a

= 0 (2)

at the boundary r = a of the plate with radius a
depending on the technological design [18].

The time-harmonic partial differential equation,
describing the behavior of the system, is

D∇4w(r)︸ ︷︷ ︸
Flexural force

− ρhω2
0w(r)︸ ︷︷ ︸

Inertial force
of the plate

−mCω
2
0δ(r)w(r)︸ ︷︷ ︸

Inertial force
of the point mass

= 0 (3)

with the flexural rigidity D, mass density ρ and the
thickness h of the plate actuator. This equation is
exactly the same in classical thin plate theory [19]

except the last term that represents the effect of the
point mass mC in the center of the plate [13].

A solution is searched for the deflection w(r) and
the eigenfrequenz ω0 = 2πf0 of the axisymmetric
deformation of the plate. Therefore equation (3) can
be written in cylindrical coordinates

∇4w(r̄)− Ω2w(r̄)− Ω2rmass
π

r̄
δ(r̄)w(r̄) = 0, (4)

neglecting the angular coordinate due to the axisym-
metric assumption. Furthermore, the radial coordinate
r is transformed into a dimensionless form r̄ = r

a . The
eigenvalue

Ω2 = ω2
0

ρh

D
a4 (5)

can be used to calculate the eigenfrequency by means
of the material parameters ρ, D and the geometrical
parameters h, a. If these parameters are unknown, the
relation

ΩC

ωC
=

ΩP

ωP
, (6)

with the eigenvalue ΩP and eigenfrequency ωP of
the uncoupled system can be used to calculate the
eigenfrequency ωC of the coupled system with a roof
mass. Then the eigenvalue ΩC of the coupled system
for a specific mass ratio

rmass =
mC

mP
(7)

between the point mass mC and the geometrical
mass mP = πa2hρ has to be determined by solving
equation (4).

3.2. Model solution

According to Laura et al [13], the Galerkin method is
used as solution approach. Hence a trial function

w(r̄, c) = A

(
2

c− 2
r̄ c − c

c− 2
r̄ 2 + 1

)
, (8)

with the optimization parameter c and the amplitude
A is defined to calculate the best-fit solution for the
differential equation (4).

The Galerkin method yields an approximate
solution, which is the projection of the exact, unknown
solution into the subspace of trial functions. Therefore
the integral

G(c, A) =

∫
S

w(r̄)R(w(r̄))dS = 0 (9)

has to be solved, which represents the scalar product
between the trial functions and a residuum R(w(r̄)).
The residuum is the equilibrium error that results by
inserting the trial function w(r̄) into the differential
equation (4).
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If the trial function w(r̄) and the residuum
R(w(r̄)) are inserted into the functional G(c, A), the
general optimization function

Ω2(c) =

∫ 1

0
w(r̄, c)∇4w(r̄, c)r̄dr̄∫ 1

0
w2(r̄, c)r̄dr + rmass

2 w2(r̄ = 0, c)
(10)

is found for an arbitrary trial function and mass ratio
rmass. An evaluation of this expression reveals

Ω2(c) =
12c2

(c− 1)
(

c2(5+c)
(1+c)(2+c)(4+c) + 3rmass

) (11)

for optimization parameters c > 2. Otherwise the trial
function w̃(r̄, c = 2) is not defined for real values.
An eigenvalue for a specific c is an upper bound to
the true eigenvalue according to Rayleigh’s principle
[14]. Therefore a minimized error G(c, A) with
corresponding eigenvalue Ω is obtained by numerically
minimizing the eigenvalue function (11) as function of
the parameter c.

3.3. Eigenfrequency reduction, bending shape and
lumped elements

Model results will be presented as non-dimensional
parameters, which enable the flexible calculation of
dimensional values for a specific system with varying
material and geometrical parameters. Dimensionless
lumped elements are extracted from the derived
deflection shapes.

