
Disclaimer: This white paper represents our research and thinking at a specific point in
time. The landscape continues to evolve rapidly, and the authors recognize that the
recommendations put forth would reflect more current trends and developments if

written at the present time.

Digital Library Systems and UCLA: An Environmental Scan with Suggestions for Near-
and Medium-Term Technology Strategies and User Stories / Functional Requirements

UCLA Digital Library Program

Pete Broadwell, Academic Projects Developer
Dawn Childress, Librarian for Digital Collections and Scholarship

August 2017
Updated: February 2018

Executive summary 3

Background 4
Current status 4
Challenge 6

Methods 7
Internal focus groups and discussions 7
External interviews 7
Developing a common terminology 8
Scope of the systems under consideration 8
Systems not considered in this study 9

Results 11
Findings from DLF and Code4Lib 11
Findings from local focus groups 12
Findings from discussions with end users 14
Findings from interviews with peer institutions 14
Explanations of paradigms/models shorthand 16

Discussion/analysis 18
The Contenders 24

Conclusions 27
Potential scenarios 28

1 of 45

Recommended course of action 31
Some further considerations 32

User Stories / Functional Requirements 35

User Stories 36
Digital Library Collections (and Digital Collections Lab) 36

Story: As a DLP Staff member, I want to... 36
Story: As a Subject Librarian or Curator, I want to: 37
Story: As a DLP Partner, I want to: 37
Story: As an end user, I want to… 38
Story: As a scholar, I want to… 38
Story: As an instructor, I want to… 39

Digital Stacks 39
Story: As a Subject Librarian or Curator, I want to: 39
Story: As an end user, I want to: 39

A/V Preservation (still in progress) 39
Story: As an A/V Preservation Librarian, I want to: 40

Requirements 41
Architecture 41
Checks/preservation (these are just examples - I don’t really know) 41

Appendices 42
Appendix 1: User Stories / Functional Requirements 42
Appendix 2: DL Services View Diagram (work in progress) 42
Appendix 3: Glossary of terms 42
Appendix 4: Focus group and interview questions 45

2 of 45

Executive summary

This document presents the motivations, methods, and results of an environmental
scan of digital library systems conducted by the UCLA Digital Library Program (DLP)
from November 2016 through July 2017. Potential courses of action for the UCLA
DLP are recommended in the concluding section. The authors arrived at these
recommendations through a careful balancing of considerations such as current
and anticipated staffing models and resources, access to a community of practice
and support for new system development, and the needs of the UCLA Library and
its partners. In brief, the report recommends short-term use of external systems
like CDL’s Nuxeo/Calisphere to manage urgent collection publishing needs while the
DLP simultaneously evaluates the Samvera (formerly Hydra) environment and
eventually adopts and adapts the portions of the ecosystem that are crucial to our
future needs.

3 of 45

Background
Software migration is a fact of life for institutions that manage digital information,
and this is doubly the case for digital library systems that seek to support an
evolving range of digital assets and user access modes. It is certainly also true that
the process of migration can be made much more streamlined -- and ideally even
managed via upgrades of existing systems -- with the judicious selection of a
well-architected set of technologies, which (through planning, gradual
implementation, and a probably a bit of luck) turns out to be a good fit for the near-
and medium-term goals of a memory institution.

This report presents the findings of an environmental scan of the current state of
technologies in digital libraries and related fields, with the goal of helping to guide
the UCLA Digital Library’s near- and medium-term choices of software systems for
digital asset management and related tasks. This work was conducted via focus
group sessions with stakeholders at UCLA, interviews with technicians and users at
peer institutions, attendance at relevant conferences, consultations with vendors
and their product documentation, and participation in online forums.

Current status

The UCLA Digital Library currently uses a variety of software systems to support
management and access to digital assets in its numerous collections. These all
provide some degree of functionality, but they are not in whole or in part
considered entirely acceptable solutions for the future of the digital library “stack”
beyond the immediate near term:

● DLCS: the oldest software component and arguably the one that is still most
effective at managing the entire pipeline from ingest and description through
publication is a homegrown system known as the Digital Library Collection
System, which is built upon an Oracle SQL database and a Java-based server
infrastructure. Nevertheless, its server environment and user interface are in
dire need of an overhaul, and its lack of modularity and open source
community support means that adding new features (data access APIs, new
storage systems, advanced search indices) would be prohibitively difficult.

