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Abstract 

Adverse outcome pathways (AOPs) describe causal relationships between molecular perturbation and 

adverse cellular effects, and are being increasingly adopted for linking in vitro mechanistic toxicology to 

in vivo data from regulatory toxicity studies. In this work, a case study was performed by developing a 

bioassay toolbox to assess key events in the recently proposed AOP for chemically induced liver 

steatosis. The toolbox is comprised of in vitro assays to measure nuclear receptor activation, gene and 

protein expression, lipid accumulation, mitochondrial respiration, and formation of fatty liver cells. 

Assay evaluation was performed in human HepaRG hepatocarcinoma cells exposed to the model 

compound cyproconazole, a fungicide inducing steatosis in rodents. Cyproconazole dose-dependently 

activated RARα and PXR, two molecular initiating events in the steatosis AOP. Moreover, 

cyproconazole provoked a disruption of mitochondrial functions and induced triglyceride accumulation 

and the formation of fatty liver cells as described in the AOP. Gene and protein expression analysis, 

however, showed expression changes different from those proposed in the AOP, thus suggesting that 

the current version of the AOP might not fully reflect the complex mechanisms linking nuclear receptor 

activation and liver steatosis. Our study shows that cyproconazole induces steatosis in human liver 

cells in vitro and demonstrates the utility of systems-based approaches in the mechanistic assessment 

of molecular and cellular key events in an AOP. AOP-driven in vitro testing as demonstrated can further 

improve existing AOPs, provide insight regarding molecular mechanisms of toxicity, and inform 

predictive risk assessment. 
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1 Introduction 

An important goal in the development of mechanism-based testing strategies for potential toxicants is 

to explore the utility of in silico and in vitro tools as parts of a refined risk assessment strategy. The 

concept of adverse outcome pathways (AOPs) has been introduced to link in vitro data to 

phenomenological effects observed in in vivo studies. AOPs are a conceptual framework to portray 

mechanistic toxicological knowledge about how chemicals lead to an adverse outcome. It directly links 

a molecular initiating event along a causal chain of molecular and cellular key events to an adverse 

outcome, which is relevant to risk assessment at a level of biological organization 1, 2. The concept of 

AOPs has gained attention in regulatory toxicology to facilitate the inclusion of mechanistic 

toxicological evidence into risk assessment in a formalized manner 3. Knowledge of the molecular 

effects underlying the adverse outcome observed in in vivo studies is essential for establishing AOPs. 

However, measurement of these molecular events along an AOP is not included in current protocols for 

regulatory in vivo studies and moreover, for many of the events, in vivo or ex vivo analysis may be 

difficult or impossible. In contrast, in vitro analyses of individual molecular events appear as a viable 

strategy in order to determine changes along the AOP induced by a chemical of interest. This might be 

included in future toxicological testing strategies not only for individual compounds, but also for 

mixtures, a strategy which is, for example, pursued within the European project “European Test and 

Risk Assessment Strategies for Mixtures” (EuroMix; www.euromixproject.eu).  

AOPs under development, under review or already accepted can be found at www.aopwiki.org. 

Amongst these, AOPs for drug-induced liver injury such as cholestasis, liver fibrosis and liver steatosis 

have recently been proposed 4. In order to use this liver steatosis AOP as a basis of mechanism-based 

testing strategies for chemicals of concern, it would be advantageous to establish an in vitro assay 

toolbox that can be used to link in vitro data to phenomenological effects observed in in vivo studies. 

As a step toward this goal, it is necessary to understand how the different molecular initiating events 

and key events in the AOP for liver steatosis can be recapitulated in vitro. 

Liver steatosis is a characteristic of fatty liver disease 5. Non-alcoholic fatty liver disease in particular 

has gained growing attention due to an increasing prevalence over the last 20 years and is assumed to 

be the most common cause of chronic liver disease in the USA 6. Liver steatosis can be caused by a 

wide variety of factors such as obesity, insulin resistance and exposure to alcohol and certain drugs 7. 

It is marked by an increase in intracytoplasmic triglycerides in the liver 8. Histologically, it can be 

divided into macrovacuolar steatosis characterized by large vacuoles leading to peripheral 

displacement and distortion of the nucleus, and microvacuolar steatosis consisting of numerous, 

smaller vacuoles without displacement of the nucleus. Severe liver failure and hypoglycemia can occur 

and, moreover, steatosis can progress into steatohepatitis which is associated with necroinflammation, 

fibrosis, cirrhosis and hepatocellular cancer 5, 9. 
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Chemically induced steatosis is characterized by impaired synthesis and elimination of triglycerides. 

The interaction of chemicals with different nuclear receptors was proposed as the main molecular 

initiating event in the AOP for liver steatosis (Figure 1). LXR is a prominent transcriptional regulator of 

numerous genes involved in cholesterol and lipid metabolism and its activation was first included in the 

AOP 4, 10, 11. LXR can stimulate the central key event of triglyceride accumulation in two ways: 

enhancing de novo fatty acid synthesis or upregulating fatty acid translocase (CD36) leading to an 

increased hepatic fatty acid influx from peripheral tissue 4. De novo fatty acid synthesis enhancement is 

thought to occur by inducing transcriptional expression of MLX-interacting protein like (MLXIPL; also 

known as carbohydrate response element binding protein (CHREBP)), sterol regulatory element 

binding transcription factor 1 (SREBF1), fatty acid synthase (FASN), as well as stearoyl-CoA 

desaturase (SCD). The AOP for liver steatosis was recently extended to an AOP network by integrating 

additional nuclear receptors whose activation or antagonistic activity were proposed to serve as 

molecular initiating events independent of LXR activation 12.  

The aryl hydrocarbon receptor (AHR), the constitutive androstane receptor (CAR), the farnesoid X 

receptor (FXR), the glucocorticoid receptor (GR), the peroxisome proliferator-activated receptors 

(PPAR) α and γ, the pregnane X receptor (PXR), and the retinoic acid receptor (RAR) all trigger 

hepatic steatosis upon ligand binding and are included in the AOP network for liver steatosis. Except 

for PPARα and RAR, activation of these receptors is proposed to induce hepatic triglyceride 

accumulation by sharing one or both of the mechanistic pathways described for LXR. In contrast, 

antagonistic binding to PPARα leads to the downregulation of acyl-CoA oxidase 1 (ACOX1) which is 

linked to an inhibition of microsomal β-oxidation and thus stimulates triglyceride accumulation. RAR 

activation is also associated with an increase in hepatic triglycerides without any further information on 

the underlying molecular mechanisms. In hepatic steatosis, accumulation of macrovacuolar lipid 

droplets is concomitant with cytoplasm displacement, distortion of the nucleus, mitochondrial disruption 

and endoplasmic reticulum stress at detected at the organelle level. In vivo, this condition can be 

classified as hepatic steatosis if the triglyceride content accounts for 5% to 10% of total liver weight 4, 12. 

A slightly different approach of building an AOP network for hepatic steatosis has been followed by 

Angrish et al. 2016 and 2017 13, 14: here, the AOP was subdivided into four apical key events, namely 

alterations in fatty acid influx, efflux, degradation, and synthesis. Despite the substantive recent data 

contributing to building the liver steatosis AOP network, to our knowledge there has been no in vitro 

test battery established for recapitulating the diverse relevant molecular initiating and key events. 

Previous studies by Angrish et al.14 and Tolosa et al.15  focus on later apical key events, whereas 

molecular initiating events and details of the thereof-dependent mRNA and protein expression 

alterations have not been integrated in a comparable testing battery yet. 

The goal of this study was to combine several in vitro assays to measure different key events in the 

AOP network for liver steatosis, based on the wider spread steatosis AOP concept by Vinken4, and 
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Mellor et al.12, and to evaluate how perturbation of these key events is linked to the apical adverse 

outcome (steatosis). Thus, the in vitro assays assessed nuclear receptor activation, gene and protein 

expression, triglyceride accumulation, mitochondrial respiration as well as the occurrence of fatty liver 

cells (Figure 1). The assays were conducted using human HepaRG cells, a human hepatocellular 

carcinoma cell line which is readily available, showing unlimited growth, phenotypic stability during 

culture and stability in enzymatic activities and as such overcomes severe limitations of primary human 

hepatocytes. HepaRG cells retain a high expression of major cytochrome P450 enzymes, phase II 

enzymes and nuclear receptors and retain a functional metabolic competence which is comparable to 

primary human hepatocytes and exceeds that of other commonly used human hepatic cell lines like 

HepG2 16-20. Furthermore, HepaRG cells have been successfully employed as a cell model to assess 

hepatic steatosis 14, 15, 21, 22. We selected cyproconazole as a test compound in the present study 

(Figure 2). This triazole fungicide increases liver weight, induces hepatocellular hypertrophy and fat 

vacuolization, and leads to an accumulation of hepatocellular lipids in rodents, and has thus been 

linked to the development of steatosis 23-26. Steatotic effects of cyproconazole are thought to be 

mediated via the lipid metabolism-associated nuclear receptors CAR and PXR which have been 

described as molecular initiating events in the steatosis AOP 24-28. The results of this study demonstrate 

how AOP-driven in vitro testing could help improve existing AOPs, elucidate molecular mechanisms of 

toxicity in human cell systems in vitro, and assist predictive risk assessment. 

