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1 Analysis

Workflow and data analysis for “A localization transition underlies the mode-coupling crossover of glasses”.

To quickly reproduce the analysis and check the results, use the convenience script make at the root of the data

set

./make backup

./make clean

./make setup

./make analysis

./make check

Alternatively, execute the setup and analysis scripts individually from the terminal or follow the workflow

described in this document.

The first level scripts (src/tangle/analysis 1 *) compute the following properties for each model:

– mobility edge and fractions of unstable modes

– average participation ratios as a function of eigenvalue

– mobility edge

– fractions of delocalized and localized unstable modes

Once the first level scripts have been executed, the second level scripts (src/tangle/analysis 2 *) compute

the following:

– spectrum of unstable modes

– threshold energy

– level spacing statistics

– localization temperatures

There is no dependency between scripts of a given level. It is recommended to execute the scripts within the

python virtual environment created by the src/tangle/setup.sh script.

1.1 Setup

The analysis scripts require the following python packages:

– numpy (1.16.3)

– argh (0.26.2)

– atooms (1.9.1)

We also require gnuplot (4.6.4 or higher) for a couple of fits.

The analysis scripts have been tested with both python 2.7 and 3.5.

Install all needed python packages in a python virtual environment (env/). This step is not strictly required if

these packages are already installed system-wide.

# Require pip
if [[ ! -x $(command -v pip) ]] ; then

echo The python package installer is required.
echo Please install it with the following commands:
echo curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
echo python get-pip.py
exit 1

fi
# Require virtualenv
if [[ ! -x $(command -v virtualenv) ]] ; then

pip install --user virtualenv || exit 1
export PATH=$PATH:$HOME/.local/bin

fi
# Require gnuplot
if [[ ! -x $(command -v gnuplot) ]] ; then
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echo Gnuplot is not installed.
echo The setup will proceed, but it is recommended
echo to install gnuplot via your software package manager

fi
# We freeze minor versions but accept bug fix updates
virtualenv -p python3 env
. env/bin/activate
pip install --upgrade numpy˜=1.16.3
pip install --upgrade argh˜=0.26.2
pip install --upgrade atooms˜=1.9.1
deactivate

The convenience make script allows for batch execution of setup, analysis and gnuplot scripts. The all target

reproduces the analysis and checks the results against a backup of the original dataset.

1.2 Reference MCT temperatures

Obtained from power law fits to dynamic data (literature data).

# This file can be sourced by gnuplot, bash, python
T_ss=0.20
T_karma=0.288
T_poly18=0.493
T_poly12=0.104
T_ntw=0.31

1.3 Mobility edge and fraction of modes

We determine the mobility edge λe using the finite-size scaling approach of Clapa, Kottos and Starr, JCP 2012.

We look for the intersection of the scaled participation ratio P (λ, L)/L, for several linear system sizes L. Modes

with eigenvalue λ < λe are localized, those with λe < λe < 0−. The inflection modes of quasi-stationary points

(|λ| ∼ 10−4) is removed from the analysis.

1.3.1 Soft spheres

50-50 soft sphere mixture of Bernu et al.

echo "--------------------"
echo "Analyze soft spheres"
echo "--------------------"

Collect the participation ratio data.

echo "Collect participation ratio"
for N in 500 1000 2000 ; do

for T in 0.2000 0.2207 0.2461 0.2783 0.3200 0.3764 0.4571 ; do
dw=0.6 dw_true=2.0 inpfile=analysis/ss/N${N}/T${T}/modes_unstable.xyz src/tangle/

localization_xyz.sh #2>/dev/null
done

done

Detect the mobility edge programmatically. We must set a lower cut off on the eigenvalue that removes the

noisy part of the data at large negative eigenvalues.