● Islandora 1.0 (Fedora + Drupal): in contrast to DLCS, this technology is open
source, community supported, and built on fairly advanced technology for its
data repository (Fedora), index (Solr), and user interface (the PHP-based
Drupal content management system). Islandora also has a modular design
that is intended to facilitate the addition of new data types and API features

4 of 45

as needed. Yet Islandora 1.0 has proved to be an unsatisfactory “full-stack”
solution for the UCLA DLP. Many of these reasons are outlined in the “UCLA
Position Paper on Islandora” section of the November 2016 UC Libraries
DAMS Technology Report; they include the unsatisfactory level of integration
between Islandora and the mainstream Drupal 7 codebase and other factors
which made it very difficult for the library to apply its pre-existing expertise in
hosting Drupal sites. Some UCLA Digital Library collections are now hosted
on the Islandora “stack,” or at least portions of it (most commonly Drupal and
Solr), but there is no plan to consider either the now-legacy Islandora 1.0 or
future iterations of the stack as viable options for the future of the UCLA DLP.

● Islandora CLAW (Fedora 4 + Drupal 8): The next version of Islandora, 1

which like Hyrax and Hyku from the Samvera community is at an “almost
ready” stage of development, represents a substantial overhaul and update:
it will be compatible with Fedora 4, use Drupal 8, and promises a variety of
other desirable features, such as JSON-LD integration and support for
microservices. Such promises, however, are not likely to provide sufficient
incentive for UCLA to consider the platform seriously. Adopting Drupal 8
would involve learning and supporting an entirely new PHP codebase. More
significantly, the Islandora community is mostly limited to Northeastern US
and Canadian universities and one vendor, and our experiences from
working with this community in the past have not given us confidence that
they will be able to support our diverse and evolving set of use cases into the
future.

● Nuxeo/Calisphere: Recently, UCLA Digital Library collections have been
published in the California Digital Library’s Calisphere access system (which is
also a data source for the Digital Public Library of America) via CDL’s central
Nuxeo digital asset management system. The viability of this arrangement
for future collections is discussed below.

● DSpace: The UCLA Digital Library is currently in the process of implementing
a new digital collection via the DSpace 6 open-source repository (which is
most commonly built on a “stack” of a PostgreSQL database, Solr index, and
Java/Javascript user interface), and is also developing a pilot research data
repository based on the same software. Like Nuxeo, we consider DSpace to
constitute a potential member of a suite of technologies that, although each
individual component is not fully sufficient on its own, may in aggregate
serve the needs of the UCLA DLP in the short to medium term (see below).

1 http://islandora.ca/CLAW

5 of 45

http://islandora.ca/CLAW

Challenge

This environmental scan is intended to aid in the selection of a digital library system
(or systems) that the UCLA Digital Library Program can begin to focus upon in the
second half of 2017. It is hoped that the software environment developed through
this effort will fulfill the unique needs of the UCLA DLP and its constituents in 2018
and later.

The work done for this scan involves a consideration of several digital library
systems, with a focus on workflows and other functional needs related to
describing and serving digital library assets.

6 of 45

Methods
In exploring the current digital library landscape, the goals of this environmental
scan are to: 1) gain a better understanding of our local digital library needs and
contexts; 2) explore the systems in use or in development at other institutions and
how these meet the needs of their local contexts. The first goal was addressed by
conducting internal focus group discussions within the UCLA library and
conversations with select end users, the results of which were distilled into
functional requirements and user stories. Efforts towards the second goal
progressed via active and passive observation of online digital library-related sites
and discussion forums, participation at disciplinary conferences, and remote
interviews with key staff at peer institutions.

Internal focus groups and discussions

Each internal focus group consisted of 3-7 participants, grouped by their
relationship to digital library workflows:

● Group 1: Stakeholders who build, manage, and maintain digital library
systems at UCLA (Digital Library staff)

● Group 2: Stakeholders who interact directly with digital library systems and
workflows (metadata, special collections, CCDT)

● Group 3: Stakeholders who manage systems or workflows that connect to
those of the digital library (preservation, data services, digitization)

A standard set of questions was developed for the focus groups and the external
interviews mentioned below, which were then tailored for each session, giving
priority to the questions that participants were most keen to address.

Additional informal interviews and discussions were conducted with a variety of
end users (students, scholars, and instructors) during the course of this study;
some of whom were selected and interviewed, others were encountered during the
course of our daily work.