The eigenvalue of the roof coupled system
reduces drastically with increasing mass ratio (Fig. 4).
Thereby the additional roof mass allows to adjust the
eigenfrequency, while the actuator parameters are kept
constant. As described by the Rayleigh principle,
the approximate eigenvalue of the conventional plate
(rmass = 0) is with a value of 10.2261 only 0.1 %
larger than the exact eigenvalue of 10.2158 [19]. The
deviation between these two values is a result of the
minimization problem.
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Figure 4. Descending non-dimensional eigenfrequency and
optimization parameter in dependence of the mass ratio.

The eigenvalue and optimization parameter func-
tions in dependence of the mass ratio can be separated
into a region with a large and with a small change of
the optimization parameter (Fig. 4). The optimization
parameter converges to the value c→ 2. At the chosen
limit rmass = 1, the optimization parameter does not
deviate by more than 5 % from the convergence limit.
In case of large mass ratios, the eigenvalue and the
eigenfrequency decrease linearly with the mass ratio.

The behavior of the optimization parameter is
connected to the deflection shapes of the actuator
(Fig. 5). The descending slope of the frequency
reduction curve is reflected by the deflection shapes
of the actuator. In the blue region (rmass < 1),
the deflection shape of the plate actuator changes
significantly compared to the deflection shape of
a conventional actuator without point mass. The
deflection shape exhibits only small changes for large
mass ratios (rmass > 1) in the green region.
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Figure 5. Deflection shape functions for different mass ratios.
As the mass ratio increases, the deflection shapes changes
significantly up to rmass = 1.

A similar behavior can be recognized in the
lumped elements, which can be extracted from the
deflection shapes of the actuator. The effective,
lumped mass of the actuator plate can be calculated
with an energy approach. The kinetic energy

Ek =
1

2

∫ 1

0

2πρh[ω0w(r̄)]2r̄dr̄ =
1

2
meff(ω0weff)2 (12)

of the distributed actuator mass equals a virtual,
effective mass meff with one effective degree of freedom
weff [7]. After rearrangement the effective, lumped
mass is calculated by

meff = 2πρh

∫ 1

0

[
wpk

weff
w(r̄)

]2

r̄dr̄ (13)

at the eigenfrequency ω0.
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The choice of the effective deflection weff depends
on the energy flow between different energy storages
in the system. An appropriate choice is weff = wpk

because the maximum deflection of the actuator is
transferred to the roof mass via the pillars in the center
of the actuator, i.e. the kinetic energy of the roof mass
depends on the center deflection.

Thus, the effective mass of the actuator can be
used to calculate the effective stiffness

keff = ω2
0(meff +mC), (14)

with the eigenfrequency ω0, calculated with the
approximate solution of the eigenvalue (5), (6).

A non-dimensional, relative effective mass

rm,eff =
meff

mp
(15)

is defined because of the scalability of this expression
and because of the very small mass values which are
typical for microstructures.

Furthermore, a non-dimensional, relative, effective
stiffness

rk,eff =
keffa

2

πD
= Ω2(rm,eff + rmass) (16)

is defined, which can be calculated with the other non-
dimensional parameters Ω, rmass and rm,eff .

The effective mass (Fig. 6) and the effective
stiffness (Fig. 7) decrease strongly due to a small mass
ratio rmass change at small mass ratios.

These relative effective parameters decrease simi-
larly as the optimization parameter, which determines
the deflection shapes. For large mass ratios, the rela-
tive effective parameters converge to constant limits.
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Figure 6. Effective mass ratio of the actuator and optimization
value in dependence of the mass ratio reduces similarly.

The inspection of the eigenvalue

Ω2 =
rk,eff

rm,eff + rmass
, (17)

deduced from equation (16), highlights the dependence
of the eigenfrequency on the relative parameters. Two
reasons for the frequency reduction can be found.