{
echo "# title: mobility edge lambda_e as a function of temperature T"
echo "# columns: T, lambda_e, P(lambda_e), error on lambda_e, missing intersections"
for T in 0.2000 0.2207 0.2461 0.2783 0.3200 0.3764 0.4571 ; do

xmin=-10
[ $T == 0.2000 ] && xmin=-3
[ $T == 0.2207 ] && xmin=-4
[ $T == 0.2461 ] && xmin=-6
[ $T == 0.3200 ] && xmin=-10
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[ $T == 0.3764 ] && xmin=-15
[ $T == 0.4571 ] && xmin=-18
echo $T $(python src/mobility_edge.py --xmin $xmin analysis/ss/N*/T${T}/pratio_unstable.txt)

done
} | tee analysis/ss/mobility_edge.txt

Extract the fractions of modes.

echo "Extract fractions of unstable modes"
export dirout=analysis/ss
export mobility_edge=$dirout/mobility_edge.txt
N=500 src/tangle/localization_fraction_xyz.sh
N=1000 src/tangle/localization_fraction_xyz.sh
N=2000 src/tangle/localization_fraction_xyz.sh

1.3.2 Ternary mixture

Ternary mixture of Karmakar et al.

echo "-----------------------"
echo "Analyze ternary mixture"
echo "-----------------------"

Collect the participation ratio data.

echo "Collect participation ratio"
for N in 250 500 1000 ; do

for T in 0.27 0.28 0.29 0.30 0.32 0.35 0.45; do
dw=1.5 dw_true=3.0 inpfile=analysis/karma/N${N}/T${T}/modes_unstable.xyz src/tangle/

localization_xyz.sh
done

done
for N in 3000 ; do

for T in 0.29 0.30 0.32 0.35 0.45; do
dw=1.5 dw_true=3.0 inpfile=analysis/karma/N${N}/T${T}/modes_unstable.xyz src/tangle/

localization_xyz.sh
done

done

Detect the mobility edge programmatically.

{
echo "# title: mobility edge lambda_e as a function of temperature T"
echo "# columns: T, lambda_e, P(lambda_e), error on lambda_e, missing intersections"
for T in 0.27 0.28 0.29 0.30 0.32 0.35 0.45 ; do

echo $T $(python src/mobility_edge.py --xmin -15 analysis/karma/N*/T${T}/pratio_unstable.txt)
done
} | tee analysis/karma/mobility_edge.txt

Extract the fractions of unstable modes.

echo "Extract fractions of unstable modes"
export dirout=analysis/karma
export mobility_edge=analysis/karma/mobility_edge.txt
N=250 src/tangle/localization_fraction_xyz.sh
N=500 src/tangle/localization_fraction_xyz.sh
N=1000 src/tangle/localization_fraction_xyz.sh

1.3.3 Network liquid

Network liquid by Coslovich and Pastore

echo "----------------------"
echo "Analyze network liquid"
echo "----------------------"
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Collect the participation ratio data.

echo "Collect participation ratio"
system=ntw
for N in 400 800 2000 ; do

for T in 0.2900 0.3100 0.3397 0.3716 0.4120 ; do
dw=1.0 inpfile=analysis/$system/N${N}/T${T}/modes_unstable.xyz src/tangle/localization_xyz.sh

2>/dev/null
done

done

Detect the mobility edge programmatically.

system=ntw
{

echo "# title: mobility edge lambda_e as a function of temperature T"
echo "# columns: T, lambda_e, P(lambda_e), error on lambda_e, missing intersections"
for T in 0.2900 0.3100 0.3397 0.3716 0.4120 ; do

xmin=-10
[ $T == 0.2900 ] && xmin=-3
[ $T == 0.3100 ] && xmin=-3
[ $T == 0.3397 ] && xmin=-6
[ $T == 0.4120 ] && xmin=-10
echo $T $(python src/mobility_edge.py --xmin $xmin analysis/$system/N{400,800,2000}/T${T}/

pratio_unstable.txt)
done

} | tee analysis/$system/mobility_edge.txt

Extract the fractions of modes.

echo "Extract fractions of unstable modes"
system=ntw
export dirout=analysis/$system
export mobility_edge=$dirout/mobility_edge.txt
N=400 src/tangle/localization_fraction_xyz.sh
N=800 src/tangle/localization_fraction_xyz.sh
N=2000 src/tangle/localization_fraction_xyz.sh

1.3.4 Polydisperse n=18

Additive polydisperse soft sphere model with exponent n=18 (Ninarello et al. PRX 2017).

echo "-----------------------"
echo "Analyze polydisperse 18"
echo "-----------------------"

Collect the participation ratio data.

echo Collect participation ratio
for N in 250 500 1500 ; do

for T in 0.330 0.350 0.390 0.432 0.471 0.517 0.586 0.682 ; do
dw=2.0 inpfile=analysis/poly18/N${N}/T${T}/modes_unstable.xyz src/tangle/localization_xyz.sh

