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Abstract. Wind turbines are often grouped together for financial reasons, but due to wake
development this usually results in decreased turbine lifetimes and power capture, and thereby
an increased levelized cost of energy (LCOE). Wind farm control aims to minimize this cost by
operating turbines at their optimal control settings. Most state-of-the-art control algorithms
are open-loop and rely on low fidelity, static flow models. Closed-loop control relying on a
dynamic model and state observer has real potential to further decrease wind’s LCOE, but
is often too computationally expensive for practical use. In this paper two time-efficient
Kalman filter (KF) variants are outlined incorporating the medium fidelity, dynamic flow
model “WindFarmSimulator” (WFSim). This model relies on a discretized set of Navier-Stokes
equations in two dimensions to predict the flow in wind farms at low computational cost. The
filters implemented are an Ensemble KF and an Approximate KF. Simulations in which a high
fidelity simulation model represents the true wind farm show that these filters are 101−102 times
faster than a regular KF with comparable or better performance, correcting for wake dynamics
that are not modeled in WFSim (noticeably, wake meandering and turbine hub effects). This
is a first big step towards real-time closed-loop control for wind farms.

1. Introduction
The recent 2015 UN Climate Change Conference in Paris once again stressed the importance
of renewable energy sources, among which is wind. To make implementations of wind energy
feasible, its levelized cost of energy (LCOE)1 has to be able to compete with that of other energy
sources. For this reason, wind turbines are often placed together in wind farms. However,
grouping turbines together gives rise to the development of, and interactions with, wind wakes,
often resulting in a plant-wide decreased power capture2 and increased turbine structural loading
compared to an equal number of isolated turbines. Wind farm control aims to counter this and
minimize the LCOE of wind. Notable findings in this relatively new area of research include
farm layout optimization [1, 2], wake redirection control [2, 3], and active power control [4, 5].

Advancements in wind farm control have gone hand in hand with advancements in modeling,
as control algorithms typically rely on low fidelity, control-oriented, static flow models.
Unfortunately, this is often limited to open-loop control. Furthermore, high fidelity, dynamic
models based on the Navier-Stokes (NS) equations have allowed relatively inexpensive flow
1 The LCOE is a measure to compare different methods of energy generation in terms of financial feasibility.
2 Power capture losses in wind plants may be up to 50%, according to some numerical studies [1].



analysis and observer testing at high accuracy, but are computationally too expensive for real-
time control applications. Medium fidelity, dynamic flow models aim to bridge this gap, and in
some cases allow closed-loop control, further reducing the LCOE of wind. However, the need
for a state observer and the increase in computational cost remain challenges.

The goal of this work is to design a time-efficient state observer using the medium fidelity,
dynamic flow model “WindFarmSimulator” (WFSim) [6, 7], in pursuit of real-time closed-loop
control. Observers will provide estimations of the flow field correcting for unmodeled dynamics
(thus allowing the use of a lower fidelity, time-efficient model), measurement noise, and limited
availability (temporally and spatially) of measurements. The concept is visualized in Figure 1.
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Figure 1: Closed-loop control for wind farms

In this paper, first the WFSim model is outlined in Section 2. Secondly, two enhanced KF
designs are described in Section 3. Thirdly, the simulation setup and simulation results are
presented in Sections 4 and 5, respectively. Finally, conclusions are drawn in Section 6.

2. WindFarmSimulator
This section introduces WFSim and modifications to this model to allow direct implementation
of state-of-the-art filtering algorithms. For a more detailed explanation, please see [8].

2.1. The flow model
WFSim is a medium fidelity, dynamic flow model that predicts the flow velocity vectors in a
wind farm at hub height in predefined meshings using the spatially and temporally discretized
2D NS equations following a computational fluid dynamics (CFD) solution [9]. WFSim employs
the actuator disk model (ADM) [10] to calculate the aerodynamic forces on the flow by the
rotor blades. Furthermore, it includes a mixing length turbulence model [11] to account for
wake recovery. What makes WFSim unique is its reformulation into an implicit, nonlinear state
space system by projecting away the continuity equations, resulting in the flow model