2 Experimental procedures 

 

2.1 Chemicals 

Cyproconazole was obtained from Syngenta (Basel, Switzerland) as technical grade (batch # 

CHF1E00042; purity 96.8%) and a 200 mM stock solution was prepared in dimethyl sulfoxide (DMSO). 

2.2 Plasmids 

Plasmids pGAL4/DBD-CAR/LBD(+3aa) 29, pCR3-hCAR1+A 30 and pGAL4-PPARα-LBD, pGAL4-

PPARγ-LBD and pGAL4-PPARδ-LBD 31 were kindly provided by Dr. Y. Kanno (Toho University, 

Funabashi, Japan), Dr. Hongbing Wang (University of Maryland, Baltimore, USA) and Dr. S. Kliewer 

(University of Texas Southwestern Medical Center, Dallas, USA). Plasmids pcDNA3-Rluc, pGAL4-

(UAS)5-TK-Luc, pGAL4-PXR-LBD and pSG5-hPXR have been described previously 32. Plasmid pGRE-

luc was obtained from Takara Bio Europe (Saint-Germain-en-Laye, France). Plasmids p3xDREC 33, 

pGL3-CYP2B6-wt-luc 34, pSG5-hVDR 35, as well as pCMX-GAL4-hRARα and pCMX-GAL4-hRXRα 36 

have also been described. The plasmid pGAL4-LXRα-LBD was derived from pGAL4-hPPARγ-LBD by 

excising the ligand-binding domain (LBD) of hPPARγ using restriction enzymes Acc65I and BamHI and 

inserting the LBD of LXRα, which was amplified from human cDNA using the primers 5’- AGC TGG 
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TAC CCG GGA GGA GTG TGT CCT GTC-3’ (forward, Acc65I site underlined) and 5’- AGC TGG ATC 

CTC ATT CGT GCA CAT CCC AGA TC-3’ (reverse, BamHI site underlined), into the cleaved vector. 

Plasmid pGAL4-FXR-LBD was constructed similarly using the primers 5’-AGC AGG TAC CTT AAC 

TGA AAT TCA GTG TA-3’ (forward, Acc65I site underlined) and 5’-AGC TGG ATC CTC ACT GCA 

CGT CCC AGA TTT CAC AGA-3’ (reverse, BamHI site underlined) to amplify the LBD of FXR from 

human cDNA.  

2.3 HepaRG cell culture and exposure to test compounds 

Undifferentiated HepaRG cells were purchased from Biopredic International (Saint Grégoire, France). 

Cells were seeded at a density of approximately 25,000 cells/cm2 and cultivated in William’s Medium E 

with 2 mM glutamine (PAN-Biotech, Aidenbach, Germany) supplemented with 10% (v/v) fetal bovine 

serum (FBS; FBS Good Forte EU approved, PAN-Biotech, Aidenbach, Germany or HyClone 

FetalClone II, Thermo Fisher Scientific, Waltham, USA), 100 U/ml penicillin and 100 µg/ml 

streptomycin (Capricorn Scientific, Ebsdorfergrund, Germany) and 5 x 10-5 M hydrocortisone 

hemisuccinate (Sigma-Aldrich, St. Louis, USA) at 37 °C in a humidified atmosphere containing 5% 

CO2. For differentiation, cells were maintained in culture medium for 14 days after seeding, followed by 

another 14 days of cultivation in the above-mentioned culture medium containing additionally 1.7% 

DMSO. For treatment with cyproconazole, differentiated HepaRG cells were first adapted to treatment 

medium (culture medium containing only 2% FBS and 0.5% DMSO) for 48 h. After adaptation cells 

were exposed to cyproconazole in treatment medium for 24 h or 72 h with a final DMSO concentration 

of 0.5%.  

2.4 Cultivation of HEK-293 and HepG2 cells 

The human hepatocellular carcinoma cell line HepG2 and the human embryonic kidney cell line HEK-

293 were purchased from the European Collection of Cell Cultures (ECACC, Salisbury, UK). The cells 

were cultured in Dulbecco’s modified Eagle’s medium (DMEM, PAN-Biotech, Aidenbach, Germany) 

supplemented with 10% (v/v) fetal calf serum (PAN-Biotech, Aidenbach, Germany), 100 U/ml penicillin 

and 100 µg/ml streptomycin (Capricorn Scientific, Ebsdorfergrund, Germany) at 37 °C in a humidified 

atmosphere containing 5% CO2. Cells were passaged at a confluence of about 80-90% and seeded at 

a density of 60,000 cells/cm2.  

2.5 Cell viability analysis 

Cytotoxic effects of cyproconazole were analyzed using the cell proliferation reagent WST-1 (Sigma-

Aldrich, St. Louis, USA). HepG2 and HEK-293 cells were seeded in 96-well plates and incubated for 24 

h with different concentrations of cyproconazole dissolved in culture medium with a final solvent 

concentration of 0.5% DMSO. HepaRG cells were seeded in 96-well plates and after 28 days in culture 

cells were treated with increasing concentrations of cyproconazole for 24 h or 72 h. Triton X-100 



8 
 

 

(0.01%) served as a positive control. One hour before the end of incubation 10 µl WTS-1 reagent were 

added to each well containing 100 µl medium and plates were returned to the incubator. At the end of 

the incubation period, absorbance was measured at 450 nm with a reference wavelength of 620 nm 

using the plate reader Infinite M200 Pro (Tecan group, Männedorf, Switzerland). Values of the 

reference wavelength were subtracted from absorbance values and data were corrected for 

background absorbance by subtracting the values from wells incubated without cells. Data were 

referred to solvent control which was set to 100%. Dose response curve fitting (four parameter logistic 

curve) was performed with SigmaPlot 13.0 (Systat Software, Erkrath, Germany) and values for 

inhibitory concentration of 10% (IC10) were determined. At least two independent, biological replicates 

with five to six technical replicates per condition were performed. 

2.6 Reporter gene assays 

A panel of 14 reporter gene assays was used to analyze the activation of 12 nuclear receptors upon 

cyproconazole exposure of HepG2 and HEK-293 cells. Transactivation assays (CAR, FXR, LXRα, 

PPARα, PPARγ, PPARδ, PXR, RARα, RXRα) rely on fusion constructs between the GAL4 DNA-

binding domain (DBD) and the ligand-binding domain (LBD) of a specific nuclear receptor. 

Transcription of the reporter gene firefly luciferase is controlled by the GAL4-specific upstream 

activation sequence (UAS) on a second plasmid. Agonistic binding of a test compound to the LBD of 

the nuclear receptor of interest leads to the activation of the fusion protein, which binds to the UAS and 

initiates transcription of the firefly luciferase gene. 

Since the GAL4-dependent assay is only dependent on the components encoded by the plasmids and 

is independent of any endogenous factors provided by the host cell line, and due to an increased 

transfection efficiency of HEK-293 in comparison to HepG2 cells, the transactivation assays were 

performed in HEK-293 cells. 

Reporter gene assays for AHR, GRE as well as CAR-CYP2B6, PXR-CYP2B6 and VDR-CYP2B6 are 

based on nuclear receptor-specific DNA response elements that directly regulate transcription of the 

reporter gene firefly luciferase. These assays were performed in HepG2 cells as they require the 

presence of certain endogenous factors provided by the host cell line and we observed no induction of 

reporter gene expression in HEK-293 cells (data not shown). 

HepG2 and HEK-293 cells were seeded in 96-well plates and after 24 h, cells were transiently 

transfected for 4−6 h with the appropriate plasmids using TransIT-LT1 (Mirus Bio, Madison, USA) 

according to the manufacturer instructions. A plasmid constitutively expressing the reporter gene 

Renilla luciferase was co-transfected as an internal control for normalization. Following transfection, 

cells were exposed for 24 h to 15 µM, 30 µM or 60 µM cyproconazole in culture medium with 0.5% 

DMSO. For each reporter gene assay a specific positive control was included (supplement, Table S1). 

