
 

 

Abstract—Motivated by the advantages of multi-valued 

neutrosophic sets (MVNSs) and linguistic variables (LVs), we 

introduce the concept of multi-valued neutrosophic linguistic 

sets (MVNLSs) and define the operational laws of multi -valued 

neutrosophic linguistic numbers (MVNLNs) based on Algebraic 

operations and the distance measure for MVNLNs. Then, the 

multi-valued neutrosophic linguistic power weighted average 

(MVNLPWA) operator and the multi-valued neutrosophic 

linguistic power weighted geometric (MVNLPWG) operator are 

proposed to aggregate the multi-valued neutrosophic linguistic 

information, and some desirable properties of two operators are 

analyzed. Furthermore, a multi-criteria decision-making 

(MCDM) method based on the power aggregation operator is 

developed, where the criterion values corresponding to 

alternatives are the form of MVNLNs. Finally, an illustrative 

example is provided to demonstrate the effectiveness and 

practicality of the proposed method. 

 

Index Terms—multi-criteria decision-making, Algebraic, 

power operator, multi-valued neutrosophic linguistic 

 

I. INTRODUCTION 

Smarandache [1] originally proposed the concept of 

neutrosophic set, which can be better to deal with incomplete, 

indeterminate and inconsistent information. Therefore, some 

researchers have developed a series of neutrosophic set to 

solve multi-criteria decision-making problem. Wang [2, 3] 

defined the notions of single-valued neutrosophic sets 

(SVNSs) and interval neutrosophic sets (INSs). Ye [4] 

proposed simplified neutrosophic sets (SNSs). Ye [5] 

introduced the concept of the single-valued neutrosophic 

hesitant fuzzy sets  (SVNHFSs). Wang [6] developed the 
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definition of multi-valued neutrosophic sets (MVNSs). In fact, 

the MVNSs and SVNHFSs are the same notion. 

 Generally, people refer to apply linguistic terms to express 

evaluation information. Hence, Zadeh [7] introduced the 

concept of linguistic variables. Then, some achievements on 

linguistic variables have been developed. Intuitionistic 

linguistic sets (ILSs) [8] are proposed to handle MCDM 

problem. Hesitant fuzzy linguistic sets (HFLSs) [9] are also 

introduced, which combine hesitant fuzzy sets and linguistic 

term sets. 

However, linguistic variables commonly can express the 

truth-membership degree of a linguistic term is 1 but cannot 

imply the indeterminacy-membership degree and the falsity- 

membership degree. To overcome this shortcoming, ye [10, 11] 

defined the concepts  of single-valued neutrosophic linguistic 

sets (SVNLSs) and interval neutrosophic linguistic sets 

(INLSs), and extended weighted average (WA) operator and 

weighted geometric (WG) operator to the interval 

neutrosophic linguistic environment. In some cases, the 

degrees of truth, indeterminacy and falsity regarding the 

linguistic term cannot be expressed exactly with a crisp value 

or interval values. For example, when an expert is asked for 

their opinion about an investment, he or she gives the 

statement is good. And he or she may say the possibility of the 

statement being true is 0.7 or 0.8, the possibility of it being 

indeterminacy is 0.2 or 0.3, and the one of it being false is 0.1 or 

0.2. This issue is beyond the scope of SVNLSs and INLSs. 

Considering this  situation, Li [12] defined the concept of 

multi-valued neutrosophic linguistic sets (MVNLSs), and 

developed the Bonferroni mean (BM) operator based on 

Hamacher operations. 

Aggregation operator plays an important role in MCDM 

problem, because it can fuse multiple values into a single 

comprehensive value. Many practical aggregation operators 

have been proposed, such as the weighted arithmetric average 

(WAA) operator, the weighted geometric average (WGA) 

operator [13, 14], ordered weighted aggregation (OWA) 

operator, Bonferroni Mean (BM) operator, Maclaurin 

symmetric mean (MSM) operator.  