E(αk)αk+1 =A αk +B(αk)βk + S(αk),[
uk
vk

]
=Qpαk +Bp,

(1)

with αk ∈ RN the system state vector at time k, and
[
uk; vk

]
∈ RM the collocated 2D velocity

vectors in the grid. N is proportional to the number of grid points in the mesh (i.e., refinement
of flow fields). Note that αk has no physical interpretation due to the aforementioned projection.
The system input is βk ∈ RO, with O equal to the number of turbines. βk is a representation of
the axial induction factors, and can be translated into physical turbine settings such as generator
torque, blade pitch, and yaw. E ∈ RN×N , A ∈ RN×N , B ∈ RN×O, S ∈ RN , Qp ∈ RM×N , and
Bp ∈ RM are system matrices, of which E, B, and S depend on the state αk.

2.2. Model manipulation
While literature on state observers for implicit systems like Equation (1) exists (e.g., [12, 13]), for
WFSim these algorithms are too computationally complex for real-time control and often lead to
numerical instability. Hence, a different approach is followed. First, Equation (1) is reformulated



in a more common form by extending the state vector with a constant entry allowing elimination
of the offset terms S(αk) and Bp, and performing matrix inversion of E(αk), resulting in

[
αk+1

1

]
=

F (αk)︷ ︸︸ ︷[
E(αk)

−1A E(αk)
−1S(αk)

0 1

] [
αk

1

]
+

[
E(αk)

−1B(αk)
0

]
βk,[

uk
vk

]
=
[
Qp Bp

] [αk

1

]
.

(2)

In its current form, the calculation of E(αk)
−1A at each time step is too computationally

expensive for control applications due to high dimensionality (typically, N = 102 − 103).
Therefore, computational cost is reduced by applying the Reverse Cuthill-McKee (RCM)
algorithm on Equation (2), typically resulting in a computational effort reduction of 90% or
more [14, 15]. The RCM algorithm rearranges the rows and columns of a matrix to transform a
sparse matrix into a sparse banded matrix, as demonstrated in Figure 2.
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Figure 2: Matrices E(αk) and A under the RCM algorithm, in which respectively 63% and 76%
of the entries are zero. This typically reduces computational cost of E(αk)

−1A by over 90%.

The system in Equation (2) allows direct implementation of state-of-the-art estimators. Note
that high dimensionality is still present, and thus emphasis is put on time-efficient algorithms.

3. Observer design
Two observers are implemented, both derived from the traditional Kalman filter (KF). However,
they are fundamentally different in their way of reducing computational cost. The first filter,
the Approximate KF (ApKF), simplifies the system model while retaining the original update
equations. The second filter, the Ensemble KF (EnKF), instead relies on the original system
model, yet approximates the KF update algorithm. Both algorithms are briefly described next.

3.1. Approximate Kalman filter
The ApKF relies on the original KF update algorithm, while enforcing sparsification of two main
matrices in pursuit of reducing computational cost. Firstly, all off-diagonal elements in the state
covariance matrix Pk are neglected, implicitly assuming the system states are uncorrelated.
From numerical results it is noted that the diagonal elements are typically a factor 101 − 102

larger than the off-diagonal elements, validating this assumption. Secondly, F (αk) in Equation
(2) is made sparse by neglecting all matrix entries [i, j] that meet the condition

|F (α0)[i, j] · α0(j)| < mean (|F (α0)[i, :] · α0|) · z, (3)

with z typically 0.05 − 0.10, and i and j the row and column of the matrix, respectively. For
z = 0, the original matrix F is retrieved. This algorithm enforces a sparsification by neglecting



matrix entries that only have a small contribution to the system update, thereby leaving the
resulting update approximately intact. This sparsification typically renders over 95% of the
entries sparse, as demonstrated in Figure 3 for system matrix F (αk) ∈ R324×324 with z = 0.05.
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Figure 3: System matrix F under sparsification according to Equation (3), with z = 0.05. This
typically reduces computational cost of the filter by over 95%.

Furthermore, for z < 0.10, typically no loss in accuracy is noted in simulation. An example
comparing the ApKF with the KF is displayed in Figure 4. These simplifications reduce
computation time by a factor 101 − 102 at negligible loss in state reconstruction accuracy. An
important remark is that the KF is proven exclusively for linear systems, while the system at
hand is nonlinear. Simulations have shown acceptable results, yet caution must be taken.
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Figure 4: Simulation results showing the mean wake centerline for the ApKF (z = 0.05) and the
KF. See Section 5 for definitions and an explanation of the simulation setup.