Cells were lysed with 50 µl lysis buffer (100 mM potassium phosphate with 0.2% (v/v) Triton X-100, pH 
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7.8) on an orbital shaker, then centrifuged (5000 x g, 5 min). Subsequently, 5 µl of supernatant were 

analyzed for firefly and Renilla luciferase activities in a dual luciferase assay as previously described 

(Hampf and Gossen, 2006) using a Mithras LB940 (Berthold Technologies, Bad Wildbad, Germany) or 

an Infinite M200 Pro (Tecan group, Männedorf, Switzerland) luminometer. Three to four independent, 

biological replicates were performed with four technical replicates per condition. Firefly luciferase 

activity was normalized to Renilla luciferase activity and expressed as relative activity referred to the 

positive control. Statistical analysis was performed with SigmaPlot 13.0 (Systat Software, Erkrath, 

Germany) using the non-parametric Kruskal-Wallis test followed by Dunn’s test. Statistical significance 

was assumed at p < 0.05. An overview of the specific conditions for each reporter gene assay 

(plasmid, plasmid amount, cell line, positive control) is provided as a supplement (Table S1). 

2.7 Analysis of mRNA expression levels 

HepaRG cells were differentiated in 12-well plates and treated with 25 µM, 50 µM, 100 µM or 200 µM 

cyproconazole or solvent control (0.5% DMSO) for 24 h as described above. Cells were washed twice 

with ice-cold PBS and lysed with 350 µl RLT buffer (RNeasy Mini Kit, Qiagen, Hilden Germany). Total 

RNA was extracted according to the manufacturer protocol. The RNA was quantitated 

spectrophotometrically at 260 nm (A260) by using a nanophotometer P330 (Implen, München, 

Germany). An A260/280 ratio of > 1.8 was considered an acceptable measure of RNA purity. RNA 

integrity was estimated by visual examination of two distinct rRNA bands (28S and 18S) on a 

denaturing 1% agarose gel stained with SYBR Gold. Only RNA samples with a clear and sharp 28S 

rRNA band about twice as intense as that of 18S rRNA were used. For first-strand cDNA synthesis, 2 

µg of total RNA were reverse-transcribed into cDNA in a total volume of 20 µl, using the SuperScript 

First-Strand Synthesis System for RT-PCR (Thermo Fisher Scientific, Waltham, USA) according to the 

manufacturer instructions using oligo dT primers for the reaction. TaqMan Gene expression assays 

(Thermo Fisher Scientific, Waltham, USA) were used to measure the expression of 69 genes linked to 

liver steatosis, nuclear receptor activation and hepatotoxicity (supplement, Table S2). TaqMan Gene 

Expression Assays consisted of a pair of unlabeled PCR primers and a TaqMan probe with FAM dye 

label on the 5’ end and minor groove binder (MGB) as well as a nonfluorescent quencher (NFQ) on the 

3’ end. All genes were amplified by real-time PCR in the Step One Plus detection system with 

StepOnePlus Software v2.3 (Thermo Fisher Scientific, Waltham, USA). Each amplification reaction was 

carried out in a total volume of 20 µl containing 10 µl TaqMan gene expression master mix (Thermo 

Fisher Scientific, Waltham, USA), 1 µl TaqMan gene expression assays and 20 ng cDNA. The 

reactions were cycled 40 times using the following parameters: 95 °C for 15 s and 60 °C for 1 min 

during which the fluorescence data were collected. A non-template control was run with every set of 

primers. Expression levels of the target genes were normalized to the reference genes ACTB (actin 

beta: Hs01060665_g1), GAPDH (glyceraldehyde -3-phosphate dehydrogenase: Hs02758991_g1) and 
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B2M (beta-2-microglobulin: Hs00187842_m1) which were found to be stably expressed throughout 

treatments. RNA from three independent, biological replicates was used. Each cDNA was analyzed at 

least in duplicate by real-time PCR. Relative gene expression was calculated using the ∆∆CT method 
37. Statistical significance of differences in expression was assessed by the non-parametric Kruskal-

Wallis test followed by Dunn’s test, using GraphPad Prism v.7 (GraphPad Software, La Jolla, USA). A 

p value < 0.05 was assumed statistically significant. The statistical calculation was based on 2-∆Ct 

values. 

2.8 Protein extraction and parallel reaction monitoring (PRM) analysis 

HepaRG cells were differentiated in 15 cm dishes and exposed to 25 µM, 50 µM, 100 µM or 200 µM 

cyproconazole or solvent control (0.5% DMSO) as described above. After 72 h cells were harvested by 

incubating with 2 mM EDTA for 15 minutes at 37 °C. Harvested cells were centrifuged at 300 x g for 3 

min at 4 °C, supernatants were removed and cell pellets were snap-frozen in liquid nitrogen and stored 

at -80 °C until further analysis. Cells (3 independent, biological replicates per experimental condition) 

were lysed with 8 M urea in ammonium bicarbonate, sonicated twice in a VialTweeter (Hielscher, 

Wanaque, USA) at 100% amplitude, 0.8 cycle, for 10s and centrifuged at 20,000 x g for 20 min to 

remove any remaining debris. Protein concentration in the extracts was determined by the 

bicinchoninic acid assay (BCA Protein Assay Kit, Thermo Fisher Scientific, Waltham, USA) and 100 µg 

per sample were used for further protein extraction. RapiGest surfactant (0.1%) was added to each 

sample and proteins were reduced with 5 mM TCEP (Thermo Fisher Scientific, Waltham, USA) at 37 

°C for 30 min and then alkylated with 10 mM iodoacetamide (Fluka, Buchs, Switzerland) in the dark at 

37 °C for 30 min. Samples were diluted with 100 mM ammonium bicarbonate to 4 M urea and LysC 

(Wako, Neuss, Germany) was added at a 1:100 enzyme to protein ratio and incubated for 3 h at 37 °C. 

Samples were then diluted to 1.5 M urea using 100 mM ammonium bicarbonate before adding trypsin 

(Sigma-Aldrich, St. Louis, USA) at a 1:100 trypsin to protein ratio. Tryptic digestion was carried out 

overnight at 37 °C. The peptide mixtures were acidified to pH 3 by the addition of formic acid to 

inactivate trypsin and the precipitated RapiGest was removed by centrifugation (13,000 x g for 10 min). 

The peptide mixture was further subjected to C18 purification using Sep-Pak Vac 1cc (50 mg) tC18 

Cartridges (Waters, Eschborn, Germany) according to the manufacturer instructions. 

For the parallel reaction monitoring (PRM) LC-MS/MS method 38 proteins were selected corresponding 

to the steatosis-relevant gene transcripts examined at the mRNA expression level. PRM assays were 

generated in Skyline39 (version 3.5.0.9319) using a spectral library generated in-house by discovery-

based LC-MS/MS analysis from the same samples and the background proteome from 

UniProtKB/Swiss-Prot (June 2014) specific to Homo Sapiens. At least 2 quantotypic peptides were 

selected for each protein and tested in PRM mode to select the most suitable peptides. Retention time 

windows for the PRM assays were defined by analyzing a pooled sample (aliquot of all conditions and 
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biological replicates pooled together) in PRM mode. The final isolation list consisted of 104 peptides 

derived from 41 proteins (including iRT peptides (Biognosys, Schlieren, Switzerland) for retention time 

normalization40), which were detected in scheduled PRM mode. Subsequent PRM analysis was carried 

out on individual biological replicates on an Orbitrap Fusion mass spectrometer (Thermo Fisher 

Scientific, Waltham, USA). Peptide samples were separated by a 2 h-gradient reversed-phase 

chromatography on a high pressure liquid chromatography (HPLC) column (75 µm inner diameter, New 

Objective, Woburn, USA) which was packed in-house with a 15 cm stationary phase (ReproSil-Pur 

C18-AQ,1.9 µm) and connected to a nano-flow HPLC combined with an autosampler (EASY-nLC II, 

Proxeon, Odense, Denmark). Mass spectra were acquired in a data-dependent acquisition (DDA) 

manner, with an automatic switch between MS and MS/MS scans. High resolution MS scans were 

acquired in the Orbitrap (resolution 60,000, 50 s injection time) to monitor peptide ions across the mass 

range of 350–1400 m/z, followed by higher energy collision dissociation (HCD) MS/MS scans of the 

targeted peptides in the Orbitrap (resolution 15,000, 34 injection time, isolation window 1.4 m/z). PRM 

data were analyzed in Skyline. Peak boundaries were individually inspected and manually set if 

necessary. Peaks with the lowest mass error value and best match to the library, relative fragment-ion 

intensities and peak shape similarity were selected for further quantitative analysis. Samples with more 

than 5 min retention time shift were excluded from further analysis (one of three biological replicates in 

the 0 µM condition and one of three biological replicates in the 200 µM condition were excluded). In 

addition, only peaks appearing in all samples and conditions with at least 3 transitions per peptide with 

no obvious interference were considered. A total of 62 peptides derived from 34 proteins were 

considered for quantitative analysis (supplement, Table S3). Raw peak areas were exported from 

Skyline and further analyzed. Peptide intensities were summarized at the protein level by averaging. 