External interviews

The 2016 DLF Forum in Milwaukee coincided with the start of this study and served
as an opportunity to explore the current digital library environment beyond UCLA
through informal conversations with attendees from other institutions. These
findings were supplemented by information gathered via the Code4Lib forum
archives. Both venues helped to identify new or developing solutions that UCLA
might evaluate for the next iteration of its digital library system. After surveying the

7 of 45

landscape, interviews were conducted with individuals and small groups regarding
existing or in-development systems and workflows. The 9 interviews representing 8
institutions included participants with positions ranging from developers and data
curators to metadata specialists and managers.

Developing a common terminology

During the first focus group, a brief discussion of terms helped to uncover some of
the more loaded terminology and establish a common set of terms and their usage
in this study. For example, the term “repository” can be interpreted differently in
different contexts and might best be avoided except when used to describe a type
of service (i.e., research data repository or institutional repository). Instead, using
terms that more clearly indicate their function within the stack, such as asset
management system or user interface, is preferred. See Appendix 3 for the
annotated list of terms.

Scope of the systems under consideration

It should also be noted that the scope of this study is primarily focused on the
digital asset management layer (DAMS) and to some extent any primary publishing
layers (i.e., the UCLA Digital Library Collection System’s end- user public interface).
This is, in part, based on the argument that the activities around managing,
publishing, and preserving assets are not optimally served by the same systems
and that these activities should be decoupled, yet interoperable. The study’s focus
on the DAMS layer reflects the Digital Library’s view that the DAMS is the system’s
“core” and should be the starting point for building out publishing, preservation,
and other services. The final recommendations, while focused on the DAMS, take
into consideration and are informed by preservation and publishing needs as
identified in the focus groups and interviews.

8 of 45

Figure 1: Schematic representations of the primary functional components of a digital library
software “stack” and the main flows of information exchange. The version on the right divides the
largely abstract sections from the high-level visualization on the left into more discrete components.
Note that this study is primarily concerned with the components within the dashed red box on the
right: the software modules most closely associated with digital asset management, rather than
preservation or publishing of those assets.

Systems not considered in this study

A few prominent software systems for digital asset management and related
activities were not included in this environmental scan as viable options for the
future of the UCLA Digital Library program. Chief among these is the Islandora
platform, which was excluded for consideration for the reasons outlined in the
Background section.

We also have not actively pursued OCLC’s CONTENTdm system, despite its
considerable level of adoption in the digital library field. We did so largely for the
same reasons that we are skeptical of the suitability of the other proprietary,
vendor-sourced systems considered in the Discussion section: CONTENTdm’s “black
box” software design and hosted “software-as-a-service” model make customization
largely impossible, and although CONTENTdm provides some modularity via APIs
that allow the use of a range of publishing front-ends, its large feature “footprint” in
the DAMS portion of the digital library stack still severely limits the amount of
modularization and customization that would be possible. These factors make

9 of 45

CONTENTdm a poor fit for the extensive range of collection types and paradigms
the UCLA Digital Library must support.

10 of 45

Results

Findings from DLF and Code4Lib

Information gathered from attendance at the 2016 DLF Forum and through the
Code4Lib forum archives revealed that UCLA is one among many institutions who
are less than satisfied with the options that are currently available for digital library
solutions. Most solutions fit into one of two categories: 1) closed systems that are
convenient and relatively easy to adopt, but that fall short when it comes to desired
flexibility, functionality, and extensibility -- especially related to emerging
technologies and features; and 2) modular, extensible systems with the potential
for implementing the latest advances in digital libraries, but that require extensive
infrastructure and adoption of new programming languages and environments.
With the exception of a few leaders in the field, all of the individuals interviewed at
DLF stated that they are eager to review this study’s findings in the hopes that it will
illuminate a path forward at their institutions, as well. Likewise, while a few digital
library solutions were discovered via the Code4Lib discussion list archives, most
conversations were unanswered queries or discussions around the same few
solutions. In reality, there are few “ready” options, rather “almost-there” solutions
that some are investing in and that many hope will be viable in the near future.

Here is the short list of specifics that were found:

● The distributed development model of the Samvera (formerly, Hydra)
ecosystem seems to have the most momentum in adoption and
development. There is a lot of anticipation around the two current Samvera
stacks: Hyrax and Hyku.