2>/dev/null
done

done

Detect the mobility edge programmatically.

system=poly18
{

echo "# title: mobility edge lambda_e as a function of temperature T"
echo "# columns: T, lambda_e, P(lambda_e), error on lambda_e, missing intersections"
for T in 0.330 0.350 0.390 0.432 0.471 0.517 0.586 0.682 ; do

xmin=-10
[ $T == 0.330 ] && xmin=-4
[ $T == 0.350 ] && xmin=-4
[ $T == 0.390 ] && xmin=-4
[ $T == 0.432 ] && xmin=-4
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[ $T == 0.471 ] && xmin=-4
[ $T == 0.517 ] && xmin=-6
[ $T == 0.586 ] && xmin=-10
[ $T == 0.682 ] && xmin=-15
echo $T $(python src/mobility_edge.py --xmin $xmin analysis/$system/N*/T${T}/pratio_unstable

.txt)
done

} | tee analysis/$system/mobility_edge.txt

Extract the fractions of modes.

echo "Extract fractions of unstable modes"
system=poly18
export dirout=analysis/$system
export mobility_edge=$dirout/mobility_edge.txt
N=250 src/tangle/localization_fraction_xyz.sh
N=500 src/tangle/localization_fraction_xyz.sh
N=1500 src/tangle/localization_fraction_xyz.sh

1.3.5 Polydisperse n=12

Non-additive polydisperse soft sphere model with exponent n=12 (Ninarello et al. PRX 2017).

echo "-----------------------"
echo "Analyze polydisperse 12"
echo "-----------------------"

Collect the participation ratio.

echo "Collect participation ratio"
for N in 250 500 1500 ; do

for T in 0.062 0.075 0.092 0.110 0.120 0.150 ; do
touch analysis/poly12/N${N}/T${T}/modes.nin
dw=1.0 dw_true=2.0 inpfile=analysis/poly12/N${N}/T${T}/modes.nin src/tangle/

localization_xyz.sh
done

done

Get the mobility edge.

{
echo "# title: mobility edge lambda_e as a function of temperature T"
echo "# columns: T, lambda_e, P(lambda_e), error on lambda_e, missing intersections"
for T in 0.062 0.075 0.092 0.110 0.120 0.150 ; do

echo $T $(python src/mobility_edge.py --xmin -6 analysis/poly12/N*/T${T}/pratio_unstable.txt
)

done
} | tee analysis/poly12/mobility_edge.txt

Compute fraction of unstable modes.

echo "Extract fractions of unstable modes"
export file_base=modes.nin
export dirout=analysis/poly12
export mobility_edge=analysis/poly12/mobility_edge.txt
export Wcut=3e-9
N=250 src/tangle/localization_fraction_xyz.sh
N=500 src/tangle/localization_fraction_xyz.sh
N=1500 src/tangle/localization_fraction_xyz.sh

1.4 Vibrational density of states

We analyze the crossover between power law and exponential in the unstable portion of the spectrum g(λ).
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1.4.1 Ternary mixture

Compute the spectrum of the ternary mixture. Remove the spurious inflection mode around |λ| ∼ 10−4 in

quasi-stationary modes.

echo "Vibrational density of states"
echo "-----------------------------"
for N in 250 500 1000 ; do

for T in 0.27 0.28 0.29 0.30 0.32 0.35 0.45 ; do
inpfile=analysis/karma/N${N}/T${T}/modes_unstable.xyz
outfile=analysis/karma/N${N}/T${T}/vdos_unstable.txt
{

echo "# title: spectrum g(lambda) of the unstable modes with eigenvalue lambda"
echo "# note: the inflection mode with |lambda|<1e-4 is removed from the analysis "
echo "# columns: lambda, g(lambda)"
awk "(NF>1) && (\$1<-1e-4){print \$1}" $inpfile | grep -v step | src/dist.py -c 0 -

} > $outfile
done

done

1.5 Level spacing statistics

We analyze the level spacing statistics and check the crossover between Wigner-Dyson and Poisson distributions.