To consider the relationship between the arguments being 

aggregated, Yager [15] firstly defined the power average (PA) 

operator, which makes the arguments being fused to support 

and reinforce each other. Xu and Yager [16] introduced the 

power geometric (PG) operator. Zhou [17] proposed a 

generalized power average operator. Yang [18] introduced 

power aggregation operator for single-valued neutrosophic 

sets. Liu [19] proposed some power generalized operators and 
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studied some properties of them under interval neutrosophic 

environment. Peng [20] applied power weighted average 

(PWA) operator and power weighted geometric (PWG) 

operator to multi-valued neutrosophic sets. Li [21] proposed a 

novel generalized simplified neutrosophic number Einstein 

aggregation operator. 

However, to the best of our knowledge, the existing PA 

operator has not been applied to deal with MCDM problem in 

which the input arguments are multi-valued neutrosophic 

linguisitic numbers (MVNLNs). To accommodate these 

situations, the purposes  of this paper are: (1) to define 

operational laws based on Algebraic operations and a 

distance measure between MVNLNs, (2) to extend the 

traditional PA operator to multi-valued neutrosophic 

linguisitic environments, MVNLPWA and MVNLPWG 

operators are proposed, and discuss their desirable properties.  

Therefore, the rest of the paper is organized as follows. 

Section Ⅱ  introduces some basic concepts and originally 

defines the operational rules, and distance measure between 

MVNLNs. Section Ⅲ proposes MVNLPWA and MVNLPWG 

operators and investigates the properties. Section Ⅳ presents 

an example for MCDM to demonstrate the feasibility and 

application of the proposed method, and a comparison 

analysis is also conducted in this section. Section Ⅴ contains 

a conclusion and future work. 

II. PRELIMINARIES 

A.  MVNLSs and algebraic operations 

This section introduces the concept and operations for 

MVNLSs, which will be useful in the next analysis. 

Definition 1   Let X be a set of points, an MVNLS A in X is 

defined as follows [12]: 

  ( )
, , ( ), ( ), ( ) ,

x A A A
A x s T x I x F x x X


  
   

Where 


( )
,

x
s S   1 2

, , ,S s s s


 is an ordered and finite 

linguistic set, in which j
s denotes a linguistic variable value 

and  is an odd value. 

 ( ) ( ) ,
A A
T x T x    ( ) ( ) ,

A A
I x I x  

 ( ) ( ) ,
A A
F x F x   ( ), ( ),

A A
T x I x and ( )

A
F x are three sets of 

crisp values in 0,1 ,   denoting three degrees of 

x in X belonging to ( )x
s , that are true, indeterminacy and 

falsity, satisfying these conditions 

0 , , 1,    and    0 sup ( ) sup ( ) sup ( ) 3.
A A A
T x I x F x  

Suppose there is only one element in X , then tuple 

 ( )
, ( ), ( ), ( )

x A A A
s T x I x F x
  is depicted as a multi-valued 

neutrosophic linguistic number (MVNLN). For simplicity, the 

MVNLN can also be represented as 

 


( )
, ( ), ( ), ( )

x A A A
A s T x I x F x . 

The t-norms and t-conorms play an important role in the 

building process of operation laws because different 

aggregation operators  are all depended on different t-norms 

and t-conorms. Algebraic t-norm and t-conorm consist of the 

following equations,      , .a b ab a b a b ab  

Then, the operational laws of MVNLNs based on algebraic 

operations are given as follows. 

