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Background: Austempered ductile iron (ADI) is an interesting class of 

materials because of their unique microstructure containing a 

multiphase matrix (called ausferrite), graphite spheres and oxide 

inclusions, the need to investigate the effect of austempering heat 

treatment on corrosion behavior of it. 

Results: The outcomes demonstrated that heat treatment is very 

powerful method for improving the corrosion resistance of ductile cast 

iron. Since the microstructure of the heat treated samples was 

austempered ferrite.  

Conclusions: The corrosion resistance of ADI heat treated at (375°C) 

is higher than ADI heat treated at (325°C) because the microstructural 

modifications induced by austempering at 375°C which results to a 

greater coarsening of the austenite grain and broad ferrite needles. 
 

                 Copy Right, IJAR, 2019,. All rights reserved. 
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Introduction:- 
Austempered ductile iron (ADI) is a new ferrous material made from ductile iron with austempered heat treatment, 

and possesses many advantages such as low cost, high strength, good toughness, vibration resistance, wear 

resistance and fatigue resistance, etc. [1]. The ductility of austempered ductile iron depends mostly on relative 

amount of austenite. Attractive mechanical properties, low cost make ADI competitive not only to conventional 

ductile iron but also with cast steel and in some cases even aluminum alloys [2]. The austempering treatment allows 

ductile iron to have the strength and wear resistance comparable to wrought steels while retaining the low cost and 

design flexibility of cast irons [3]. The excellent property combination of ADI has opened new horizons for cast iron 

to replace steel castings and forgings in many engineering applications with considerable cost benefits [4]. 

Austempered ductile irons are an interesting class of materials because of their unique microstructure and interesting 

properties. When subjected to austempering treatment ductile iron transforms to a microstructure consisting of 

ferrite and stabilized austenite rather than ferrite and carbide as in austempered steels [5-6].Microstructure and 

properties of ADI are dependent especially on temperature of isothermal transformation of austenite and holding 

time at this temperature [7]. We would like to reveal some light on corrosion behavior of austempered ductile cast 

iron. The present study investigated austempering heat treatment of ductile iron, conducting corrosion tests in a 

constant concentration of 3.5%NaCl and investigating the microstructural changes that occur in the samples after 

immersion in these media. 
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Methods:- 
Materials:- 

The ductile iron material used for this study was cast in casting department of Central Metallurgical 

Research and Development Institute (CMRDI) and its chemical composition was determined with the aid 

of spectrometer, using spark analysis, as shown in Table 1. 

Table 1:-Percentage chemical composition of ductile iron sample 

 

Heat treatment cycle 

In order to obtain ADI material in this work. The heat treatment was carried out as follows: (1) 

austenitized in the range of (810-930
°
C) for 75 min.; then (2) quenched in a salt bath in the range of (232-

400°C), carried out very rabidly to avoid the formation of pearlite. The austempering stage completed at 

the desired temperatures (325 and 375°C) for 75 minutes to produce a matrix of needles of ferrite and 

enriched carbon austenite and finally (3) air-cooled to room temperature. A schematic heat-treating 

process is depicted in Fig. 1. 

 

Techniques 

After heat treatment specimens were tested for determined the corrosion rate by electrochemical 

techniques employed include open circuit potential (OCP), Potentiodynamic polarization and 

electrochemical impedance spectroscopy (EIS) using Volta Lab 40 (PGZ301) – Radiometer analytical. 

The surface morphology of the different specimen after the corrosion tests were examined Using SEM 

Model Quanta 250 FEG (Field Emission Gun) attached with EDX Unit (Energy Dispersive X-ray 

Analyses) 

 

Results and discussion:- 
Open circuit potential 

In this part the potential-time curves of the test electrodes which austempered at (325
°
C & 375

°
C). Figure 

(2) show the open circuit potential of austempered ductile cast iron electrodes with time in 3.5% NaCl 

solution. Inspection of these curves show that a general tendency for open circuit potential to shift from 

positive to negative values. This may be attributed to the destruction of pre-immersion oxide film present 

on the surface of electrodes. The negative shift in steady state potential (ES.S), indicates that Cl
-
 accelerate 

the anodic metal dissolution reaction. By comparing the values of immersion potential (E imm.) and steady 

state potential (Es.s) for ADI electrodes in 3.5% sodium chloride solution was tabulated in table (2) 

 

Table 2:-Values of Eimm. and Es.s for ADI Electrodes in 3.5% NaCl solution. 