1.5.1 Ternary mixture

We analyze the ternary mixture. The mobility edge at T=0.35 is around -4.9. We remove the modes around

the edge (over a range ±2), for which the functional form of the lavel spacing statistics has an intermediate

character.

echo "Level spacing"
echo "-------------"
inpfile=analysis/karma/N3000/T0.35/modes_unstable.xyz
outdir=analysis/karma/N3000/T0.35/
python src/modes.py spacing --lambda-max -6.9 $inpfile | src/dist.py -c 0 -b 30

- > $outdir/spacing_localized_unstable.txt
python src/modes.py spacing --lambda-min -2.9 --lambda-max -0.0001 $inpfile | src/dist.py -c 0 -b 30

- > $outdir/spacing_delocalized_unstable.txt

1.6 Energy threshold

We determine the energy threshold eth from the vanishing of the fraction of delocalized modes. For the models

in which the fraction becomes strictly zero at a finite T we can do it explicitly. For the soft spheres it is very

close, so we must extrapolate. The network liquid has no energy threshold. Note: a more accurate approach

would be fitting fu vs. es, e.g. by the p-spin functional form, as we do to determine the localization transition

temperature.

echo "Energy threshold"
echo "----------------"
echo 1.74 > analysis/ss/threshold_energy.txt # for soft spheres we have to extrapolate because we

do not cross it
awk ’($6==0.0){print $3}’ analysis/karma/N1000/fraction_localization.txt | sort -g | tail -n 1 >

analysis/karma/threshold_energy.txt
awk ’($6==0.0){print $3}’ analysis/poly12/N1500/fraction_localization.txt | sort -g | tail -n 1 >

analysis/poly12/threshold_energy.txt
awk ’($6==0.0){print $3}’ analysis/poly18/N1500/fraction_localization.txt | sort -g | tail -n 1 >

analysis/poly18/threshold_energy.txt

7



1.7 Analysis as a function of energy

We gather saddles by energy across temperatures. We compute the fractions of modes for fixed es, Note that

in order to properly build the fu(es) plot we should reweight the energies by the Boltzmann weight. This is not

done here.

echo "Analysis as a function of energy"
echo "--------------------------------"
for N in 250 500 1000 ; do

mkdir -p analysis/karma/N${N}/gather
./src/modes.py gather --fraction --fraction-output "analysis/karma/N${N}/gather/fraction.txt"

--de 0.02 --lambda-cut 1e-4 analysis/karma/N${N}/T0.*/modes_unstable.xyz
./src/modes.py gather --fraction --fraction-output "analysis/karma/N${N}/gather/fraction_true.

txt" --de 0.02 --only true-saddles analysis/karma/N${N}/T0.*/modes_unstable.xyz
done

1.8 Localization transition temperature

We determine the localization transition temperature from a linear fit of the mobility edge. Bash wrapper to

the above gnuplot script

echo "Localization transition temperature"
echo "-----------------------------------"
gnuplot src/tangle/analysis_2_localization_temperature.gp

2 Plots

To produce all the figures

for f in plots/paper/[a-z]*.gp ; do
gnuplot $f

done

The paper’s figures have been produced using gnuplot 5.0.0.

2.1 Overview (Figure 1)

Overview on the main result: the geometric transition only applies to the fraction of delocalized unstable modes

fud, which vanishes at a temperature close to the MCT temperature determined from fitting the dynamic data.

The fraction of localized unstable modes fud is model-dependent.
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Figure 1: Fraction of unstable modes, delocalized unstable modes and localized unstable modes for all the

studied models.

2.2 Mobility edge (Figure 2)

We illustrate the numerical determination of the mobility edge for the ternary mixture. The participation ratio

of a mode α is defined as

Pα =

(
1

N

∑
i

(~eαi )4

)−1

where ~eαi is the vector displacement of particle i in mode α. We then compute the average participation ratio

P (λ) of modes with (negative) eigenvalue λ. The mobility edge λe is identified by the fixed point of P (λ, L)/L

where L is the linear size of the system.
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Figure 2: Scaled average participation ratio for the ternary mixture.

2.3 Localization transition from mobility edge (Figure 3)

We determine the localization transition temperature Tλ from the vanishing of the mobility edge λe. A least

square fit provides a precise determination of the localization temperature.
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Figure 3: Temperature dependence of the mobility edge λe and localization transition temperature Tλ in all the

studied models.