Quantification was performed by comparing to the untreated control samples. Abundance changes 

were reported as log2 fold changes ± SEM using Student’s t-test under the assumptions of normal 

distribution and equal variance. 

2.9 AdipoRed assay 

Levels of triglycerides were measured using the AdipoRed assay essentially according to the 

instructions of the supplier (Lonza, Basel, Switzerland). After 24 h or 72 h treatment of differentiated 

HepaRG cells in 96-well micro titer plates with 25 µM, 50 µM, 100 µM or 200 µM cyproconazole or 

solvent control (0.5% DMSO), the cell monolayer was rinsed with 200 µl DPBS (Fisher Scientific, 

Hampton, USA) and subsequently incubated for 10 min at room temperature with 200 µl AdipoRed-

DPBS solution. The latter solution was prepared by adding 25 µl AdipoRed to 1 ml DPBS. 

Subsequently, fluorescence was measured using a 485/20 nm excitation and 590/35 emission filter set 

on the Synergy HT Microplate Reader (BioTek, Winooski, VT). Relative triglyceride levels were referred 

to solvent control and statistically analyzed with SigmaPlot 13.0 (Systat Software, Erkrath, Germany) 
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using the non-parametric Kruskal-Wallis test followed by Dunn’s test. Statistical significance was 

assumed at p < 0.05. Four independent, biological replicates with three technical replicates per 

condition were performed. 

2.10 Triglyceride extraction and analysis by GC-FID (gas chromatography with flame-ionization 
detection) 

Upon treatment of differentiated HepaRG cells in 12-well culture plates with 25 µM, 50 µM, 100 µM or 

200 µM cyproconazole or solvent control (0.5% DMSO), the monolayer was rinsed three times with 1 

ml DPBS/well. Cells were harvested in 300 µl DPBS with a rubber policeman and transferred to a 1.5 

ml Eppendorf Protein LoBind micro centrifuge tube (Fisher Scientific, Hampton, USA). The samples 

were stored at -80 °C until extraction. Extraction of triglycerides was performed under an N2 

atmosphere according to a method described by Hutchins et al.41 using isooctane:ethylacetate (75:25). 

After thawing, the samples were transferred to 10 ml glass tubes and sonicated for one minute in ice-

cold water. A mixture of isooctane and ethylacetate (75:25, 5 mL) with 10 µl 0.5 mg/ml tritridecanoin 

(Nu-Chek Prep Inc., Elysian, USA) was added to the samples, followed by vortex-mixing (30 s), 

sonication (60 s), vortex-mixing (30 s) and incubation head over head (15 min). NaCl (1 ml, 0.9%) was 

added and the samples were vortex-mixed for 60 s and centrifuged for 10 min at 1000 x g to separate 

the two phases. A total of 4.2 ml of the organic (upper) phase was collected with a 1-ml glass Hamilton 

syringe. The polar phase was extracted again by adding 2 ml isooctane:ethylacetate 75:25 followed by 

vortex-mixing, centrifugation and collection of the organic phase. The two organic phases were 

combined, dried under N2 gas at 30-37 ºC, redissolved in 100 µl isooctane and transferred to a GC vial. 

The samples were analyzed on a Trace GC Ultra GC-FID system (Thermo Fisher Scientific, Waltham, 

USA). A sample volume of 2 µl was injected on a 5 m x 0.53 mm, 0.17 µm Sim Dist Ulti Metal column 

(CP7532, Agilent Technologies, Santa Clara, USA) and eluted at a N2 gas flow of 45.5 ml/min. The 

temperature program was as follows: 1 min 90 °C, 20 °C/min ramp to 230 °C, 5 °C/min ramp to 315 °C, 

10 min hold at 315 °C. The detector temperature was 350 °C. A triglyceride standard mixture (palm 

kernel triglycerides, BCR 632 A, Sigma-Aldrich, St. Louis, USA) was included in each sequence to 

calibrate the retention times of the triglycerides. Triglycerides were quantified by determining the AUC 

and the relative triglyceride level was calculated by dividing the AUC of the test compounds by the AUC 

of the solvent control. Two independent, biological replicates with three technical replicates per 

condition were performed. Statistical analysis was performed with SigmaPlot 13.0 (Systat Software, 

Erkrath, Germany) using the non-parametric Kruskal-Wallis test followed by Dunn’s test. Statistical 

significance was assumed at p < 0.05. 

2.11 Mitochondrial respiration 

Mitochondrial respiration as an indicator of cellular metabolism and fitness in response to the exposure 

of HepaRG cells to cyproconazole was determined by extracellular flux analysis using an Agilent 
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Seahorse XF24 Analyzer (Agilent Seahorse Bioscience, Santa Clara, CA USA). Extracellular flux 

analysis comprises measurement of oxygen consumption rate (OCR) in treated and control cells. 

Measurements of OCR can decipher key parameters of mitochondrial respiration when different 

aspects of electron transport chain are shut down by respiration modulators. For this purpose 

oligomycin (2 µM) was used to block ATP synthase, carbonyl-cyanide-4-(trifluoromethoxy) 

phenyhydrazone (FCCP, 1 µM) was used to make the inner mitochondrial membrane permeable for 

protons and allow maximum electron flux through the electron transport chain, and a mix of rotenone 

(0.5 µM) and antimycin A (0.5 µM) were used together to inhibit complexes I and III, respectively. 

Through use of mitochondrial inhibitors, four key mitochondrial respiration parameters were measured: 

basal, ATP production-linked, maximal, and proton leak-linked OCR 42. Based on these data, spare 

respiratory capacity and non-mitochondrial respiration also were calculated. 

To meet stringent prerequisites of the extracellular flux analysis for highly optimized and controlled 

seeding density of the cells 43 a minor adaptation was made to the methods described under section 

2.3 (HepaRG cell culture and exposure to test compounds). Prior to seeding for the treatment, 

differentiated HepaRG cells were washed two times with pre-warmed (37 °C) PBS and were released 

from 75 cm2 cell culture flasks using trypsin-EDTA to obtain single cell suspensions. HepaRG cells then 

were seeded in a Seahorse 24-well XF cell culture microplate with 30,000 cells in 200 µl treatment 

medium per well. Plates were incubated for 24 h at 37 °C with 5% CO2 to allow for cell adherence. On 

the following day, XF assay media with or without cyproconazole was prepared and adherent cells 

were treated by adding 200 µl of this medium to each well exposing cells to 0 µM, 25 µM, 50 µM, 100 

µM or 200 µM cyproconazole. The plates were incubated at 37 °C, 5% CO2 for 24 h or 72 h. 

The day prior to the Seahorse XF run the Sensor cartridges were hydrated by adding 1 ml of XF 

Calibrant to each well of the Seahorse Utility Plate. The hydrated cartridges were wrapped in sterile 

Stomacher bags and incubated in a non-CO2 incubator at 37 °C for 24 h. The Seahorse instrument was 

started and kept on until the day of analysis to assure stable temperature of 37 °C in the microtiter 

heating block.  

On the day of analysis plates were taken from the incubator, and cells were visually checked for their 

morphology, seeding uniformity, and adherence. Each plate was washed three times with 100 ml of 

pre-warmed (37 °C) filter sterilized XF assay medium (non-buffered DMEM base medium 

supplemented with 10 mM glucose, 1 mM sodium pyruvate and 2 mM L-glutamine; adjusted to pH 7.4). 