3.2. Ensemble Kalman filter
The second observer is an EnKF. It is a variant of the KF in which the covariance matrices are
approximated by a sample covariance. The EnKF is typically applied to nonlinear models of
high order (103 − 106 states) for its computational efficiency and ability to deal with nonlinear
dynamics. More information concerning the EnKF can be found in a paper by Evensen [16]. The
algorithm from the same paper is implemented for its emphasis on computational performance.3

3 There is an important difference between Evensen’s algorithm and the algorithm used in WFSim. In Evensen’s
algorithm, at each time step, the system matrices have to be recalculated for each ensemble member due to the
dependency of the system matrices on the states. With a typical ensemble size of 102 members, this is very time
consuming. Therefore, here, at each time instant the mean of all ensemble members is used to determine one set
of system matrices, which are then used to update all ensemble members forward in time.



4. Simulation setup
The observers discussed in Section 3 will be tested using the high fidelity simulation model
SOWFA in Section 5. First, in Section 4.1 SOWFA is discussed, after which the simulation
domain is depicted in Section 4.2. Finally, turbine operation settings and atmospheric properties
are mapped from the SOWFA simulation to WFSim, presented in Section 4.3.

4.1. SOWFA
The Simulator fOr Wind Farm Applications (SOWFA) is a simulation code from the National
Renewable Energy Laboratory (NREL) that provides highly accurate flow data at a fraction of
the cost of field tests [17]. SOWFA predicts the 3D velocity vectors in a CFD formulation using
a large-eddy simulation (LES) method. It relies on the 3D incompressible NS equations for a
steady or unsteady flow field, accounting for bouyancy (based on the Boussinesq approximation
[18]) and Coriolis effects [19]. LES methods resolve larger scale dynamics directly, but employ
a subgrid-scale model for small eddy dynamics to reduce computational cost.

For rotor modeling, SOWFA employs a more sophisticated variant of the ADM: the actuator
line model (ALM). Unlike the ADM, the ALM includes individual rotor blade effects [18].

The FAST code [20] is implemented for turbine modeling. This model calculates, among
others: the power production of turbines, the blade forces on the flow, the structural loading on
turbines, and the dynamics of several turbine components [3].

SOWFA has been used on multiple occasions for model validation, controller testing, and
flow analysis in wind farms (e.g., in [2, 3, 18, 21, 22]). Its validation is still an ongoing process.
Currently, field tests have shown that SOWFA simulation results are accurate for the first 5 rows
of turbines [22]. For a full description of the flow equations, please see the article by Churchfield
et al. [23].

4.2. Domain and meshing
The SOWFA dataset used for model validation and controller testing initializes simulation from
a fully uniform flow field, in which no turbulence has yet developed. A two turbine4 case spaced
5 rotor diameters apart is simulated in a 3000 × 3000 × 1000 m domain, with an increasingly
refined meshing near the turbines and wakes. A horizontal 1000 × 2000 m plane at hub height
is extracted from the SOWFA data as the area of interest, as displayed in Figure 5.
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Figure 5: Simulation domain used for observer testing [3]

In WFSim, an exponential 25× 50 grid meshing is used with finer spacing near turbines and
coarser spacing near the boundaries, resulting in a total number of N = 1034 states.

4.3. Mapping SOWFA to WFSim
With the simulation domain outlined in Section 4.2, now the turbine operation settings and
atmospheric settings are mapped from SOWFA to WFSim. Notably, SOWFA relies on physical
turbine settings such as yaw, blade pitch, and generator torque to determine the force a turbine
4 The NREL 5-MW turbine is used. Properties can be found in its corresponding technical report [24].



exerts on the flow. WFSim on the other hand relies on yaw and a theoretical axial induction
factor derived from momentum theory. A mapping between SOWFA and WFSim is required.

In SOWFA, the upstream turbine (turbine 1) excites the flow by following a pseudo-random
binary sequence (PRBS) signal on the collective pitch angle, switching between 0◦ and 4◦. The
generator torque and yaw angle are kept constant. Turbine 2 is operated under constant settings
throughout the entire simulation. The axial induction factors used in WFSim are mapped
accordingly. Using the tower fore-aft bending moment obtained from FAST in combination
with momentum theory, the mapping is found to be as in Figure 6. For more details, see [8].
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Figure 6: Mapped system input signal βk for WFSim from SOWFA data. βk switches between
0.15 and 0.28 for turbine 1 according to the PRBS signal, and is constant at 0.30 for turbine 2.