2.4 Vibrational density of states (Figure 4)

We look at the shape of the unstable spectrum g(λ) of the dynamical matrix. Two distinct behaviors can be

identified, associated to delocalized and localized modes, respectively. For small absolute eigenvalues (delocalized

modes), the spectrum has a power law behavior

D(λ) = A(λ− λ0)ν

This functional form is found in the mean-field p-spin model and is consistent with the β regime dynamics

predicted by MCT.

For large absolute eigenvalues (localized modes), we expect an exponential tail

D(λ) = A exp (−Bλ)

We observe these two regimes above the MCT temperature. The crossover between the two regimes occur

somewhat below the mobility edge. Below the MCT temperature, the spectrum is exponential.
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Figure 4: Spectrum of unstable modes g(λ) for the ternary mixture.

2.5 Level spacing statistics (Figure 5)

We study the statistics of level spacings s. Above TMCT , we can distinguish the two kinds of behaviors. For

delocalized modes, the Wigner-Dyson distribution

P (s) = (πs/2) exp (−πs2/4)

works well, while for localized modes, the distribution is close to Poissonian

P (s) = exp (−s)

We remove modes around the mobility edge, over a range of eigenvalues ±δ = 2, because these modes are known

to have a mixed character. The choice δ = 1 also gives good agreement with the two functional forms above.
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Figure 5: Distribution of level spacing for the ternary mixture.

2.6 Quasi-stationary points versus stationary points (Figures 6 – 8)

In this section we compare the statistical properties of quasi-stationary and stationary points for the ternary

mixture. We focus on this model because it is the one for which we accumulated the largest statistics.

The geometric plot es(fu) shows results obtained separately for stationary points and for the bulk of the points

obtained from minimizations of the mean square force W . Only minor discrepancies between the two sets of

data are visible, the fraction of unstable modes being slightly smaller in stationary points at small es.

11



0.00

0.01

0.02

 0.25  0.3  0.35  0.4  0.45

F
ra

c
ti
o

n
 o

f 
u

n
s
ta

b
le

 m
o

d
e

s
, 

f u

T

All points

Stationary points

0.00

0.01

0.02

 1  1.1  1.2  1.3

F
ra

c
ti
o

n
 o

f 
u

n
s
ta

b
le

 m
o

d
e

s
, 

f u

es

All points

Stationary points

All points  (T-implicit)

Stationary points (T-implicit)

Figure 6: Geometric plot es(fu) for all the points and for stationary points in the ternary mixture.

We show the participation ratio P (λ) of the unstable modes for all points obtained from all minimizations and

for stationary points only. The two sets of data are fairly consistent with one another.
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Figure 7: Scaled participation ratio for all the points and for stationary points in the ternary mixture.

We show the fraction of delocalized unstable modes for stationary points only, i.e. without quasi-stationary

points. We use the mobility edge obtained from analysis of all W minimizations because the current statistics

on the participation ratio is not sufficient to determine the mobility edge.

10
-6

10
-5

10
-4

10
-3

10
-2

 1  1.2  1.4  1.6

D
e

lo
c
a

liz
e

d
 u

n
s
ta

b
le

 m
o

d
e

s
, 

f u
d

T / TMCT

Binary N=2000

Binary N=1000

Binary N=500

Ternary N=1000

Ternary N=500

Ternary N=250

Polydisperse n=18 N=1500

Polydisperse n=18 N=500

Polydisperse n=18 N=250

Polydisperse n=12 N=500

Polydisperse n=12 N=250
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3 Supplement

Supplementary information for “A localization transition underlies the mode-coupling crossover of glasses”

To produce all the figures in the supplement

for f in plots/si/[a-z]*.gp; do
gnuplot $f

done

The supplement’s figures have been produced using gnuplot 5.0.0.

12



3.1 Methods

We determined stationary and quasi-stationary points of the potential energy surface (PES) for systems of N

point particles by minimizing the total squared force

W =
1

N

N∑
i=1

|~fi|2 (1)

where ~fi is the force on particle i. Minimizations start from instantaneous configurations obtained from Monte

Carlo or molecular dynamics simulations at a given number density ρ = N/V and temperature T . For each

configuration, we used the l-BFGS minimization algorithm [9] to minimize W . It is well-known that W mini-

mizations locate true stationary points only rarely [11] and that the vast majority of points determined with this

method are quasi-stationary points, at which there is precisely one inflection mode having a null zero eigenvalue

[4]. In our minimizations, this inflection mode has a nearly zero eigenvalue whose norm |λ| is typically between

10−6 and 10−4 (in the corresponding reduced units, see below) and which is clearly distinguishable from the

lowest non-zero eigenvalue for the system sizes used in this work. The inflection mode was removed from the

analysis, to avoid spurious O(1/N) finite size effects when the fraction of unstable modes gets close to zero.