The washing medium was removed from each well and cells were rinsed two times with 1 ml of pre-

warmed (37 °C) assay medium. Finally, 525 µl of the assay medium was added to each well and cells 

were observed under the microscope to ensure that cells were not washed away. The plates were 

placed in a 37 °C non-CO2 incubator for 1 h prior to the assay. During this time, solutions of 

mitochondrial modulators oligomycin, FCCP and rotenone/antimycin A were prepared with pre-made 

XF assay media (Seahorse Bioscience) warmed to 37 °C. These were loaded (75 µl) into designated 
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injection ports of sensor cartridges. Subsequently, the loaded XF sensor cartridge with the XF utility 

plate was placed into the XF24 Analyzer and calibrated. After calibration, the XF utility plate containing 

calibration fluid was replaced with the plate containing the cells. The software of the XF24 instrument 

was programmed to first perform 3 basal OCR measurements, followed by the sequential addition of 

oligomycin, FCCP, and rotenone/antimycin A. Measurement cycles performed after each addition 

consisted of 3 min of mixing the cell suspension, 2 min of waiting, and 3 min of OCR measurement. 

Results were presented as values of OCR corresponding to basal respiration, ATP production-linked 

respiration, maximal respiration, proton leak-linked respiration, spare respiratory capacity and non-

mitochondrial respiration. The statistical significance of values reflecting the impact of cyproconazole 

on measured respiration parameters in three independent, biological replicates with three technical 

replicates was tested by the non-parametric Kruskal-Wallis test against negative control values (assay 

medium with 0.5% DMSO) with p < 0.05 indicating statistically significant differences. 

2.12 Nile Red staining and neutral lipid droplet analysis by high content cell imaging 

HepaRG cells were differentiated in 96-well plates (black plate, clear bottom, Corning Life Sciences, 

Amsterdam, Netherlands) and treated in triplicates with 25 µM, 50 µM, 100 µM or 200 µM 

cyproconazole, solvent control (0.5% DMSO) or a positive control (30 µM cyclosporin A) as described 

above within three independent experiments. After 24 h and 72 h of exposure, cells were fixed in 4% 

(w/v) paraformaldehyde in PBS for 30 min. Cells were then washed 3 times with PBS and stained 

overnight (at 4 °C) with 100 µl of 0.9 µM Nile Red (Sigma-Aldrich, St. Louis, USA) solution in PBS 44, 45. 

Two hours before reading 50 µl of 0.3 µg/ml DAPI in PBS were added to each well (incubation at 

ambient temperature in the dark). The multi-well plates were scanned (9 images) with an Arrayscan 

XTI using a 20x NA 0.4 objective (Plan NeoFluar, Zeiss, Oberkochen, Germany). The Photometrics X1 

CCD camera was set with a binning 2 (14 bits dynamic range, 4 x 106 pixels with a size of 4.54 µm). 

Identification of the nuclei was done by tracking DAPI with an XF100—386—23 filter set and used to 

focus the instrument. Identification of neutral lipid spot was done by tracking Nile Red green emission 

with an XF 100_485_20 filter set. The Spot Detector V3 Bioapplication analysis algorithm (software 

V.6.5) identifies nuclei upon fluorescent intensity and size. The nuclear mask was dilated to define the 

cytoplasmic region. The following parameters were measured at the cell level. For the nuclei: area as 

well as total and average intensity for each cell; for the neutral lipid spot: spot number, spot area and 

spot intensity as well as total fluorescence of spot intensity within each cell. 

To analyze the quantitative data for neutral lipid droplet accumulation obtained after the image 

analysis, a workflow was built in Statistica v13.2 (Tibco, Palo Alto, USA). Firstly, each independent 

plate was standardized in order to eliminate inter-experiment variation. The whole data set for neutral 

lipid spot total intensity within cells was submitted to a median MAD standardization in order to fix the 

values in the same order of magnitude (robust Z-score). Then the three independent experiments were 
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grouped. Data were now normalized to the median of control cells (DMSO treated cells = 1). Results 

are presented as box plot median ± percentile 25% and 75% and non-outlier data. For statistical 

analysis the non-parametric Kruskal-Wallis test was performed. Statistical significance was assumed at 

p < 0.05. 

2.13 BMC50 calculation 

Dose-response modeling and benchmark concentration (BMC) analysis were performed using the R-

based software package PROAST (version 64.14, RIVM, Bilthoven, Netherlands). Response data were 

provided as relative data normalized to the solvent control and submitted to PROAST as continuous, 

summary data containing mean, standard deviation and sample size in tab-delimited text files. Data 

were fitted to an exponential 3-parameter model (1) or to an exponential 4-parameter model (2): 

 

y = a�exp�bx
��      (1) 

y = a�c − �c − 1�exp�−bx
��      (2) 

 

The model with the lowest Akaike information criterion (AIC) value was selected and the BMC and the 

corresponding two-sided 90% BMC confidence interval given by BMCL (lower bound of the BMC 

confidence interval) and BMCU (upper bound of the BMC confidence interval) were calculated for a 

benchmark response of 50% (BMR50). 

3 Results 

The aim of this study was to compile an in vitro test battery covering the AOP for liver steatosis and to 

evaluate its capacity to detect the steatotic potential of a known steatotic chemical, namely the 

fungicide cyproconazole. Prior to analyses of functional molecular endpoints, cell viability of 

cyproconazole on the employed human cell lines HepaRG, HepG2 and HEK-293 was assessed to 

determine non-cytotoxic concentrations for further analyses. Cell viability of HepaRG cells was inhibited 

by 10% at concentrations (IC10) of 449 µM (24 h) and 368 µM (72 h) cyproconazole (supplement, 

Figure S1A). In HepG2 and HEK-293 cells cyproconazole led to 10% inhibition of cell viability at 92 µM 

(HEK-293) and 128 µM (HepG2) after 24 h of exposure (supplement, Figure S1B). Maximal 

concentrations of 200 µM cyproconazole for HepaRG cells and 90 µM cyproconazole of HepG2 and 

HEK-293 cells were chosen for subsequent experiments in order to exclude unspecific cellular 

responses due to cytotoxic effects. 

3.1 Nuclear receptor activation 

Activation of different nuclear receptors is considered to constitute the molecular initiating event of liver 

steatosis 4, 12, as delineated in the AOP for liver steatosis (Figure 1). Activation of a large set of nuclear 
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receptors, namely AHR, CAR, FXR, GR, LXRα, PPARα, PPARγ, PPARδ, PXR, RARα, RXRα, and 

VDR by cyproconazole was monitored using luciferase-based reporter assays either in human HepG2 

or HEK-293 cells, depending on the respective reporter gene assay. As listed in Figure 3A, most of the 

receptors were not affected by cyproconazole. Dose-dependent statistically significant induction of 

reporter activities was observed, however, for PXR (Figure 3B) activation of this receptor was 

consistently demonstrated in form of a GAL4 fusion construct-based assay aimed to monitor binding of 

a substance to the PXR ligand binding domain, as well as by a classic reporter assay utilizing the PXR-

responsive human CYP2B6 promoter (Figure 3B). In addition, cyproconazole significantly activated 

luciferase reporter activity driven by the retinoid receptor RARα (Figure 3B). According to the AOP for 

liver steatosis, the antagonistic binding to PPARα also represents a molecular initiating event. 

However, no repression of basal activity of the reporter gene assay plasmid after exposure to 

cyproconazole could be observed, indicating that cyproconazole does not exhibit antagonistic PPARα 

binding properties (data not shown). Baseline levels of the PPARα reporter assay were high enough to 

be able to monitor potential down-regulation of the signal by a test compound. 

3.2 PCR-based gene expression analysis 

 
According to the AOP for liver steatosis and in line with previous knowledge regarding the 

consequences of nuclear receptor activation, changes in gene expression occur following binding of 

agonist ligands to their respective receptors. These gene expression changes are considered key 

events in the AOP for steatosis. A PCR array covering a selection of the most relevant genes involved 

in liver steatosis, nuclear receptor activation and hepatotoxicity was compiled and the effects of 200 µM 

cyproconazole on target gene expression in human HepaRG hepatocarcinoma cells were analyzed as 

a screening approach to identify genes with changes in gene expression after cyproconazole exposure. 

The expression of genes showing deregulation by a │fold change│≥ 2 in the PCR array (Figure 4A) 

was further examined in cells treated with increasing concentrations of cyproconazole in order to 

establish dose-response relationships in gene expression regulation by the fungicide (Figure 4B). As 

evident from the data in Figure 4B, a significant upregulation was observed for genes predominantly 

encoding enzymes involved in xenobiotic metabolism (CYP1A2, CYP2B6, CYP3A4, and CYP3A7). The 

strongest induction (>14-fold) was observed for the PXR model target gene CYP3A4. A number of 

genes were downregulated upon cyproconazole treatment, including a minority of genes related to 

xenobiotic metabolism (CYP2E1, SULT1B1). Furthermore, downregulation was observed for additional 

genes, including CYP7A1, a crucial player in bile acid synthesis and the cell cycle regulator RGCC 

(Figure 4B). Regarding the genes listed in the AOP, only FASN and SCD were detected to be down or 

upregulated in the screening approach, respectively (Figure 4A). However, no significant gene 

expression changes of both genes could be confirmed in samples exposed to increasing 
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cyproconazole concentrations (Figure 4A). Detailed data of the heat map in Figure 4B are provided in 

the supplement (Table S4). 