First, a significant reduction of the eigenfrequency
occurs due to the change of the mass distribution of the
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e
ff
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2

π
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Figure 7. Effective stiffness ratio of the actuator reduces
similarly to the effective mass (Fig. 6).

actuator and the related change of the deflection shape
(Fig. 5). In this transition region (0 < rmass < 1), a
stronger reduction of the eigenvalue and, thus, of the
eigenfrequency can be achieved because the decreasing
relative effective parameters are also functions of the
mass ratio.

Second, the center mass dominates the behavior
of the actuation structure for large mass ratios
(rmass ≥ 1). As described, the relative effective
parameters rk,eff and rm,eff can be assumed constant for
large mass ratios rmass > 1 (Fig. 6, 7). The eigenvalue
only depends approximately on the mass ratio

Ω2 ≈ 16

0.13 + rmass
, (18)

while the relative effective parameters become inde-
pendent of the mass ratio. For the system design an
additional parameter, i.e. the mass ratio rmass, can
be utilized to define the eigenfrequency in addition to
the radius a and the thickness h of the actuator for a
specific material system.

The dimensionless relative parameters herein
derived can be used to specify a system arbitrarily,
consisting of a plate with a mass acting in the center
of the plate, for a specific eigenfrequency. The model
takes into account the effect of the center mass on the
effective parameters.

3.4. Comparison with exact bending shapes

The comparison with exact analytical bending shapes
validates the so far deduced model for the theoretical
limits and underlines the observed changes of the
bending shapes due to the center mass. In case of c = 4
the trial function is equivalent to the static deflection
shape

w(r̄) = A
(
1− 2r̄2 + r̄4

)
= A

(
1− r̄2

)2
(19)

of a uniformly loaded circular plate [20]. However, for
a conventional plate without center mass (rmass = 0),
an optimization parameter of c = 3.2695 is obtained.
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Then the trial function approximates the exact
dynamic deflection shape

wdyn(r̄) = J0 (3.197r̄)− J0(3.197)

I0(3.197)
I0 (3.197r̄) (20)

of the fundamental mode of a conventional plate
[14, 21] with the Bessel function J0 and modified Bessel
function I0 of the first kind.

Using wpk as effective coordinate results in an
exact relative effective mass of 0.2 with the static
deflection shape [7], while the Galerkin method yields
0.1802. Then the relative effective stiffness of the exact
solution is 20.87, while the approximate value amounts
to 18.84.

The effect of the roof mass (rmass > 0) can be
interpreted as inertial force acting in the center of the
plate actuator. The deflection shape

w(r) =
Fr2

8πD
ln
( r
a

)
+

F

16πD
(a2 − r2) (21)

describes this load case with the center force F [20].
An extreme value determination in conjunction with a
limit value calculation at r → 0 is utilized to determine
the maximum amplitude

wpk =
Fa2

16πD
(22)

of equation (21). Then the non-dimensional equation

w(r̄)

wpk
=
(
2r̄2 ln (r̄)− r̄2 + 1

)
, (23)

with the dimensionless spatial coordinate r̄ = r/a can
be compared with the trial functions.

According to the approach (13), an effective
mass of meff = (7/54) mP can be calculated with the
deflection shape (23). For large mass ratios, the
relative effective mass converges to this theoretical
value 7/54 = 0.129 63 (Fig. 6).

The relative effective stiffness is determined
according to equation (16) with an eigenvalue of 0.336
at a large mass ratio of 141.54. The resulting relative
effective stiffness is 15.999 (Fig. 7).

As the effective parameters of the actuator change,
the electrical excitation of the system is influenced
as well. Keeping in mind, that assumption (ii) is
considered valid, the static stiffness is approximated
by the stiffness of a conventional plate. In the dynamic
case the stiffness is significantly lower because of the
influence of the roof mass. Whereas the static and
dynamic stiffness of a conventional CMUT are similar
[7].