● Islandora adoption is slower and some are dissatisfied with their
implementation; in most cases the pain point seems to be Drupal.

● At least 1 institution has adopted MongoDB for a digital library project (for
early printed science books).

● Reed College is developing their own system using Rails + AngularJS. 2

● Medusa, developed by UI Urbana-Champaign, is a Ruby on Rails + Postgres
DB system based on the Archivematica workflow, with a focus on asset life
cycles. Medusa is used for the Illinois Data Bank and is being adapted for
digital collections. 3

2 https://rdc.reed.edu
3 https://digital.library.illinois.edu

11 of 45

https://rdc.reed.edu/
https://digital.library.illinois.edu/

● Michigan is developing a preservation workflow for ArchivesSpace >
Archivematica > DSpace. 4

Findings from local focus groups

The local focus group discussions were quite productive and led to a long list of
features and use cases, briefly summarized here. The complete list of features can
be found in the User Stories/Functional Requirements section at the end of this
report, with the DAMS-related features summarized in the DAMS Feature Matrix in
the “Discussion” section below.

UCLA’s immediate and near-future use cases and projects extend beyond the
Library Digital Collections which are currently managed and published via DLCS.
UCLA’s Digital Collections include both public and UCLA-restricted content, primarily
from Library Special Collections and other internal library locations. Other
collections that the new DL system would support include the Center for Oral
History Research collections and partner library collections from the Clark Library,
Chicano Studies Research Center, and the Bunche Center for African-American
Studies. Ideally, the new DL stack would also accommodate the Library’s
grant-funded projects, like the International Digital Ephemera Project, the Syriac
and Arabic Manuscripts project, VSim, and PRRLA (the Pacific Rim Research
Libraries Alliance meta-catalog). Finally, there is much interest in a “Digital Stacks”
collection for materials like PDFs and media files that are acquired by curators, but
are not hosted by vendors or publishers. These often do not fit into the digital
library collections and have viewing and download restrictions that are not met by
current digital library access policies and functions.

Ideally, one content-agnostic DAMS could be used as the core infrastructure for
each of these use cases.

In addition to the use cases outlined above, a list of desired features emerged from
the focus groups around asset management, user interfaces, and other layers.
Here, the report outlines and summarizes these features.

Asset management features tended to be the focus of internal focus groups 2 and
3. These are divided into three categories: checks and preservation, asset and
metadata workflows, and other features.

4 http://journal.code4lib.org/articles/12105

12 of 45

http://journal.code4lib.org/articles/12105

● Checks and preservation: There was a lot of interest in more robust features
around file integrity and audits of storage and changes. Any future DAMS
should provide fixity, logging, and reports. Including metadata related to
preservation and conservation in addition to descriptive metadata was also
an important feature mentioned in 2 of the focus groups. Finally, automated
or facilitated deposit to a preservation layer was identified as essential by all
groups.

● Workflows: The ability to bulk ingest both assets and metadata without
intervention from a programmer was at the top of the workflows list. Users
of the DAMS also called for more options when editing and exporting
metadata for internal use, such at batch editing and export format options.
An easy and clear system for rights management tied to access as well as
integration of authority reconciliation services were also popular features
from DAMS users.

● Other features: It was noted by many that DLCS currently supports a rich data
model, and that retaining this is essential. This seems in part to be a reaction
to the rather generic data model used in CDL’s instance of Nuxeo. Other
features noted were more granular user roles, embargos and expiration
dates, and restrictions by location, in addition to Shibboleth/single sign-on
capabilities.

Front-end related features were introduced primarily by focus group 1, with some
echoed in group 2. The ability of users to obtain collections metadata for research
was high on everyone’s list, as was user download of images in a variety of formats
(à la Flicker) and embedding of DL content into other platforms (CCLE). Improved
search/browse and viewing options (page-turning, gallery views, organization by
box/folder) were discussed in group 2. Finally, user-created content in the form of
self-deposit (IR, data repository) and
crowd-sourcing of annotations and metadata was identified as an important future
direction by group 1.

Other layers proposed by focus groups include supporting harvest of collections
via OAI-PMH and/or ResourceSync; integration with federated collections such as
DPLA, layer-agnostic APIs for public consumption of collections; and GIS and data
visualization layers for exploring collections. There was also a bit of discussion
around relating, linking, and connecting to other services, but few concrete
examples or methods were offered. This suggests that we need more research into
the use cases and methods at other institutions and perhaps a better
understanding of what services would be applicable in the local context.