Note that the fore-aft tower bending moment data is low-pass filtered (LPF) to remove tower
vibration effects in the estimate of βk. From this figure, it is noted that the estimate for turbine 1
is significantly better than for turbine 2, expected to be due to wake formation and its effects.
Momentum theory assumes a uniform inflow in front of the turbines. For turbine 1, this is more
or less the case as the simulations are initialized from a fully uniform flow field. For turbine 2,
this assumption does not hold due to wake formation by the upstream turbine. This is expected
to reflect in the simulation results, with poorer estimations in the wake of turbine 2.

Finally, several atmospheric properties are mapped, as displayed in Table 1.

Table 1: Atmospheric and model parameters for WFSim

Parameter [units] Symbol Mapping (WFSim) True value (SOWFA)

Air density [kg·m3] ρ 1.2231 N.A. (Time-varying)
Dynamic viscosity [Pa·s] µ 0.18 · 10−5 N.A.
Free-stream flow speed (long.) [m/s] U∞ 8.00 8.00± 0.14
Free-stream flow speed (lat.) [m/s] V∞ 0.00 0.02± 0.04
Mixing length for turbulence model [m] lm 0.60 N.A.

Using the simulation settings as outlined in this section, the WFSim farm model can be
validated with SOWFA, and the ApKF and the EnKF can be tested and compared.

5. Results
Simulations are performed at a 25×50 grid meshing with N = 1034 system states. Equidistantly
spaced measurements and measurements around the turbines are fed into the observer, resulting
in 23% of the system outputs (longitudinal and lateral velocity values throughout the grid)



available to the ApKF and EnKF. These measurements are disturbed by adding Gaussian noise
with standard deviation σ = 0.10 m/s, comparable to current lidar standards [25].5

The observers are tuned according to the root mean square (RMS) error, the variance
accounted for (VAF), and the quality of fit (QOF) for the mean wake centerline. The mean
wake centerline is defined as the longitudinal wind speeds throughout the domain averaged in
lateral direction from rotor end to rotor end. The performance measures are defined as

RMS(u, uest) =
√

mean
(
(u− uest)

2
)
, (4)

VAF(u, uest) =
(
1− variance(u− uest)

variance(u)

)
· 100%, (5)

QOF(u, uest) = max

([
0, 1− ||u− uest||22

||u||22

])
· 100%, (6)

in which we want to minimize the RMS error, and maximize the VAF and QOF. Tuning the
observers resulted in the settings as shown in Table 2, with ne the number of ensembles in the
EnKF, P0 the initial state covariance matrix, R the measurement noise covariance matrix, and
Q the process noise covariance matrix.

Table 2: Optimal observer settings for WFSim at 25× 50 meshing

Filter z (-) ne (-) P0 (m/s) R (m/s) Q (m/s)

ApkF 0.05 N.A. 10.0 1.0 0.050
EnKF N.A. 200 5.0 0.10 1.00

Simulating WFSim without an observer, and with the ApKF and EnKF respectively, yields
estimates of the flow field at every time instant. The mean wake centerlines for the entire
simulation time can be summarized in a single figure, as displayed in Figure 7.

Figure 7 shows that WFSim predicts an averaged flow, as expected since WFSim does not
include sophisticated turbulence or rotor models. The observers further improve the tracking of
nonlinear flow dynamics seen in SOWFA. Quantitative results (RMS error, VAF, and QOF) are
displayed in Table 3, showing that the observers significantly improve estimations with respect
to the case without observer. Furthermore, the EnKF slightly outperforms the ApKF, expected
to be because the EnKF deals better with nonlinear dynamics in general.