 

Potentiodynamic polarization measurements 

The Potentiodynamic polarization of austempered ductile cast iron electrodes were started at -1100 up 

to300 mV with calomel as a reference electrode. The rate of which the potential of the electrode is varied, 

dv/dt, has a considerable influence of the polarized curve. Good reproducibility was obtained with 

scanning rate 2 mV/sec. Figure (3) represents the anodic and cathodic Potentiodynamic polarization curve 

for electrodes in 3.5% NaCl. This indicates that the corrosion resistance of ADI (375°C) is higher than 

ADI (325°C). The changes obtained in the corrosion resistance was related to the microstructural 

modifications induced by austempering at 375°C which results to a greater coarsening of the austenite 

grain and broad ferrite needles [8]. The two phases in ADI (ferrite and retained austenite) could act as 

electrochemical cell and aid corrosion. Since low temperatures ADI (325°C) have a fine structure, the two 

phases are so closely spaced that there are a number of such cells in a small area. Thus, the surface area 

available for corrosion is large in low temperature ADI than the high temperature ADI (375°C) [9]. 

elements C Si Mn S Mg CE % 

composition 3.7 2.4 2.0> 0.015 0.05 4.5 

Conc. 

 

       Samples 

3.5% 

Eimm. (mV) Es.s(mV) 

ADI (325
°
C) -595.27 -647.74 

ADI (375
°
C) -501.59 -532.28 
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Corrosion behavior results from an anodic process, corresponding to iron dissolution and a cathodic 

process, considered as the reduction of dissolved oxygen [5]. The electrochemical parameters such as 

Ecorr., Icorr., βa, βc and corrosion rate are tabulated in table (3). 

 

Table 3:-Corrosion parameters for ADI electrodes in 3.5% NaCl solution 

Electrodes Ecorr. 

 (V) 

Icorr. x 10
–3

 

(A/cm
2
) 

Tafel slopes Corrosion rate 

μm/y Ba(mv) Bc(mv) 

ADI 325°C -709.3 36.071 286.7 -310.5 421.9 

ADI 375°C -554.3 25.52 231.9 -411.3 29.85 

 

Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance is widely used for investigation of the corrosion processes. This method is an 

influential application in obtaining more information on the kinetics of the electrode processes and on the 

surface properties of the system investigated. The impedance data points of the electrodes in 3.5% NaCl 

solution were analyzed using the equivalent circuit shown in fig.(4). This equivalent circuit which has 

been previously reported fitted well with our experimental results. 

 

 The impedance diagrams in the figure (5) shows that the charge transfer resistance of two electrodes of 

ADI increase with increasing austempering heat temperature. Electrochemical theory shows that the 

reciprocal of the charge transfer resistance is proportional to the corrosion rate [10]. The main parameters 

deduced from the analysis of Nyquist diagram are the charge transfer Rct (diameter of high frequency 

loop) and the capacitance of double layer Cdl. The charge transfer Rct and double layer capacitance Cdl 

values calculated for all test electrodes are given in table (4). 

 

Table 4:-Impedance parameters for ADI sample in 3.5% NaCl solution 

 

From the impedance data given in table (4), the value of Rct increases in the order: 

ADI 325°C < ADI 375°C 

 

This can be attributed to the formation of protecting film on alloy / solution interface. 

 On the opposite hand, the high Rct values are usually related to lower corroding sample. The value of 

double layer capacitance Cdl decreases in the order: 

ADI 325°C > ADI 375°C 

 

This attributed to extend in thickness of electrical double layer [4, 11]. 