13 of 45

Findings from discussions with end users

Many of the front-end features mentioned by the focus groups were echoed by the
students and faculty, if not always in the same terms. The need for more
sophisticated search/browse options was at the top of the list, followed by more
viewing options for various formats (book readers, gallery views for images), For
scholars and instructors, sharing options such as downloading or embedding
content (images, metadata, text files, etc.) are at the top of the list; making DL
content usable in instructional materials and for research and various scholarly
projects. Essentially, the ability to reuse Digital Library content in new contexts
would be a boon for many types of users. That being said, most scholars interested
in using collections data for their research prefer simple CSV files and bulk
downloads over less-accessible APIs and institution- or project-specific
programming interfaces.

It is important to note here that the UCLA Library and the Digital Library are
themselves end users of this service. Many of the features desired are for our own
ends, so that we might do better work more efficiently, and to develop richer digital
collections for our users. For example, developing technologies like APIs,
ResourceSync, IIIF, etc. to interface with our digital collections allows the DL to
more easily build out new projects and platforms without creating new core
infrastructures. Of course this has the added benefit of opening our collections to
communities outside of the library, allowing them to construct their own projects
and co-locate our collections with those of other institutions. Likewise, developing
programming interfaces that allow users to explore our collections as data,
annotate items, or transcribe texts serves our own needs as much as it might those
of our users, if not more so.

For a more detailed look at these findings, see the User Stories/Functional
Requirements section at the end of this report.

Findings from interviews with peer institutions

We conducted interviews with representatives from the peer institutions listed in
Table 1, seeking whenever possible to speak to library administrators, developers,
and users/stakeholders (e.g., digital library librarians and metadata specialists). See
Appendix 4 for a list of the main topics discussed. Note that the majority of the
institutions in UCLA’s general geographical vicinity seem to be trending towards
Samvera-based DAMS solutions. North Texas and the Getty are to some degree
outliers on either side: UNT has a homegrown solution that is managed by a single

14 of 45

developer, whereas the Getty use a dizzying array of commercial, open-source, and
homegrown technologies, which requires a very substantial staff to manage.The
rest of the institutions fall somewhere in the middle (as would UCLA, most likely).

Institution Current
technologies

Anticipated
technologies in
<=5 years

Notable
paradigms (org,
development,
content
philosophy)

University of
California, San
Diego

Hydra/Rails front-
end, homegrown
back-end
repository
(supports Hydra 3
APIs)

Samvera family
(want to adopt
Fedora 4
repository, push
linked data/RDF
capabilities)

Content-agnostic
Use sitemaps,
Rails micro-data
for APIs
Use Excel sheets
to manage ingest

Getty
Museum/Getty
Research Institute

ExLibris suite:
Alma (catalog)
Primo (search)
Rosetta (pres-
ervation). Also,
lots of other
software!

Plan to build new
IIIF-based front
end, move EADs
out of
ArchivesSpace,
adopt linked-data
systems like
Arches

Incredibly
complicated
software
environment,
multiple vendors +
in-house dev.
Requires a lot of
staff.

California Digital
Library

Calisphere (pub)
Nuxeo (DAMS)
Merritt (storage)

Samvera family,
probably

Nuxeo=DAMS
eScholarship=repo
Single main
back-end
developer

University of North
Texas

Aubrey (access)
Coda
(preservation)
Both homegrown
Python/Django
apps; Aubrey uses
Solr,
Coda
ResourceSync!

Likely the same
homegrown
Python/Django
system, barring a
major shift

Content-agnostic
Single developer
Mediated upload
only
Support
harvesting APIs
but LOD skeptic

University of None Samvera family LOD proponent

15 of 45

California, Davis (emphasis on
“in-a-box”
solutions, e.g.,
Hyku)

Stanford University Hydra family:
Blacklight,
SearchWorks,
Hydrus (IR),
Fedora
(library website
runs on Drupal
though)

Samvera family:
replace Hydrus
with Hyrax --
supports
self-deposit,
one-step approval

Blacklight Search-
Works provides
the “union catalog”
of collections via
Solr

University of Illinois
at
Urbana-Champaign

Ruby on Rails +
Postgres (Medusa)
for coll registry
and DL front-end,
storage/preservati
on NOT Hydra, file
system-based,
used RabbitMQ
for coord.