The larger static stiffness increases the required
DC voltage which is beneficial for the electro-
mechanical transformation factor [22] and the resulting
receive sensitivity. Nevertheless, the effort to design a
circuit for DC generation, especially in mobile devices,
can be more challenging. As opposed to this, it is

presumed that a lower AC signal is necessary to excite
the structure or larger deflections can be achieved
with the same AC voltage compared to a conventional
CMUT. Further research efforts will be needed to verify
this presumption.

Furthermore the extracted lumped elements can
be included into an equivalent circuit, enabling the
simulation of transmit and receive sensitivity as well
as the combined design of transmit and receive
electronics. According to the piston-like roof motion,
the acoustic impedance can be modelled by a piston
impedance [23].

4. Structural mechanical finite element model

4.1. Model description

A finite element model of a CMUT with mechanically
coupled actuators was developed in ANSYS Work-
bench 17.2 to investigate the structural, dynamic be-
havior and to verify the assumptions of the analytical
model.

Analyses of the structural eigenvalue problem
were conducted to observe the influence of the pillar
and roof structure on the oscillation mode and the
eigenfrequency. The model is based on structures
which are currently in fabrication.

The model, consisting of seven coupled plate
actuators (Fig. 8), is developed with shell elements
for the actuators and roof plate and beam elements
for the pillar structures. The overlap ∆a, which is the
boundary of the roof plate at the outer actuators, can
be used to optimize the dynamic roof deformation [21].

∆aa

Figure 8. FEM description of seven coupled actuators with the
size a of the hexagonal roof and the overlap ∆a of the roof at
the last actuator pillars.

The verification of the shell-beam model is done by
comparing this model with a solid model for different
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roof overlaps and layer ratios, i.e.

rlayer =
roof thickness

actuator thickness
, (24)

which is the roof to actuator thickness ratio. The re-
sulting relative deviation between the eigenfrequencies
of the solid and shell-beam model is approximately 3 %
in the investigated parameter range, which verifies the
validitiy of this FEM model to investigate the system
behavior. The structures are investigated with a fixed
pitch between the plate actuators.

15 20 25 30 35 40 45
2

2.5

3

3.5

Overlap ∆a (µm)

R
el

a
ti

ve
d

ev
ia

ti
on

(%
) rlayer = 4

rlayer = 16

Figure 9. Comparing the deviations of eigenfrequencies of the
solid model with the shell-beam model.

4.2. Mechanically Coupling of Actuators

Two different coupling cases can be distinguished by
analyzing the structural eigenvalue problem (Fig. 10).
The most desired case is a rigid coupling, which
exhibits a uniform piston-like roof plate motion. The
roof plate can be described as distributed mass. Higher
modes, such as tilting of the roof plate, are also existent
due to the distribution of the roof mass and strongly
depend on the geometry. Such an approximately
rigidly coupled system can be realized by a large layer
ratio between roof stiffness and actuator stiffness. The
choice of a stiffer roof material as well as a thicker roof
plate in order to increase the roof stiffness is limited
by the used technology.

If the stiffness of the roof plate is not large enough
compared to the actuator stiffness, the roof structure
deforms elastically and exhibits spring behavior. A
roof with a stiffness in the range of the actuator
stiffnes will manifests global modes with several radial
or angular oscillations (Fig. 11). Higher modes with
zero-crossings in their spatial oscillation (Fig. 11) do
not contribute to radiation with the zero amplitude
regions but limit the usable frequency range if such
modes are close to desired resonances. All actuators
oscillate with a diverging phase and the excitation of
sound waves cannot be modeled with the piston model.

Mechanical Coupling

Elastic Coupling Rigid Coupling

Rigid mass

k1 k2

s1 s2

Figure 10. Classification of mechanical coupling as comparison
of a simple two oscillator systems with a multiple degree CMUT
structure [24].

If the roof thickness becomes smaller than the
actuator thickness, the actuators and pillars will
only deform the roof locally with a small mechanical
coupling between the actuators [9]. This type of
coupling can reduce the eigenfrequency of the system
due to the additional mass but lacks the desired high
overall deflection.