3.3 Protein abundance changes in HepaRG cells upon cyproconazole exposure 

Changes in the abundance of nuclear receptor targets and important players in steatosis were 

additionally monitored at the protein level using a mass spectrometric-based assay in HepaRG cell 

lysates following 72 h exposure to 25 µM, 50 µM, 100 µM or 200 µM cyproconazole. A set of parallel 

reaction monitoring (PRM) assays was designed for the identification and quantification of selected 

proteins corresponding to gene transcripts examined by gene array analysis (Figure 4). A total of 33 

proteins were monitored using quantotypic peptides and their log2-fold changes relative to untreated 

cells were plotted as a heat map (Figure 5). The quantitative PRM data used for constructing the heat 

map in Figure 5 can be found in the supplement (Table S5) and the PRM assay coordinates are 

available upon request. Similar to the gene expression assays, the strongest protein abundance 

increase was observed for the PXR target CYP3A4 (Figure 5). CES2 was also significantly increased in 

abundance at all concentrations monitored. Regarding the genes listed in the AOP on steatosis, 

ACOX1 levels were significantly reduced in cyproconazole-treated HepaRG cells across all conditions 

monitored compared to untreated cells. FASN significantly decreased at the two highest concentrations 

of cyproconazole. No significant changes in SCD protein abundance level were observed. MLXIPL, 

SREBF1 and CD36 were below the sensitivity level of the assays and could not be detected. 

Furthermore, protein abundance of CYP2A6, ALDH1A1, KHK, GPD1, MAPK3, MTTP, HAAO and 

UGT2B7 was significantly reduced at the highest cyproconazole concentration tested (200 µM). 

3.4 Liver triglyceride accumulation 

In the steatosis AOP, liver cell triglyceride accumulation is a late key event that follows nuclear receptor 

activation and transcriptional changes (Figure 1). This parameter was monitored in human HepaRG 

cells after 24 h and 72 h of cyproconazole exposure using the fluorescence-based AdipoRed assay. As 

shown in Figure 6A, cyproconazole treatment led to a statistically significant and dose-dependent 

increase in cellular triglycerides, which was more pronounced after 72 h of exposure. This was 

confirmed by GC-FID analyses (Figure 6B, 6C), which demonstrated an even stronger increase in 

relative cellular triglyceride levels by cyproconazole, especially after 72 h for triglycerides with higher 

molecular weight (C54 and C56). 

3.5 Mitochondrial disruption 

Mitochondrial disruption is thought to be an organelle level effect causally linked to liver steatosis 

(Figure 1). Mitochondrial respiration was thus monitored in cyproconazole-treated human HepaRG 

cells using a Seahorse analyzer. Results of these assays demonstrate a decrease in basal and 
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maximal respiration as well as in proton leak, spare respiratory capacity and ATP production after 72 h 

of 200 µM cyproconazole exposure (Figure 7). 

3.6 Assessment of triglyceride accumulation at the single-cell level 

At the cellular level, the occurrence of fatty liver parenchyma cells is considered a hallmark of the 

development of steatosis. Following treatment of HepaRG cells with cyproconazole, a high content cell 

imaging approach was employed by staining triglycerides with the lipophilic dye nile red. Figure 8A 

visualizes fatty hepatocyte-like cells within the cultures of HepaRG cells consisting of a mixture of 

hepatocyte- and bile duct epithelium-like cells. The data presented in Figure 8B demonstrate that 

cyproconazole induced a statistically significant increase in lipid droplets in liver cells for both time 

points analyzed, i.e. 24 h and 72 h of incubation with the fungicide. These data are consistent with the 

observation of increased triglyceride levels in cyproconazole-treated HepaRG cells (Figure 6). 

3.7 Dose-response and temporal relationships between key events 

A principal characteristic of AOPs is the existence of dose-response relationships and temporal 

concordance between the different key events 46, 47. In order to compare the different key events 

analyzed in this study and the employed assays, we performed dose-response modeling for each data 

set and calculated the BMC50 value (i.e. the concentration at which a 50% change in the response 

occurs, relative to the background) (Table 1). Due to the complexity of gene and protein expression 

data we focused on the following key events: nuclear receptor activation, liver triglyceride 

accumulation, mitochondrial disruption and fatty liver cells. According to AOP principles different key 

events have to causally concur in their dose-response relationships. It implies that upstream (i.e. 

preceding) key events occur at lower concentrations than subsequent downstream events. 

Consequently, the incidence for an upstream event is higher than that of a downstream key event for 

the same concentration of a tested stressor. This concordance of dose-response relationships is 

reflected by the data in Table 1. At 24 h of exposure, nuclear receptor activation occurs at lower 

cyproconazole concentrations (reflected by a lower BMC50) than liver triglyceride accumulation followed 

by mitochondrial disruption. The same is true for 72 h of exposure where liver triglyceride accumulation 

again occurs at lower cyproconazole concentrations than mitochondrial disruption. However, the key 

event fatty liver cells can also be detected at lower concentrations than mitochondrial disruption 

although it succeeds mitochondrial disruption according to the AOP. This does not necessarily reflect 

an inconsistency in the expected dose-response relationship but might be due to differences in 

sensitivity or variability of the employed in vitro assays. For instance data suggest that liver triyglyceride 

accumulation analysis via GC-FID seems to be more sensitive than AdipoRed assay as BMC50 values 

for GC-FID are lower at both time points. Temporal concordance implying an occurrence of upstream 

key events at earlier time points than downstream key events is also reflected by the data. In general 
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the BMC50 values for GC-FID are lower at 72 h than at 24 h which indicates that liver triglyceride 

accumulation is much more pronounced after 72 h exposure than after 24 h exposure and thus is a key 

event that occurs later in time than earlier key events like the nuclear receptor activation. The same is 

true for mitochondrial disruption where the BMC50 values are also lower after 72 h than after 24 h 

indicating a higher incidence at later time points. 

4 Discussion 

Using the example of the AOP on liver steatosis, the data presented in this study illustrate how a 

battery of in vitro tests can be used to quantitatively assess key events in an AOP and thereby to 

obtain a comprehensive description of the biochemical changes induced by test compounds. Clearly, 

no single in vitro assay could cover a complex AOP like the one for liver steatosis, which involves 

receptor activation, transcriptional changes and alterations in cellular intermediary metabolism. Thus, a 

combination of several in vitro test methods in the form of a test battery is proposed as a strategy to 

evaluate an AOP from its molecular initiating event(s) to the cellular consequences of toxicant 

exposure. Previous AOP-driven steatosis screening approaches in HepaRG cells focused on later key 

events, but not the early molecular initiating events, has been recently put forward by Angrish et al.14 

and Tolosa et al.15. The present work substantially goes beyond this previous approach now integrates 

data on a broader base, ranging from nuclear receptor activation to lipid accumulation, and especially 

by detailing the different molecular initiating events. Molecular initiating events, as well the plethora of 

details on thereof-dependent mRNA and protein expression alterations, have not been integrated in a 

comparable testing battery in the aforementioned previous publications. 

Luciferase reporter-based screening of nuclear receptor activation clearly showed PXR activation by 

cyproconazole, a finding corroborated by induction of the model PXR target gene CYP3A4 at the 

mRNA and protein levels. These data do not fully reflect the results from studies in rodents, where the 

hepatic effects of cyproconazole are believed to be mediated mainly via CAR 25, 26, 28. In addition to the 

prevailing role of CAR-dependent mechanisms, Tamura et al.27 discussed a possible involvement of 

PXR in cyproconazole hepatotoxicity also in mice. Induction of a variety of CAR and PXR target genes 

by cyproconazole in vivo has recently described by Heise et al.24. In a number of studies, it was shown 

that cyproconazole increases liver weight, induces hepatocyte hypertrophy and leads to lipid droplet 

accumulation in rodent hepatocytes in vivo 24-26. The present data obtained with human HepaRG 

hepatoma cells convincingly show that the compound also can induce steatosis in human cells. 