Same. They have
an IR in DSpace
that they want to
migrate to
Medusa, and aso
plan to migrate
their special
collections from
CONTENTdm to
Medusa

Devs revolted
when they tried to
adopt Hydra (esp.
Fedora); Medusa
was built for
Illinois Data
Repository but
also is used (with a
different
front-end) for DL
collections

Duke University Fedora/Hydra all
the way for DL
colls! Still using
Fedora 3, though
-- ran into
problems with
Fedora 4
migration.

Planning to adopt
Hyrax/Samvera
and move to
Fedora 4
eventually.

Previously used
in-house
Python/Django
platform; prefer
Samvera’s
integration with
preservation layer

Table 1

Explanations of paradigms/models shorthand

Hydra vs. Samvera: To disambiguate the two, we are using “Hydra” to refer to
Hydra 3 and earlier versions; we are using “Samvera” to refer to the current
version, previously known as Hydra 4.

Content-agnostic: Everything in the main DL/DAMS infrastructure is just a “thing,”
meaning that publications in the institutional repository, audio and video
collections, user data in the research data repository, etc. all can be managed by

16 of 45

the same system.

Single developer: DAMS development and sometimes the production ingest
process has a “truck number” of 1 -- only one person really knows how it all works.
This seems to be an evolution of the “database admin” model for back-end storage
management, where a single, valuable DB admin keeps the system running, and
shares the same benefits and drawbacks.

17 of 45

Discussion/analysis

We evaluated the options discussed below through focus groups, interviews, and
research. Here we attempt to outline relevant features, level of modularity, relative
ease of adoption, community support, and the perceived sustainability for each. We
do not include scalability as a major dimension of our analysis because it has too
many aspects (e.g., storage scalability vs. collection processing scalability) and is
difficult to generalize, as one institution’s “scalable” may be another’s “hopelessly
limited.” The User Stories/Functional Requirements appendix therefore contains
the most pertinent considerations of the “scalability” of any given system for the
UCLA DLP.

Samvera (formerly Hydra) family (Fedora 4 repository + Samvera head on top).
The two current Samvera stacks are Hyrax and Hyku. Hyrax is the standard
Samvera stack and is modular, customizable, and extensible. Hyku is built on Hyrax
and represents the “in-a-box” option that is meant to be used as-is. As we anticipate
that our use cases will require significant customization, we are primarily
considering Hyrax.

18 of 45

Figure 2: A “big picture” view of the relationship between “legacy” Hydra (based on Fedora 3) and the
Samvera implementations (Hyku and Hyrax) being built on Fedora 4.

● Features: Hyrax would give us most of the asset management features that
we want, such as fixity, audits, and event logging; asset and metadata
organization; bulk asset and metadata ingest; and granular user roles.

● Modularity: We could potentially use Hyrax as our all-in-one DAMS. The Hyrax
system is built to be quite modular and to support multiple ingest and
publishing layers and APIs (“heads”).

● Ease of adoption: Programmers would need to learn Ruby/Rails, need to
administer Fedora, etc. Most of our interviewees strongly asserted that
learning the new languages/frameworks was well worth the effort in terms of
the benefits they offer. A greater source of potential “adoption fatigue” was
the tendency for large multi-stakeholder projects like this to churn and drift,
as arguably has happened with the development of the Fedora 4 spec, PCDM
adoption, and the debate between whether to adopt the Curation Concerns
or Sufia codebases for the DAMS layer.

19 of 45

● Community support: Lots of peer institutions are now building their digital
library systems on parts of the Samvera stack, and more are planning to do
so in the future, especially among nearby institutions on the west coast. 5

Open-source practices and philosophies are foundational to the ecosystem.
● Sustainability: Given the number of institutions focusing on the Samvera

family for the immediate future as well as the ~5-year horizon, the outlook
for long-term support seems the strongest for Samvera among all
open-source solutions.

Nuxeo/Calisphere through the California Digital Library
Nuxeo is an open-source (largely Java-based), commercially supported digital asset
management system that serves as the repository and asset management layer for
Calisphere, the UC’s central digital library platform hosted by CDL. Nuxeo is the
staff interface for creating collections and preparing them for publication while
Calisphere is the web application that is the public interface to UC’s digital
collections.