The stationary and quasi-stationary points can be distinguished from the corresponding value of W (in reduced

units), which is low but non-zero for quasi-stationary points and zero within machine precision for true stationary

points (W ∼ 10−14). In practice, we use a threshold of ∼ 10−10 to classify the two kinds of points for all models

except for the polydisperse spheres with n = 12 (see below), for which a slightly higher threshold is used

(3× 10−9) to account for a less strict convergence criterion on W minimizations. Previous studies showed that

the statistical properties of quasi-stationary points and stationary points are practically indistinguishable above

TMCT [11].

3.2 50-50 Soft spheres

This is the historical 50:50 binary mixture introduced by Bernu et al. [1]. The pair interaction potential is

uαβ(r) = ε
(σαβ
r

)12
(2)

where α, β = A,B are species indexes. The size ratio is σAA

σBB
= 1.2 and the cross-interaction term is additive

σAB = (σAA + σBB)/2. The potential is cutoff and shifted at a distance rcut =
√

3σAA by adding a cubic

term that ensures continuity of the potential up to the second derivative at rcut [6, 5]. Energies and distances

are expressed in units of ε and σAA, respectively. We used configurations from previous molecular dynamics

simulations for N particles at a number density ρ = N/V = 1, with N = 400, 800, 2000 [2].

Table 1: Number of analyzed configurations for the 50-50 soft sphere mixture. The number in parenthesis

indicates the corresponding number of true stationary points obtained.

– T = 0.2000 T = 0.2207 T = 0.2461 T = 0.2783 T = 0.3200 T = 0.3764 T = 0.4571

N = 500 2800(24.1%) 3600(11.2%) 2000(12.0%) 800(15.8%) 800(17.5%) 2000(20.4%) 1000(19.5%)

N = 1000 3600(5.2%) 3600(2.3%) 800(3.1%) 800(7.0%) 800(9.4%) 800(9.4%) 400(7.2%)

N = 2000 1600(0.6%) 1600(0.0%) 800(0.6%) 800(3.0%) 800(4.8%) 800(4.2%) 400(5.0%)
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Figure 9: Averaged scaled participation ratio as a function of eigenvalue λ for the 50-50 soft sphere mixture.

Vertical arrows mark the mobility edge λe at a given temperature. The width of the vertical bar is representative

of the uncertainty on λe.
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Figure 10: Fraction of unstable modes as a function of (a) temperature and (b) energy for the 50-50 soft sphere

mixture (N = 2000). Vertical arrows in panel (a) and (b) mark the mode-coupling temperature TMCT and the

threshold energy eth, respectively.
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Figure 11: (a) Fraction of unstable modes, (b) fraction of delocalized unstable modes and (c) energy of stationary

points as a function of the number of particles N for the 50-50 soft sphere mixture

3.3 Ternary mixture

The ternary mixture model studied in this work was introduced by Gutierrez et al. in Ref. [7]. The interaction

potential is given by inverse power laws with an exponent 12, plus additional terms that ensure continuity of

the derivatives at the cutoff:

uαβ(r) =
(σαβ
r

)12
+ c4

(σαβ
r

)−4

+ c2

(σαβ
r

)−2

+ c0 (3)

where α, β = A,B,C The expressions for c0, c2, and c4 are given in [8]. The size ratio between two species is
σAA

σBB
= σBB

σCC
= 1.25 and the chemical compositions are xA = 0.55, xB = 0.30, and xc = 0.15. The potential is

cut off at a distance rcut = 1.25σαβ . We performed swap Monte Carlo simulations for N = 250, 500, 1500, 3000

particles at a number density ρ = 1.1. We used 80% of displacement moves over cubes of side 0.14σAA and

20% of swap moves [10]. To save computational time, we never attempted to exchange the identity of species

A and C. We note that this model liquid can be equilibrated with swap Monte Carlo below the mode-coupling

temperature TMCT = 0.29 [10]. However, because of its crystallization tendency at low temperature, we could
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not simulate the metastable liquid with N = 1500 particles for T < 0.27 and the one with N = 3000 particles

for T < 0.28. Energies and distances are expressed in units of ε and σAA, respectively.