Secondly, the full flow fields are analyzed. For times t = 200, 750, and 1500 s, the flow fields
are presented in Figure 8. From these figures, it is further confirmed that WFSim predicts an
averaged flow, and neglects smaller scale dynamics, showing satisfactory results in general. The
observers correct for a number of factors that WFSim estimates poorly. First of all, it is seen
that the wake width is adjusted for: WFSim overestimates the wake width, expected to be due to
the very simplified turbulence model. Secondly, in SOWFA, there is no wake formation behind
the turbine hub, and thus two wakes form in parallel instead. Due to the simplified actuator
disk model in WFSim, a single wake is modeled. The observers correct for this. Thirdly, wake
meandering is somewhat accounted for. Fourthly, wake recovery is improved by the observers.
Finally, comparing the EnKF to the ApKF, it is seen that the EnKF relies more on stochasticity,
5 This is not a realistic number or location of measurements. Ongoing research is moving towards a more
realistic simulation setup. Initial experiments show that reducing the number of measurements to a realistic
amount (comparable to using lidar) still yields significantly better flow field estimates when compared to the
absence of an observer.
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Figure 7: Mean wake centerline velocity in x-direction. The irregularly dashed line indicates
flow excitation by turbine 1 (x = 400 m). For the gaps, the blade pitch angle is 4◦, and otherwise
it is 0◦. The regularly dotted line indicates turbine 2 (x = 1032 m) operating under constant
settings. Windflow is from top to bottom, with the color bar defining wind speed in m/s.

Table 3: RMS, VAF, and QOF for the mean wake centerline for WFSim, EnKF, and ApKF

RMS (m/s) VAF (%) QOF (%)
Time (s) WFSim EnKF ApKF WFSim EnKF ApKF WFSim EnKF ApKF

1 0.046 0.046 0.046 17.2 17.2 17.0 100 100 100
200 0.491 0.374 0.419 85.3 88.1 88.8 99.4 99.5 99.6
500 0.836 0.438 0.590 64.6 88.5 82.6 98.1 99.1 99.5
1000 0.642 0.367 0.433 77.9 90.7 88.1 98.8 99.5 99.6
1500 0.785 0.415 0.448 68.8 89.2 88.8 98.3 99.4 99.5
1999 0.499 0.315 0.414 88.6 93.5 93.0 99.3 99.5 99.7

but therefore also deals better with model nonlinearity. Noticeably, the EnKF deals well with
the underestimated wake depth, while the ApKF does so less well.

Moreover, the computational cost of observer updates are displayed in Table 4, for our
simulations with N = 1034 and for a larger scale simulation with N = 4560. This table
clearly shows the increase in efficiency in the enhanced filtering algorithms with respect to the
traditional KF. Furthermore, when comparing results for N = 1034 and N = 4560, it is noted
that gains in computational efficiency scale up more than linearly with system size.

Table 4: Average computational cost per iteration in seconds

System size WFSim KF EnKF ApKF

N = 1034 1.0 · 10−1 1.3 · 101 7.0 · 10−1 8.0 · 10−1

N = 4560 1.2 · 100 1.1 · 103 8.0 · 100 8.5 · 100
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Figure 8: Estimated flow field in x-direction for t = 200, 750, 1500 s. Windflow is from bottom
to top, with the color bar defining the wind speeds in m/s. Turbines are denoted by an asterisk.
This figure shows the improvements on flow field estimations the ApKF and the EnKF make
compared to the case without observer. Notably, the observers account for an overestimated
wake width, underestimated wake recovery, wake meandering, and turbine hub effects.



6. Conclusions and on-going work
Concluding from Figures 7 and 8 and Tables 3 and 4, two state observer designs have been
proposed with good performance at a fraction of the computation cost of a full KF. These
computational benefits grow more than linearly with system size. In our simulations with
N = 1034 states, the observers account for an overestimated wake width, underestimated wake
depth, underestimated wake recovery, turbine hub effects, and wake meandering. This is a first
major step to time-efficient higher fidelity closed-loop control of wind farms.

The next major step in this research is increasing the degree of realism in simulation –
the number of measurements should be significantly decreased to be comparable to what can be
achieved in practice (e.g., with the use of lidar). Furthermore, SOWFA simulations are to include
more turbulence and different wind farm topologies. Also, improvements in model validation and
flow field estimation can be achieved by improving the WFSim model (e.g., including turbine hub
effects or improving the turbulence model), refined observer tuning, and using refined domain
meshings. Finally, as the focus in this work is limited to axial-induction-based control, wake
redirection control is to be explored in future research.
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