● Features: Nuxeo provides basic asset management, but CDL’s instance has a
limited data model and bulk ingest only supports simple objects at the
moment. Nuxeo would likely not be a good candidate for an all-in-one DAMS,
but could potentially meet the needs of digital library collections and special
projects with some effort. Many of the asset management/preservation
features that we want may be available, but are only available by request to
CDL at this time. Restricted access to the database and other services within
the Nuxeo/Calisphere ecosystem will be a pain-point.

● Modularity: Nuxeo/Calisphere embraces the modular approach and there are
several ways that UCLA could make use of Nuxeo: 1) use CDL’s instance of
Nuxeo, but build own front-end(s) and push to own Solr; 2) host own
instance of Nuxeo and push to Calisphere and own front-end(s); 3) no Nuxeo,
but push to Calisphere from whatever new system is developed. However,
the modularity of Nuxeo does not compare to Hyrax/Hyku.

● Ease of adoption: The DL has already adopted Nuxeo/Calisphere for
publishing publicly-accessible collections. Long-term adoption would require:
boosting CDL’s storage and server capacity to support the increased system
load; developing custom front-ends for harvesting UCLA-only collections and
assets for special projects (IDEP, Syriac/Arabic); negotiating with CDL for

5 Consider the list of Samvera “Partners and Implementations” from the wiki:
https://wiki.duraspace.org/display/samvera/Partners+and+Implementations
compared to the more generic list of “Samvera Partners” on the official site: https://samvera.org/.

20 of 45

https://wiki.duraspace.org/display/samvera/Partners+and+Implementations
https://samvera.org/

more access to the underlying database and systems; working with CDL to
expand the data model to meet UCLA needs.

● Community support: Although the Nuxeo software is nominally open-source
(https://github.com/nuxeo), the codebase is quite complex, and support
would come primarily from the Nuxeo corporation and from CDL. CDL would
likely have limited capacity to support active development in areas they are
not pursuing.

● Sustainability: It is not clear now long CDL will stay with Nuxeo. It is very
possible that they will opt to move to a Samvera solution in a few years.
There are no other digital libraries using Nuxeo as far as we know.

DSpace
Originally a joint venture between HP Labs and MIT, DSpace is a widely used
open-source repository system that is considered especially well suited to providing
access to institutional publications. Modern installations are usually based upon a
PostgreSQL database, Solr index, and Java server applications, including interfaces
based on XSLT or JSP. Future iterations of DSpace will be based around a UI built on
the Angular2 Javascript library, which is a significant change to the codebase.

● Features: As described above, DSpace’s features are tailored to support
institutional repositories of publications, providing a fairly flexible data model
and exposure of metadata via OAI-PMH. Many of the other features we will
want in the next several years, however, would have to be provided by
customized modules adopted from open-source projects or written from
scratch (e.g., custom metadata ingest workflows, support for complex objects
and multimedia).

● Modularity: DSpace has a fairly monolithic structure -- certain components
(e.g., the underlying database and the front-end UI) can be swapped out, but
it is generally considered an “all-in-one” solution for the problems it is meant
to address. Nevertheless, its open-source nature means that many plugins
and expansion modules are available for adoption, although using them is
often not “plug-and-play.”

● Ease of adoption: Medium -- it’s not a “turnkey” system, but also fairly easy to
stand up. The codebase and underlying technologies: Java, SQL, Javascript,
XSLT, OAI-PMH -- are fairly mainstream if a bit old-school.

● Community support: There is a large and still quite vital community of
institutional users of DSpace who contribute modules, documentation, and
are generally responsive to requests for troubleshooting suggestions.

● Sustainability: As mentioned above, the upgrade path from DSpace 6 to 7,
and particularly the rebasing of the interface technologies on Angular2 may

21 of 45

https://github.com/nuxeo

prove problematic and a source of user attrition in the long term (though it
might play into the DL’s development of greater Angular2 expertise). Yet the
installed base of DSpace 6 and below remains quite large, and the underlying
technologies are likely to be quite long-lived.

Medusa
Medusa is a home-grown digital library system developed at the University of
Illinois at Urbana-Champaign libraries, using Ruby on Rails, Postgres, and a file
system-based preservation layer as its main components. See documentation (a bit
outdated) at https://wiki.duraspace.org/display/hydra/Medusa, also Github activity
at https://github.com/medusa-project. They briefly considered basing the
repository on Samvera and especially Fedora, but the developers “revolted” due to
the inflexible data model and general bugginess of Fedora 4. The Illinois DL team
found it quite liberating to ditch Samvera and build their own system, which they
said they were able to stand up in just a few weeks.