In the absence of evidence of CAR activation in non-rodent cell systems, it is tempting to speculate that 

PXR activation most likely is the main underlying mechanism by which cyproconazole induces 

steatosis in human cells. This situation contrasts what has been observed for mice as there was no 

indication of pronounced fatty acid droplet accumulation in mouse hepatocytes humanized for CAR and 

PXR 25, thereby suggesting that CAR has a more prominent role in liver steatosis in rodents. Inter-
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species differences with regard to the ability of xenobiotics to activate CAR have been previously 

reported for other compounds, for example in case of the mouse-specific model CAR agonist 

TCPOBOP and its human counterpart CITCO 48-50. Recently published data on CAR activation by other 

triazole fungicides confirm the functionality of the reporter assay 51, thereby demonstrating the potent 

murine CAR agonist cyproconazole does not activate human CAR. 

The present AOP 60 (“NR1I2 (Pregnane X Receptor, PXR) activation leading to hepatic steatosis“) at 

www.aopwiki.org and the proposed AOP network by Mellor et al.12 depict PXR activation as a 

molecular initiating event followed by the key event CD36 upregulation. This designation is in line with 

literature reports of PXR-dependent CD36 induction 52, 53 and associated with an increase in cellular 

fatty acid influx from external sources according to the AOP. In contrast, the de novo fatty acid 

synthesis-related key events of MLXIPL, SREBF1, FASN, and SCD1 upregulation are not directly 

linked to PXR activation according to the AOP but are rather mediated by LXR, PPARγ, FXR and CAR 

activation. In our analyses, no changes in gene expression were observed for the aforementioned 

players in de novo fatty acid synthesis, which is in line with the findings that cyproconazole does not 

activate the responsible receptors. However, also for CD36 no changes in gene expression were 

observed. This result contradicts the existing AOP, as cyproconazole was found to be a PXR agonist. 

These data suggest that at the level of key events, the AOP in its present state does not fully reflect the 

biological processes that link nuclear receptor activation to increased cellular fatty acid contents via 

transcriptional changes at the mRNA level. 

Activation of LXR may be capable of triggering the key event genes FASN, SCD and SREBF1 of the 

AOP in HepaRG cells. This situation might indicate that the present version of the AOP is centered 

around LXR activation, whereas signaling pathways through other nuclear receptors, which also induce 

steatotic processes, are not yet fully reflected. While a detailed time-resolved analysis of all molecular 

alterations caused by cyproconazole is outside the scope of the present study, further work, for 

example using specific PXR ligands, could help to close remaining gaps of the AOP network for 

hepatic steatosis and to include critical target genes of PXR and/or other nuclear receptors relevant for 

steatosis. 

Another possibility for why the induction of target genes at the key event level was not observed in our 

analyses might be that the rate of transcriptional activation is not suitable for detecting alterations with 

mRNA isolation 24 hours after the start of incubation with cyproconazole. This explanation is unlikely, 

however, since induction of PXR target genes is generally evident in HepaRG cells 24 h after exposure 

to PXR agonists 19. Moreover, known PXR target genes such as CYP3A4 were markedly induced in the 

present analysis. Finally, this assessment was consistent with the profile resulting from our proteomics-

based evaluation of cyproconazole exposure in HepaRG cells.  

After 72 h, later key events like triglyceride accumulation and mitochondrial disruption are clearly 

induced, however no changes in the abundance of proteins encoded by the target genes postulated in 



21 
 

 

the AOP were evident except for significant reductions in ACOX1 and FASN. ACOX1 is a rate-limiting 

enzyme in peroxisomal fatty acid oxidation and its deletion causes microvesicular steatosis, which can 

progress to steatohepatitis and hepatocellular carcinoma 54, 55. The decrease in protein abundance of 

ACOX1 is in agreement with the AOP, although no PPARα antagonistic binding, the underlying 

molecular initiating event, was found for cyproconazole. In contrast, FASN is an important enzyme for 

de novo fatty acid synthesis and it is upregulated in patients with hepatic steatosis in the absence of 

hepatic inflammation 56. Thus, in the AOP, it is proposed to be activated by LXR, PPARγ, FXR or CAR 

and the reduction of FASN at the protein level observed in our study is not in line with the AOP.  

In the future, in vitro determination of a limited number of molecular changes induced by a test 

compound might be used for predicting the steatotic potential of chemicals without the need to conduct 

costly and ethically controversial studies in vivo. This future approach, however, will require more 

complete AOPs and AOP networks containing molecular mechanisms not currently (or not sufficiently) 

represented. Given discrepancies between observed mRNA induction and the mRNA induction pattern 

postulated in the steatosis AOP, the in vitro test battery developed in this work was able to recapitulate 

most key events of the AOP, including the molecular initiating event of nuclear receptor activation, 

mitochondrial disruption, lipid accumulation, and the occurrence of fatty liver cells. Furthermore, 

concordance in dose-response relationship as well as temporal association could be demonstrated and 

is in line with central AOP principles. Thus, while existing AOPs such as that for steatosis are expected 

to require ongoing improvements whenever more detailed mechanistic information becomes available, 

they nonetheless provide a potentially useful framework for guiding toxicological studies in vitro. 

Further research involving case studies such as the present work are anticipated to, on one hand, help 

confirm aspects of an AOP network, and on the other hand to critically evaluate and identify 

weaknesses. As elucidated in the present study, the current AOP on liver steatosis only sparsely 

reflects the mechanistic link between nuclear receptor activation and gene expression changes leading 

to hepatic steatosis. In principle, discrepancies between observed nuclear receptor activation and 

induction of gene expression might results from differences in cellular metabolism of the test 

compound, due to the fact that HepaRG cells possess higher activities of drug-metabolizing enzymes 

than HepG2 or HEK-293 cells. Gene expression profiles obtained in HepaRG cells show induction of 

CYP enzymes indicative of a nuclear receptor activation profile in this cell line comparable to the profile 

recorded by reporter gene assays in the other, metabolically less competent cell lines. These data 

strengthen the assumption that PXR activation might indeed be an important cellular factor mediating 

the response to cyproconazole in human liver cells. Nonetheless, activation of further steatosis-relevant 

nuclear receptors in HepaRG cells by metabolites not formed in HepG2 or HEK-293, and therefore not 

reflected in the reporter gene assay data, cannot be fully ruled out. However, the relevance of the latter 

scenario might be limited due to the fact that in general many metabolites, especially conjugates from 

phase II reactions, rarely exhibit pronounced pharmacological properties. Irrespective of the above the 
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observed mRNA expression profile is not well in agreement with the postulated AOP for steatosis, 

thereby revealing the need for further research aimed to establish an improved AOP network with 

increased physiological and toxicological relevance. 

Individual substances, especially from certain chemical groups such as fungicidal active compounds of 

the triazole class, are often quite well-characterized with respect to their toxicological profile due to the 

legal requirements for the registration and authorization 57. Mixture toxicity is a field toxicologists have 

become increasingly aware of during the past few years, where much less work has been performed as 

compared to the analysis of individual compounds. Due to the complex nature of real-life exposure of 

consumers to multiple chemical entities, a testing of all these combinations in classic in vivo animal 

experiments, as prescribed for many endpoints in the current legislations, will not be feasible. Instead, 

in vitro techniques, especially combinations of different tools addressing individual aspects of a certain 

adverse outcome, might be increasingly used in the future. By doing so, a comprehensive description 

of the molecular toxicological profile of a substance can be obtained and this information can be used 

for predicting possible mixture effects based on similar or dissimilar molecular modes of action. In order 

to fulfill the latter task a detailed analysis of molecular initiating events, as done in the present work, is 

mandatory to determine the molecular mode of action, whereas the strength of in vitro toolboxes 

focused on the more apical endpoints as put forward by Tolosa et al.15 and Angrish et al.14 lies in the 

determination of the steatotic potential of compounds rather than in the identification of molecular 

mechanisms of action. By gearing at Vinken’s AOP4 and by focusing on early key events important for 

the mode of action characterization for future use of the in vitro toolbox in mechanism-based mixture 

testing, less weight was put on more apical parts of the AOP, which play a major role in the apical key 

event-based approach by Angrish and co-workers13, 14. However, the AOP concept by Vinken4 

characterizes those later key events as a consequence of mRNA and protein expression, regulated by 

the diverse nuclear receptors activated by steatotic compounds (see also Figure 1). Thus, even not 

directly measured, information on these apical key events can be extracted from our data. 