Definition 2 

Let  
11 ( ) 1 1 1
, ( ), ( ), ( )

a
a s T a I a F a


 and  

22 ( ) 2 2 2
, ( ), ( ), ( )

a
a s T a I a F a




be two MVNLNs, and 0,  then the operations of MVNLNs 

can be defined based on algebraic operations. 
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B. Distance measure 

The Hamming distance is commonly applied in real field, 

which is one typical measure. Then, we give the definition for 

the Hamming distance for two MVNLNs 

Definition 3 

 

Let  
11 ( ) 1 1 1
, ( ), ( ), ( )

a
a s T a I a F a


 and  

22 ( ) 2 2 2
, ( ), ( ), ( )

a
a s T a I a F a


  

be two MVNLNs, then the Hamming distance between 1
a and 

2
a can be defined as follows: 
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         (1) 

Where  
1 1( ) ( )
, ,

T a I a and 
1( )F a  are the numbers of the values 

in 1 1
( ), ( )T a I a  and 1

( )F a  respectively,  
2 2( ) ( )
, ,

T a I a and 
2( )F a  

are the numbers of the values in 2 2
( ), ( )T a I a  and 2

( )F a  

respectively. Where ( )x
s denotes a linguistic variable value.  

For any three MVNLNs 1 2
, ,a a and 3

a , it is easy to prove the 

distance defined above satisfies the following properties. 

(1) 
1 1

( , ) 0,d a a  

(2)  
1 2 2 1 1 2

( , ) ( , ), ( , ) [0,1],d a a d a a d a a  

(3)  
1 2 2 3 1 3

( , ) ( , ) ( , ).d a a d a a d a a  

III. NOVEL OPERATORS 

In this section, the power weighted average operator and 

the power weighted geometric operator are developed, and 

some properties of them are also discussed. 

A. PA operator 

Definition 4  Let ( 1,2, , )
i
a i n be a collection of data, the 

PA operator is defined as  [15] 

1
1

1

(1 ( ))

( , , )

(1 ( ))

n

i i

i
n n

j

i

S a a

PA a a

S a















                                                 

Where 
1,

( ) ( , )
n

i i j

j j i

S a Supp a a
 

  and ),( ji aaSupp is the support 

for ia and ja , which meets the following properties: 

(1)   1,0),( ji aaSupp  

(2) ( , ) ( , )i j j iSupp a a Supp a a  

(3) ),(),(),(),( qpjiqpji aadaaiffdaaSuppaaSupp   

Where ),( ji aad  is the distance between ia and ja . The 

smaller distance is, the more they support each other. 

B. MVNLPWA operator 

Definition 5 Let ( 1,2, , )
i
a i n be a collection of 

MVNLNs,  ( )
, ( ), ( ), ( ) ,

ii a i i i
a s T a I a F a


  and 

 1 2
, , ,

n
    be the weighted vector 

for , 0,1
i i
a      and 

1

1.
n

i
i




 Then the operator of 

MVNLPWA is given as below, and the aggregation result is 

still an MVNLN. 

 









 




1
1 2

1

(1 ( ))
( , , )

(1 ( ))

n

i i ii
n n

i i
i

S a a
MVNLPWA a a a

S a

         (2) 

Where 
 

 
1,

( ) ( , ),
n

i j i j
j j i

S a Supp a a satisfying the 

following conditions. 

(1)   1,0),( ji aaSupp  

(2) ( , ) ( , )i j j iSupp a a Supp a a  

(3) ( , ) ( , ).i j p qSupp a a Supp a a If ( , ) ( , ),i j p qd a a d a a  

Here ),( ji aad  is the Hamming distance between 

ia and ja defined in Definition 3.  

Based on the operations in Definition 2 and Eq. (2), we can 

derive the following Theorem 1. 

Theorem 1 Let ( 1,2, , )
i
a i n be a collection of MVNLNs, 

 ( )
, ( ), ( ), ( ) ,

ii a i i i
a s T a I a F a


  and  1 2

, , ,
n

    be 

the weighted vector for , 0,1
i i
a      and 

1

1.
n

i
i




 Then the 

aggregated result of MVNLPWA is also an MVNLN. 
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Proof. The proof can be done by using the mathematical 

induction. For simplicity, let
1

(1 ( ))

(1 ( ))

i i

ni

i i
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S a
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  in the process of 

proof. 

(1)  If n=2, based on the operations (1) and (3) in Definition 2. 
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(2) If Eq. (3) holds for n=k, then 
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(3) If n=k+1, by the operations (1) and (3) in Definition 2. 
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Eq. (3) holds for n=k+1. Thus, Eq. (3) holds for all n. 