Furthermore the stiffness of the roof plate depends
not only on the thickness and material choice but also
on the lateral size of the plate. For instance, the spring
constant of a circular plate, i.e.

k1 =
16πE

(1− ν2)

t3act

ract
, (25)

depends also on the radius ract beside the Young’s
modulus E, Poisson’s ratio ν and the plate thickness
tact [25].

Zero displacement

Figure 11. Higher mode of seven coupled actuators with zero-
crossings in the deflection shape (layer ratio = 4) as indicated
by blue color.
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Elastically coupled system can still exhibit a
uniform roof motion if an optimization of the overlap
is conducted [21]. The eigenfrequency of a seven
actuator system with the most uniform roof plate
motion, calculated by FEM analysis, is 525.7 kHz. The
result of the analytical model with the same parameter
configuration is 509.2 kHz, i.e. a relative deviation of
only 3.2 %.

5. Measurement of the roof motion

Beside optimized structures, which are currently in fab-
rication, preliminary test structures with prefabricated
actuators are used to fast-track the experimental in-
vestigations. The herein investigated MEMS devices
exhibiting a rectangular aperture and a layer ratio
rlayer = 1 contain 90 electrostatically excited circular
plates in a hexagonal pattern. This roof coupled struc-
ture is compared with a reference structure comprised
of the same 90 actuators without pillars and a roof
structure.

Electrical impedance measurements already show
a reduction of the resonance frequency [21], but
do not verify the motion of the roof plate. The
herein presented static and dynamic motion data
was measured with a digital holographic microscope
(LynceeTec, R-Series, Switzerland) to verify the
theoretical predictions of the analytical model and
FEM. Displacement patterns are investigated by
sweeping the excitation frequency in time. The
surface averaged displacements and the corresponding
resonance frequency are deduced from this data.

As expected for an electrostatic system, the
static, surface-averaged deflection w̄ in dependence
of a DC voltage exhibits a nonlinear curve (Fig. 12)
[26]. Furthermore, the coupled roof structure has a
larger deflection at the same DC voltage compared
to the uncoupled reference structure. The increased

5 10 15 20 25 30

−15

−10

−5

0

coupled

uncoupled

Voltage (V)

w̄
(n

m
)

Figure 12. The surface averaged, static deflection of an
uncoupled, conventional CMUT and a mechanically coupled
CMUT, showing a larger deflection of a roof coupled structure
at the same DC voltage.

deflection is achieved by avoiding position dependent
deflection shapes (Fig. 5), as well as non-moving areas
between the plates due to the large roof plate with a
large fill factor.

According to the analytical model, the eigen-
frequency of the reference device is estimated at
f0 = 5.57 MHz. The eigenvalue of the roof structure is
calculated to 3.99 at a mass ratio of 0.87 by means of
the derived analytical model. Then an eigenfrequency
of 2.18 MHz yields with the help of the eigenvalue ratio
[equation (6)].

The dynamic measurements of the surface aver-
aged deflection with the same excitation voltages for
both reference and roof coupled structure reveal a
significant resonance reduction (Fig. 13). While the
reference structure shows a significant resonance at
fr = 6.88 MHz, the coupled structure has a reduced
resonance at fr = 2.58 MHz. Thereby the resonant fre-
quency of the reference structure is higher than the
estimated eigenfrequency of a circular plate (18 % de-
viation). Possible reasons, which are not modeled an-
alytically, are tensile material stress due to fabrication
as well as stress generated by the predeflection of the
plate due to ambient pressure [27, 28, 29].

The eigenfrequency of the coupled system deviates
by 15.5 % from the analytical model which does not
predict the reference eigenfrequency correctly. If
the measured resonant frequency of the reference
actuator is taken into account [equation (6)], the
eigenfrequency of the roof structure will result in
2.66 MHz and estimates the measured frequency with
8 % uncertainty.