 

Spectroscopic analysis 

SEM analysis was used to define the morphology of surface attack on ADI samples. The scanning 

electron microscope images were recorded in Figs (6, 7) to establish the interaction of different 

components of the metal molecules with the metal surface after exposure in 3.5% NaCl. Figure (6) shows 

SEM micrographs of ADI samples before polarization test. The final microstructure of ADI casting is 

determined by the austempering stage, in which, two stage phase transformation reactions take place [4]. 

In the first stage, austenite (γ) decomposes into ferrite (α) and high carbon content or untransformed 

austenite (γHC): 

 

Stage I Reaction:   γC→ α + γHC   (toughening) 

In the second stage, the high carbon austenite (γHC) decomposes into ferrite (α) and ɛ-carbide. The 

presence of ɛ-carbide is due to the too long holding time at austempering temperature and must be 

avoided because it results in the embrittlement of the matrix:  

 

Stage II Reaction: γHC → α + ɛ-carbide (embrittlement) [4, 11]. 

Samples Rct (Kohm.cm
2
) Cdl (µF/Cm

2
) 

ADI 325°C 401.5 216.8 

ADI 375°C 686.4 23.18 
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Figure (6) indicates that during holding at isothermal temperatures of 325°C or 375°C, the high 

temperature austenite is discomposed in ausferrite.  The ausferritic structure is a mixture of ferrite and 

high carbon austenite with an acicular morphology. It can be appreciated that as the heating temperature 

increases, the volume percent of ausferrite increases. The increase on the amount of ausferrite is 

associated to a decrease of volume percent of pro-eutectoid ferrite in the matrix. 

 

Figure (7) shows SEM micrographs of ADI samples after polarization test. The image reveals the attack 

around the graphite nodules, which was attributed to the chlorides. This attack could be associated with 

the silicon content in this material, which increased its susceptibility to localized corrosion in the presence 

of chlorides. Chlorides are known to be a strong agent of corrosion, which usually attack metallic 

materials by forming pits. Closer examination of this image shows small holes (pits) around graphite and 

interdendritic carbides [12]. 

 

Figure (8) represent the EDAX spectra of ADI in 3.5% NaCl solution. The results of XRAD examination 

suggest that the iron oxide is the main component of corrosion products. 

 

Conclusions:- 
The present study aims to show the effect of austempering heat treatment on the electrochemical behavior 

and microstructure of cast iron. Electrochemical techniques showed that: 

1. Heat treatment is very powerful tool for improving the corrosion resistance. Because the 

microstructure of the heat treated samples was austempered ferrite. 

2. The corrosion resistance of ADI heat treated at (375°C) is higher than ADI heat treated at (325°C) 

because the microstructural modifications induced by austempering at 375°C which results to a 

greater coarsening of the austenite grain and broad ferrite needles. 

3. 3-At low temperatures of austempering (325°C), the greater overcooling leads to highly refined 

ausferrite. 

4. 4-At high temperatures of austempering (375°C), the overcooling falls and the diffusivity of carbon 

increases which it helps to the growth of needles of ferrite and high carbon austenite. It results in a 

coarse ausferrite structure. 
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Figure 1:-Heat treatment diagram of ductile iron 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 2:-Potential / Time curve of ADI electrodes in 3.5% NaCl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (3): Anodic and cathodic Potentiodynamic polarization curves for ADI electrodes in 3.5% NaCl solution 

 

 

Fig (3): Anodic and cathodic Potentiodynamic polarization curves for ADI electrodes in 3.5% NaCl solution 
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Fig 4:-Suggested equivalent circuit model for the studied system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5:-Nyquist plot for ADI electrodes in 3.5% NaCl solution 

 

Fig 6:-SEM micrograph for ADI electrode (a, b) 325°C and 375°C before immersion in 3.5% NaCl solution. 
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Fig 7:-SEM micrograph for ADI electrode (a, b) 325°C and 375°C after immersion in 3.5% NaCl solution. 

 

a)  

 

b) 

 

Fig 8:-EDAX spectra for ADI electrodes (a, b) 325°C and 375°C in 3.5% NaCl solution 
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