The MVNLPWA operator has the following properties. 

(1) Commutativity: Let  ( ), ( ), ( ), ( )
i

i a i i ia s T a I a F a  be a 

collection of MVNLNs, if  1,2, , ia i n  is any permutation 

of  1, 2, ,ia i n , then 

1 2 1 2( , , , ) ( , , , )n nMVNLPWA a a a MVNLPWA a a a   . 

(2) Idempotency: Let  ( )
, ( ), ( ), ( ) ,

ii a i i i
a s T a I a F a


  

 1,2, ,i n be a collection of MVNLNs, and 

 


( )
, ( ), ( ), ( )

a
a s T a I a F a be a MVNLN, if 

   1,2, , ,
i
a a i n  then 

1 2( , , , ) .nMVNLPWA a a a a  

(3) Boundness: Let  ( )
, ( ), ( ), ( ) ,

ii a i i i
a s T a I a F a


  

 1,2, ,i n  and  
 * * * *

*

( )
, ( ), ( ), ( )

i
i a i i i
a s T a I a F a  

 1,2, ,i n be two collections of MVNLNs. 

If           * * * *( ) ( ), , ,
i i i i i i i i
a a for all i , then 

* * *

1 2 1 2( , , , ) ( , , , ).n nMVNLPWA a a a MVNLPWA a a a  

Where  ,
i i and 

i are elements of 

( ), ( )
i i

T a I a and ( )
i

F a respectively,   * * *

i i i
and  are elements of 

* * *( ), ( ) ( )
i i i

T a I a andF a respectively. 

C. MVNLPWG operator 

Definition 6 Let ( 1,2, , )
i
a i n be a collection of 

MVNLNs,  ( )
, ( ), ( ), ( ) ,

ii a i i i
a s T a I a F a


  and 
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 1 2
, , ,

n
    be the weighted vector 

for , 0,1
i i
a      and 

1

1.
n

i
i




 Then the operator of 

MVNLPWG is achieved as below, and the aggregation result 

is still an MVNLN. 
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(1)   1,0),( ji aaSupp  

(2) ( , ) ( , )i j j iSupp a a Supp a a  
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Here ),( ji aad  is the Hamming distance between 

ia and ja defined in Definition 3.  

Based on the operations in Definition 2 and Eq. (4), we can 

derive the following Theorem 2. 

Theorem 2 Let ( 1,2, , )
i
a i n be a collection of MVNLNs, 
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1

1

1 2

(1 ( ))

(1 ( ))

1

(1 ( ))

(1 ( ))

1

(1

(1 ( ))

(1 ( ))
1

1

( )

( )

( )

( , , ) ,

,

1 (1 ) ,

1 (1 )

i i
n

i i
i

i i
n

i i
i

i

i i

n

S a

n S a

i
i

S a

n S a

i
i

i

S ai i
n

S an i i
i

i
i

i i

I a

a

T a

MVNLPWG a a a s























































  
     
  
   

 
  

  
 
  

 







1

( ))

(1 ( ))

1
( )

i
n

i i
i

S a

n S a

ii iF a













 
   
 
  



(5) 

Where 
 

 
1,

( ) ( , ),
n

i j i j
j j i

S a Supp a a satisfying the 

conditions in Definition 6. 

Similarly, the MVNLPWG operator Eq. (5) can be proved 

using the mathematical induction, and the MVNLPWG 

operator also has the properties of ommutativity, dempotency 

and boundness. 

IV. ILLUSTRATIVE EXAMPLE 

In this section, we will use the novel operators to deal 

with the multi-criteria decision-making problems under the 

multi-valued neutrosophic linguistic environment, where the 

alternative values are in the form of MVNLN s and the criteria 

weights are in the form of crisp values. 

A. Example 

Next, we will consider the same decision-making problem 

adapted from Li [12].  