Nonetheless, future integration of additional apical endpoints suggested by Angrish et al.13 and Angrish 

et al.14 might further increase the values of the system. Testing of multiple mixtures in vitro in a test 

battery such as ours might constitute a feasible approach for mixture testing of chemical compounds. 
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Tables 

Table 1: BMC50 values for in vitro assays after 24 h or 72 h of cyproconazole exposurea 
Exposure 
time Key event In vitro assay BMC50 

[µM] 
BMCL50 

[µM] 
BMCU50 

[µM] 

24 h 
 

Nuclear receptor activation PXR-CYP2B6 1.5 0.4 3.7 

Nuclear receptor activation PXR 17.7 8.7 28.8 

Nuclear receptor activation RAR 23.3 16.3 31.0 

Liver triglyceride accumulation GC-FID (C54) 30.3 6.3 79.6 

Liver triglyceride accumulation GC-FID (C52) 49.2 12.1 114.0 

Liver triglyceride accumulation GC-FID (C56) 61.8 16.5 133.0 

Liver triglyceride accumulation GC-FID (C46) 79.1 30.7 141.0 

Liver triglyceride accumulation GC-FID (C50) 88.5 34.3 157.0 

Liver triglyceride accumulation GC-FID (C48) 93.4 40.9 152.0 

Mitochondrial disruption Non-mitochondrial respiration 174.6 142.0 187.0 

Liver triglyceride accumulation GC-FID (C42) 179.5 80.7 430.0 

Liver triglyceride accumulation GC-FID (C44) 188.1 107.0 367.0 

Mitochondrial disruption ATP production 191.8 129.0 289.0 

Mitochondrial disruption Spare respiratory capacity 196.4 123.0 360.0 

Mitochondrial disruption Maximal respiration 201.7 131.0 372.0 

Mitochondrial disruption Basal respiration 213.3 151.0 414.0 

Mitochondrial disruption Proton leak 247.2 173.0 2300.0 

Liver triglyceride accumulation AdipoRed 334.4 257.0 588.0 

72 h 
 

Liver triglyceride accumulation GC-FID (C54) 7.5 3.2 15.1 

Liver triglyceride accumulation GC-FID (C56) 11.2 5.4 20.6 

Liver triglyceride accumulation GC-FID (C52) 23.6 10.9 43.7 

Liver triglyceride accumulation GC-FID (C42) 78.2 58.1 97.3 

Liver triglyceride accumulation GC-FID (C46) 80.4 67.2 94.8 

Liver triglyceride accumulation GC-FID (C48) 80.4 67.2 94.8 

Liver triglyceride accumulation GC-FID (C50) 92.0 73.0 109.0 

Liver triglyceride accumulation GC-FID (C44) 96.1 77.7 123.0 

Mitochondrial disruption Basal respiration 119.3 102.0 173.0 

Fatty liver cells High content cell imaging 121.9 46.2 302.0 

Mitochondrial disruption Spare respiratory capacity 132.4 107.0 158.0 

Liver triglyceride accumulation AdipoRed 135.9 122.0 152.0 

Mitochondrial disruption Maximal respiration 138.6 112.0 163.0 

Mitochondrial disruption Non-mitochondrial respiration 142.0 104.0 161.0 

Mitochondrial disruption Proton leak 152.8 98.2 199.0 

Mitochondrial disruption ATP production 163.1 140.0 182.0 
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aDose-response modeling and benchmark dose (BMC) analysis were performed using the software 
package PROAST. The BMC and the respective two-sided 90% BMC confidence interval given by 
BMCL (lower bound of the BMC confidence interval) and BMCU (upper bound of the BMC confidence 
interval) were calculated for a benchmark response of 50% (BMR50). Data were sorted for BMC50. For 
high content cell imaging data after 24 h exposure no BMC50 could be calculated due to the maximal 
response lying below a 50% change in response relative to the background. 

Figures and Figure Legends 

 
Figure 1: AOP network for liver steatosis and in vitro endpoints to access AOP. The figure was 

compiled on the basis of previously published literature modified after 4, 12. Key events analyzed in the 

present study are marked in bold letters. 
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Figure 2: Chemical structure of cyproconazole. 

 

 
Figure 3: Nuclear receptor activation by cyproconazole. Reporter gene assays were used to analyze 

the activation of the ligand binding domain (LBD) of different nuclear receptors (CAR, FXR, LXRα, 

PPARα, PPARγ, PPARδ, PXR, RARα, RXRα), the receptor-mediated induction of a specific DNA 

response element (AHR, GR), or the human CYP2B6 promoter (CAR-/PXR-/VDR-CYP2B6). For this 

purpose HepG2 or HEK-293 cells (depending on the reporter gene assay) were transfected with the 

appropriate plasmids and exposed to indicated cyproconazole concentrations, solvent control (SC; 

0.5% DMSO) or to the respective positive control (PC, listed in supplement, Table S1) for 24 h. 

Relative activity referred to maximum induction by the PC (set to 1) was calculated. Data are presented 

as means ± SD (* p < 0.05 Kruskal-Wallis test against SC). (A) Summary of receptor activation (+ 

activation, - no activation). (B) Detailed results for PXR and RARα activation by cyproconazole. 
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Figure 4: Gene expression analysis of genes linked to liver steatosis, nuclear receptor activation and 

hepatotoxicity. Differentiated HepaRG cells were exposed to 25 µM, 50 µM, 100 µM, or 200 µM 

cyproconazole for 24 h. 0.5% DMSO served as solvent control. Total mRNA was isolated and 

transcribed into cDNA. (A) Using cDNA from solvent controls and 200 µM cyproconazole-treated 

samples, a set of 69 steatosis-related target genes was analyzed by TaqMan real-time PCR array 

analysis. Two technical replicates were analyzed for each condition. For relative quantification of 

mRNA content according to the 2-∆∆Ct method, Ct values were normalized to reference genes ACTB, 

GAPDH and B2M. mRNA level in treated samples is expressed as fold change in relation to solvent 

control (set to 1). Fold changes ≥ 2 and ≤ -2 are highlighted in orange and blue, respectively. Genes in 

the AOP are underlined. (B) Based on the PCR array screening, 27 genes deregulated with a │fold 

change│almost equaling or higher than 2 were selected for further PCR analysis in cells treated with 

increasing concentrations of cyproconazole. The heat map presents the mean fold changes of three 

independent, biological replicates (* p < 0.05 Kruskal-Wallis test against solvent control). 
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Figure 5: Protein abundance changes of cyproconazole-perturbed HepaRG cells represented as a heat 

map. HepaRG cells were exposed for 72 h to increasing concentrations of cyproconazole relative to 

solvent controls (0.5% DMSO) and protein abundance changes were monitored using MS-based 

parallel reaction monitoring (PRM) assays. Only proteins which corresponded to the gene transcripts 

analyzed by TaqMan real-time PCR array analysis and which were uniquely identified by PRM are 

presented. Legend depicts fold change (FC) on a log2 scale. *: significant change (increase or 

decrease in abundance) as determined by unpaired t-test compared to untreated control cells (p < 

0.05). 
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Figure 6: Analysis of triglyceride accumulation. Differentiated HepaRG cells were exposed to the 

indicated concentrations of cyproconazole or solvent control (SC; 0.5%DMSO). After 24 h or 72 h 

triglyceride accumulation was analyzed using (A) AdipoRed assay or (B,C) GC-FID. The triglyceride 

content was referred to the solvent control. Data are presented as means ± SD (* p < 0.05 Kruskal-

Wallis test against SC). 
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Figure 7: Mitochondrial respiration. Differentiated HepaRG cells were exposed to the indicated 

concentrations of cyproconazole or solvent control (SC; 0.5%DMSO) for 24 h and 72 h. Mitochondrial 

respiration was assessed by measuring the oxygen consumption rate using the Seahorse XF Cell Mito 

Stress Test. Data are presented as means ± SD (* p < 0.05 Kruskal-Wallis test against SC). 

 



37 
 

 

 

Figure 8: High content cell imaging of neutral lipid droplets. Differentiated HepaRG cells were exposed 

to indicated cyproconazole concentrations, 30 µM cyclosporine A serving as positive control (PC), or 

solvent control (SC; 0.5% DMSO). After 24 h or 72 h nuclei were stained with DAPI. Neutral lipids were 

visualized using nile red dye and then subjected to high content cell imaging analysis. Spot total 

intensity was quantified in each cell, and then normalized using median MAD. Fold induction relative to 

solvent control was calculated. (A) Representative fluorescence images of stained cells. Fuchsia: DAPI 

(nuclei); green: nile red (triglycerides); H: hepatocyte-like cells; B: bile duct epithelium-like cells. (B) 

Dose-response diagram for relative fold induction of spot total intensities. The boxes depict the median 

and the 25%-75% range of nile red staining intensity in hepatocytes (* p < 0.05 Kruskal-Wallis test 

against SC).  