Table 2: Number of analyzed configurations for the ternary mixture. The number in parenthesis indicates the

corresponding number of true stationary points obtained.

– T = 0.27 T = 0.28 T = 0.29 T = 0.30 T = 0.32 T = 0.35 T = 0.45

N = 250 5200(32.0%) 5200(22.6%) 5200(14.7%) 4000(10.8%) 4000(7.0%) 4000(6.6%) 4000(8.8%)

N = 500 4200(11.0%) 4086(6.1%) 4000(2.6%) 3400(1.5%) 3400(0.7%) 3400(1.2%) 3400(3.1%)

N = 1000 4400(1.2%) 4400(0.3%) 4400(0.1%) 4000(0.1%) 4000(0.0%) 4000(0.1%) 4000(0.8%)

N = 3000 0() 0() 450(0.0%) 450(0.0%) 450(0.0%) 180(0.0%) 90(0.0%)
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Figure 12: Averaged scaled participation ratio as a function of eigenvalue λ for the ternary mixture. Vertical

arrows mark the mobility edge λe at a given temperature. The width of the vertical bar is representative of the

uncertainty on λe.
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Figure 13: Fraction of unstable modes as a function of (a) temperature and (b) energy for the ternary mixture

(N = 1000). Vertical arrows in panel (a) and (b) mark the mode-coupling temperature TMCT and the threshold

energy eth, respectively.
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3.4 Network liquid

The network liquid model is a simple binary mixture that mimics the structure and dynamics of silica [3]. The

interaction potential between unlike species (α 6= β) is of the Lennard-Jones type

uαβ(r) = 4εαβ

[(σαβ
r

)12
−
(σαβ
r

)6]
(4)

while the one between equal species is a simple inverse power

uαα = ε12(σ/r)12 (5)

Energies and distances are expressed in units of εAA and σAA, respectively. The remaining interaction param-

eters are εAB = 6, σAB = 0.49, σBB = 0.85, εBB = 1 The potential is cut off smoothly at rcut by adding a

cubic term that ensures continuity of the second derivative at the cut off distance rcut, as for the soft sphere

mixture [5]. The resulting cut-off distances are 2.07692, 1.39081, 1.76538 for A−A, A−B and B −B interac-

tions, respectively. We analyzed simulations for system sizes N = 400, 800, 2000 at a number density ρ = 1.655

obtained from previous molecular dynamics simulations [2].

Table 3: Number of analyzed configurations for the tetrahedral network liquid. The number in parenthesis

indicates the corresponding number of true stationary points obtained.

– T = 0.2900 T = 0.3100 T = 0.3397 T = 0.3716 T = 0.4120

N = 400 1200(0.1%) 1200(0.0%) 1200(0.0%) 1200(0.0%) 400(0.0%)

N = 800 1200(0.0%) 1200(0.0%) 1200(0.0%) 1200(0.0%) 400(0.0%)

N = 2000 800(0.0%) 800(0.0%) 800(0.0%) 799(0.0%) 395(0.0%)
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Figure 15: Averaged scaled participation ratio as a function of eigenvalue λ for the tetrahedral network liquid.

Vertical arrows mark the mobility edge λe at a given temperature. The width of the vertical bar is representative

of the uncertainty on λe.
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Figure 16: Fraction of unstable modes as a function of (a) temperature and (b) energy for the tetrahedral

network liquid (N = 2000). The vertical arrow in panel (a) marks the mode-coupling temperature TMCT
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Figure 17: (a) Fraction of unstable modes, (b) fraction of delocalized unstable modes and (c) energy of stationary

points as a function of the number of particles N for the tetrahedral network liquid

3.5 Polydisperse particles n=18

We consider the model of polydisperse repulsive particles with additive interactions studied in Ref. [10]. The

interaction potential between particles i and j is

u(rij) = ε(σij/rij)
n + c4

(
rij
σij

)4

+ c2

(
rij
σij

)2

+ c0 (6)

with n = 18 and σij = (σi+σj)/2. The coefficients c0, c2, c4 are determined to ensure continuity of the potential

at the cut-off distance rcut = 1.25σij , as for the ternari mixture. The distribution of particle diameters is P (σ) =

A/σ3 for σmax ≤ σ ≤ σmin and 0 otherwise, with A a normalization constant. We use σmax/σmin = 2.219,

which implies a root mean square deviation of the diameter

δ =

√
〈σ2〉 − 〈σ〉2
〈σ〉

, (7)

of about 23%. We simulated systems composed of N = 500, 1000, 1500 particles at a number density ρ = 1

using the swap Monte Carlo algorithm described in Ref. [10].