An investment company wants to expand its business. Four 

alternatives will be chosen, 1
A represents auto corporation, 

2
A represents food corporation, 3

A represents computer 

company corporation), 4
A represents weapon corporation. 

Each alternative is evaluated under three criteria, 1
C denotes 

risk, 2
C denotes growth, 3

C denotes the impact of environment, 

where 3
C is the minimizing criteria. The corresponding 

weighted vector is    0.35,0.25,0.4 . In real situation, the 

decision maker may hesitant and give several possible value 

for the satisfaction, indeterminacy and dissatisfaction 

regarding the alternative i
A corresponding to the criteria 

j
C under the linguistic term set S . Therefore, the assessment 

value is given in the form of MVNLNs, and the linguistic term 

set is employed as 

 

 extremely poor,very poor,poor,medium,good,very good,extremely good





1 2 3 4 5 6 7
, , , , , ,

.

S s s s s s s s

    The multi-valued neutrosophic linguistic decision matrix 

4 3ij
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    is shown as follows. 
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Step1. Normalize the decision matrix. 

Suppose that ij m n
R a


    is the original decision matrix, 

which can be normalized   as follows: 

 

                                              for maximizing criteria

for minimizing criteria
 




 
 ( )

,

, ( ), ( ), ( ) ,
ij

ij

ij

a ij ij ij

a
b

s T a I a F a
 

Thus, the normalized matrix .
ij m n

B b


    is gained. 

Because 3
C  is the minimizing criteria, which should be 

converted to the maximizing criteria, then the normalized 

decision matrix .
ij m n

B b


    can be obtained as follows:  
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4 3

5

6

6

4

6

5

5

4

2

, 0.3,0.4,0.5 , 0.1 , 0.3,0.4

, 0.6,0.7 , 0.1,0.2 , 0.2,0.3

, 0.5,0.6 , 0.4 , 0.2,0.3

, 0.7,0.8 , 0.1 , 0.1,0.2

, 0.5,0.6 , 0.2,0.3 , 0.3,0.4

, 0.6,0.7 , 0.1 , 0.3

, 0.6 , 0.3 , 0.4

, 0.6,0.7 , 0.1 , 0.2

, 0.2

ijB b

s

s

s

s

s

s

s

s

s


   






 





      

      

      

      

2

3

1

,0.3 , 0.1,0.2 , 0.5,0.6

, 0.6,0.7 , 0.1,0.2 , 0.1,0.2

, 0.5,0.6 , 0.1 , 0.3

, 0.3,0.5 , 0.2 , 0.1,0.2,0.3

s

s

s











 

Step2. Calculate the supports ( , ).
ij ip

Supp b b   

As an example, 
11 12

( , )Supp b b  can be obtained as follows: 

      

      

 

 



11 12 11 12

5

6

( , ) 1 ( , )

1 ( , 0.3,0.4,0.5 , 0.1 , 0.3,0.4 ,

, 0.5,0.6 , 0.2,0.3 , 0.3,0.4 )

0.7056

Supp b b d b b

d s

s

 

Where 
11 12

( , )d b b is the Hamming distance defined in Eq. 

(1). 

Then,   ( , )( 1,2,3,4; , 1,2,3; )
ij ip

Supp b b i j p j p can 

be calculated. 

 

 

 

11 12 12 11

11 13 13 11

12 13 13 12

( , ) ( , ) 0.7056;

( , ) ( , ) 0.6278;

( , ) ( , ) 0.4444;

Supp b b Supp b b

Supp b b Supp b b

Supp b b Supp b b

 

 

 

 

21 22 22 21

21 23 23 21

22 23 23 22

( , ) ( , ) 0.8833;

( , ) ( , ) 0.5111;

( , ) ( , ) 0.6278;

Supp b b Supp b b

Supp b b Supp b b

Supp b b Supp b b

 

 

 

 

31 32 32 31

31 33 33 31

32 33 33 32

( , ) ( , ) 0.8111;

( , ) ( , ) 0.5167;

( , ) ( , ) 0.5944;

Supp b b Supp b b

Supp b b Supp b b

Supp b b Supp b b

 

 

 

 

41 42 42 41

41 43 43 41

42 43 43 42

( , ) ( , ) 0.9333;

( , ) ( , ) 0.6444;

( , ) ( , ) 0.6667.