In contrast to the static deflection results, the
resonant deflection w̄r of the roof coupled structure
is smaller than the surface averaged deflection of the
uncoupled reference due to the uneven deformation
of the roof plate. Possible explanations are the soft
coupling due to a small layer ratio rlayer between the
roof plate and actuators as well as an asynchronous
motion [Fig. 14(a)] of the actuators which is transferred
to the roof. The out-of-phase displacement of different
roof structure positions reduces the average of the
entire roof surface [Fig. 14(b)].

A further evidence of the electrostatic behavior
is the increasing resonance amplitude in dependence
of an increasing DC voltage (Fig. 15). A shift of the
resonance frequency due to electrostatic softening [22]
is not observed in the measured data. The pull-in
is measured to be about 50 V, so that the used DC
voltages correspond to only 20 %, 33 % and 50 % of
this pull-in estimation, respectively. This means that
the spring softening effect is too weak to be visible
in the data. These voltages were chosen to prevent the
destruction of these preliminary structures due to large
oscillation amplitudes in air.
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Figure 13. Surface averaged frequency response of a
conventional CMUT as reference and a CMUT with roof coupled
actuators. The same DC and AC voltages were used to excite the
devices. A significant resonance of the coupled structure below
the resonance of the reference structure can be observed.

The measured frequency responses of the displace-
ments verify the electrostatic behavior of the structures
and a reduced resonance frequency due to a roof struc-
ture. However, the desired piston-like motion of the
roof structure cannot be observed. Out-of-phase dis-
placements at different positions of the investigated de-
vices are present. In particular the boundary of the
roof plate exhibits a larger displacement than the in-
ner areas, indicating a soft roof plate due to the low
layer ratio. The devices fabricated currently are opti-
mized with a larger layer ratio in order to stiffen the
roof structure. Further insight into the acoustic perfor-
mance of the investigated devices cannot be obtained
due to the complex deformation without acoustic sim-
ulation or acoustic measurements.

6. Conclusion

A CMUT approach comprised of electro-mechanical
plate actuators coupled via a pillar-roof structure was
presented along with a structural analytical model
to estimate the eigenfrequency of the system in
dependence of the roof mass and the plate actuator
parameters. The deduced dimensionless model permits
system designers to specify geometrical parameters for
a defined eigenfrequency with an additional degree of
freedom, i.e. the roof mass.

Finite element analyses revealed that the roof
coupling affects the eigenfrequency and the mode shape
that can deviate from the desired piston-like motion.

The measured results prove the feasibility of
these coupled structures with CMOS compatible
sacrificial release technology as well as a frequency

(a) (b)

Figure 14. Normalized mode shapes of the highlighted
resonances in Fig. 13 of a) the reference structure and b) the
roof coupled structure. The illustrated shapes are extracted at
the time of the maximum surface averaged displacement.

reduction in accordance with the theoretical results.
If the resonance frequency of the pure actuators
is known, an uncertainty of 8 % between analytical
eigenfrequency and measured resonance frequency of
the roof coupled structure is observed. Dynamic
measurements revealed, that a piston-like motion could
not be obtained in accordance with the analytical
assumption in the investigated frequency range. An
optimized design with a thicker layer ratio is currently
in fabrication in order to achieve a more homogenous
motion.

Future work will include the characterization
of structures with the improved fabrication process.
Acoustic measurements are required to verify acoustic
presumptions based on the measured displacement
results.
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Figure 15. Surface averaged frequency responses of a roof
coupled structure exhibit a DC voltage dependent resonance
amplitude at fr = 2.58 MHz as a result of an increasing
electro-mechanical transformation factor. A voltage dependent
reduction of the resonance frequency as effect of electrostatic
softening is not observable.

With regard to modeling, the description of
the system with an equivalent circuit, including the
electrostatic transduction and the acoustic radiation,
can provide more insight into the electrical behavior,
beneficial for the design of transmit and receive
electronics.
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