Table 4: Number of analyzed configurations for the polydisperse soft spheres with n = 18. The number in

parenthesis indicates the corresponding number of true stationary points obtained.

– T = 0.330 T = 0.350 T = 0.390 T = 0.432 T = 0.471 T = 0.517 T = 0.586 T = 0.682

N = 250 1001(52.7%) 1001(39.4%) 1001(24.0%) 1001(14.0%) 1001(7.2%) 1001(5.4%) 1001(3.3%) 1001(3.6%)

N = 500 1001(26.2%) 1001(15.6%) 1001(6.3%) 1001(1.4%) 1001(0.6%) 1001(0.7%) 1001(0.5%) 1001(0.3%)

N = 1500 459(2.0%) 400(0.2%) 400(0.0%) 400(0.0%) 400(0.0%) 400(0.0%) 400(0.0%) 400(0.0%)
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Figure 18: Averaged scaled participation ratio as a function of eigenvalue λ for polydisperse soft spheres with

n = 18. Vertical arrows mark the mobility edge λe at a given temperature. The width of the vertical bar is

representative of the uncertainty on λe.
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Figure 19: Fraction of unstable modes as a function of (a) temperature and (b) energy for the polydisperse soft

spheres with n = 18 (N = 1500). Vertical arrows in panel (a) and (b) mark the mode-coupling temperature

TMCT and the threshold energy eth, respectively.
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Figure 20: (a) Fraction of unstable modes, (b) fraction of delocalized unstable modes and (c) energy of stationary

points as a function of the number of particles N for the polydisperse soft spheres with n = 18

3.6 Polydisperse particles n=12

This is a variant of the polydisperse mixture introduced in the previous section. It features non-additive

interactions to stabilize the fluid against phase separation [10]. The interaction potential between particles i

and j is

u(rij) = ε(σij/rij)
n + c4

(
rij
σij

)4

+ c2

(
rij
σij

)2

+ c0 (8)

with n = 12 and σij = (1−0.2|σi−σj |)(σi+σj)/2. The coefficients c0, c2, c4 are determined to ensure continuity

of the potential at the cut-off distance rcut = 1.25σij . We use σmax/σmin = 2.219 which implies δ ≈ 23%. We

simulated systems composed of N = 500, 1000, 1500 particles at a number density ρ = 1 using the swap Monte

Carlo algorithm described in Ref. [10].

Table 5: Number of analyzed configurations for the polydisperse soft spheres with n = 12. The number in

parenthesis indicates the corresponding number of true stationary points obtained.

– T = 0.062 T = 0.075 T = 0.092 T = 0.110 T = 0.120 T = 0.150

N = 250 1000(19.1%) 1000(5.5%) 1000(0.5%) 1000(0.2%) 1000(0.1%) 1000(0.2%)

N = 500 1000(5.0%) 1000(0.5%) 1000(0.0%) 1000(0.0%) 1000(0.0%) 1000(0.0%)

N = 1500 400(0.0%) 400(0.0%) 400(0.0%) 400(0.0%) 400(0.0%) 400(0.0%)
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Figure 21: Averaged scaled participation ratio as a function of eigenvalue λ for the polydisperse soft spheres

with n = 12. Vertical arrows mark the mobility edge λe at a given temperature. The width of the vertical bar

is representative of the uncertainty on λe.
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Figure 22: Fraction of unstable modes as a function of (a) temperature and (b) energy for the polydisperse

soft spheres with n = 12 (N=1500). Vertical arrows in panel (a) and (b) mark the mode-coupling temperature

TMCT and the threshold energy eth, respectively.
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Figure 23: (a) Fraction of unstable modes, (b) fraction of delocalized unstable modes and (c) energy of stationary

points as a function of the number of particles N for the polydisperse soft spheres with n = 12
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