Supp b b Supp b b

Supp b b Supp b b

Supp b b Supp b b

 

Step3. Calculate the weights  
ij
 . 

The weighted support ( )
ij

S b can be obtained using the 

weights ( 1, 2, 3)
j

j  of the criteria ( 1, 2, 3)
j

C j   


 

  
3

1,

( ) ( , )( 1,2,3,4; 1,2,3)
ij p ij ip

p p j

S b Supp b b i p  

Then, the weights ( 1, 2, 3, 4; 1, 2, 3)
ij

i j   associated with 

the MVNLN ij
b can be calculated by the following formula: 

3

1

(1 ( ))

(1 ( ))

j ij

ij

j ij

j

S b

S b











 

As an example, 
11

( )S b  can be calculated as follows: 

    

   



11 2 11 12 3 11 13
( ) ( , ) ( , )

0.25 0.7056 0.4 0.6278

0.4275;

S b Supp b b Supp b b
 

Then, 



 
 
 
 
 
 

4 3

0.4275 0.4247 0.3308

0.4253 0.5603 0.3358
( ( ))

0.4095 0.5216 0.3294

0.4911 0.5933 0.3922

S b  

Therefore, as an example, 
11
 can be calculated as follows: 

1 11

311

1

1

(1 ( )) 0.4996
0.3599

1.3881
(1 ( ))j j

j

S b

S b








  



 

Then, 




 
 
 
 
 
 

4 3

0.3599 0.2566 0.3835

0.3505 0.2741 0.3754

0.3510 0.2707 0.3783

0.3533 0.2696 0.3771

 

Step4. Calculate the comprehensive evaluate value of each 

alternative. 

Utilize the MVNLPWA operator in Eq. (3) to aggregate all 

the values of each alternative. Then, the comprehensive value 

1
b of alternative 1

A can be obtained as follows: 

 
 

 

11 11 12 12 13 13

11 12 13

1 1

11 12 13

11

11 12 13

11

1 11 12 13

( ) ( ) ( )

11 12 13( )

11 12 13( )

11 12 13( )

4.1061

( , , )

,

1 (1 ) (1 ) (1 ) ,

,

,

0.3242,0.3579,0.3618,

j j

jj

jj

b b b

T b

I b

F b

b MVNLPWA b b b

s

s

     

  



  



  



  

  

  

 











     

 


  





 

0.3936,0.3606,0.3926,
,

0.3962,0.4264,0.4012,0.4311,0.4346,0.4628

0.1195,0.1558,0.1326,0.1729 ,

0.3649,0.3914,0.3929,0.4213,0.4047,0.4340,

0.4357,0.4673

  
  
 

 
 

 

 

 

 

2 21 22 23

4.2243

( , , )

,

0.6,0.6409,0.6303,0.6682,0.6384,0.6754,
,

0.6658,0.7

0.1,0.1297,0.1275,0.1654 ,

0.1723,0.2235,0.1986,0.2576

b MVNLPWA b b b

s





 
 
 

 

 

 

 

3 31 32 33

4.5944

( , , )

,

0.5293,0.5674,0.5648,0.6 ,

0.2190 ,

0.2813,0.3243

b MVNLPWA b b b

s
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4 41 42 43

2.8687

( , , )

,

0.5538,0.6069,0.5871,0.6363,0.6133,0.6594,
,

0.6422,0.6848

0.1299 ,

0.1205,0.1566,0.1824,0.1540,0.2,0.2330

b MVNLPWA b b b

s





 
 
 

 

Step5. Calculate the Hamming distance between an 

alternative j
A   and the ideal solution/negative ideal solution. 

The ideal solution is given as  

 
max ( )

, 1,0,0 ,
x

y s and 

the negative ideal solution is given as 

 

 
min ( )

, 0,1,1
x

y s .The distance measure is given in the 

following. 
    ( , ), ( , ).

j j j j
d d b y d d b y

 

  
1 1

0.8526, 0.2338;d d
 

  
2 2

0.6329, 0.3671;d d
 

  
3 3

0.7555, 0.3328;d d
 

  
4 4

0.6762, 0.3238.d d
 

Step6. Get the relative closeness coefficient. 


 
 


1,2,3,4.j

j

j j

d
R j

d d

 

Thus, 

 

 

1 2

3 4

0.7848, 0.6329,

0.6942, 0.6762.

R R

R R

 

Step7. Rank the alternatives. 

According to the relative closeness coefficient, the final 

ranking order of the alternatives is 2 4 3 1
.A A A A The 

smaller j
R  is, the better the alternative j

A  is. Apparently, the 

best alternative is 2
A while the worst alternative is 1

A . 

B. Comparative analysis 

To verify the effectiveness of the proposed method in this 

paper, a comparison analysis with the relevant papers [2-6, 

10-12] is conducted. On the one hand, the decision information 

in [2-6] is SVNSs, INSs, and MVNSs, respectively, which apply 

real values or interval values to express evaluation information 

with the truth-membership degree, indeterminacy- 

membership degree, and falsity-membership degree. Whereas 

the decision information used in this paper is MVNLSs, which 

apply the linguistic variable and multiple real values to express 

evaluation information. The MVNLSs is an extension of the 

existing methods, which is more reasonable and useful in 

handling complex decision-making problems. On the other 

hand, the proposed method based on the MVNLNs power 

aggregation operators in this paper is compared with some 

methods in Ye [10, 11] and Li [12]. Firstly, the method proposed 

by Ye [10] was based on an extended Topsis method for 

SVNLNs, which cannot realize the information aggregation. 

Secondly, the method proposed by Ye [11] was based on 

INLWAA operator and INLWGA operator to handle INLNs, 

which cannot take all the decision arguments and their 

relationship into account, and the proposed method is more 

scientific to make decision. Thirdly, the method proposed in 

this paper is compared with method in Li [12], which extends 

traditional power operators to MVNLNs environment and is 

more generation. 

V. CONCLUSION 

Linguistic variables can express qualitative information, and 

MVNSs can describe hesitant and uncertainties  information. 

The MVNLSs is a combination of LVs and MVNSs, and it has 

both the advantages of LVs and MVNSs. Thus, it is 

meaningful to solve MCDM problems with MVNLSs. 

 Based on the related research achievements, this paper 

firstly introduced the concepts of MVNLSs and MVNLNs. 

The main contributions of this paper are: Firstly, the 

operations of MVNLNs based on Algebraic operations were 

developed and the Hamming distance measure between the 

MVNLNs was originally defined. Secondly, the conventional 

PWA operator and PWG operator fail in handling MVNLSs. 

Thus, the conventional PWA operator and PWG operator are 

extended to the multi-valued neutrosophic linguistic 

environment, and their properties are also discussed. Finally, 

in order to demonstrate the practicality and effectiveness for 

MCDM problem, an illustrative example based on the 

MVNLPWA operator is given.  

In this paper, the proposed operators can not only own the 

advantages of multi-valued neutrosophic sets (MVNSs) and 

linguistic variables (LVs), but also extend conventional power 

operators to MVNLNs environment, which cons ider all the 

arguments and their relationship. Meanwhile, the comparison 

analysis shows that the proposed method is more scientific 

and flexible in solving complex MCDM problems with MVNL 

environment, in which the evaluation values take the form of 

MVNLNs and criteria weights are known real value. 

In the future, we will develop more aggregation operators 

for MVNLNs and apply them to different fields , such as 

medical diagnosis, pattern recognition and group decision 

making.  
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