● Features: Medusa is based on a home-grown preservation repository layer
that uses the file system as a main storage layer (with backup via NCSA
services and Amazon Glacier) and stores metadata in a Postgres database,
supporting complex, hierarchical data models. Additional services are built
on top of this layer, using a Ruby-on-Rails-based workflow management
system loosely based on the Archivematica workflows, a Solr index, selective
RDF triplestore, etc. They also use a homegrown IIIF server, Cantaloupe.

● Modularity: Medusa’s components are connected into a truly distributed
system, coordinated via RabbitMQ messages.

● Ease of adoption: Given that Medusa’s design is to some degree tailored to
the hardware and software environment at UIUC, it likely would not be easy
for us to adopt the entire system. But Medusa’s basic model -- file system +
backup services for object storage, Postgres/Solr for metadata and searching,
Rails for the front-end, distributed design -- is a promising one for a
home-grown system.

● Community support: Although Medusa benefits from being built on
open-source, community-supported components, UIUC is the only institution
that uses the full stack. If UCLA were to join them, an institutional community
of two would be an awkward size.

● Sustainability: Lately they have begun to experience some age-related
creakiness in the system and are dealing with the consequences of decisions
they would have made differently now (especially regarding
access/authentication), but it’s not clear this is any more of a challenge to

22 of 45

https://wiki.duraspace.org/display/hydra/Medusa
https://github.com/medusa-project

sustainability than if they were using a vendor- or wider
community-supported system.

Quartett
Quartett is a commercial digital asset publishing solution from vendor Adam
Matthew, currently in development. The Library purchases many databases from
Adam Matthew and therefore the relationship with the vendor led to our being
asked to consider this product. There is at present no release or documentation
that could be used to evaluate the product. The vendor shared a few wireframes
and outlined a few specifics: Quartett will be a hosted solution with a hefty price
tag on a per-project basis. Pricing will be tiered, based on total size of assets and
chosen publishing features (maps, visualizations, etc.). There are currently no plans
to support APIs, Fedora connectors, or other solutions that would allow integration
with other systems or layers. Development plans include some very user-friendly
features at the asset management layer and for creating exhibits; however, the
proprietary, block-box approach does not meet the modular and extensible system
requirements of UCLA’s Digital Library. This report does not recommend further
evaluation of Quartett as a digital library solution. Perhaps, down the road, this
could be a viable front-end for a grant-funded boutique project that sits atop our
digital library stack, but that remains to be seen.

Libnova
Libnova is run by a company out of Spain. One of their representatives approached
the DL Head at CNI to review their products and services. Libnova provides a suite
of tools and services to support digitization workflows, focusing on management of
digitization projects and image processing. Libnova does have a modest publishing
solution, LIMB Gallery, with search and browse, hi-res image viewing, page-turning,
and OAI-PMH capabilities, but like Quartett, it is a proprietary, black-box solution
that will not meet the requirements of the UCLA Digital Library. Libnova’s tools
seem to be more suited to the digitization activities that happen in SRLF.
http://www.libnova.com/en/systems-for-digitization-and-diffusion/

DLCS 2.0 (roll-your-own)
A final option is for UCLA to build its own digital library system. The current system
has served the program well for a decade and institutions like the University of
North Texas and smaller schools like Reed College have had success with this
approach. More discussion of the potential for a roll-your-own version is discussed
below in the “Conclusions” section below.

23 of 45

http://www.libnova.com/en/systems-for-digitization-and-diffusion/

The Contenders

Of these systems, only three seem to be potentially viable solutions in the current
landscape: Samvera’s Hyrax, Nuxeo (the DAMS serving Calisphere), and a
from-scratch “DLCS 2.0”. Below is a Feature Matrix outlining the DAMS-related
features that came out of the focus groups and the potential for each of these
systems to meet local needs. A possible DLCS 2.0 (roll-our-own) has been left out 6

since the potential is infinite. We have also noted features that we would likely
develop in-house in addition to adoption of other systems; in the case of Hyrax
these could be contributed back to the community as modules or “heads.”

DAMS Feature Matrix

Asset Management
(checks/preservation)

Hyrax Nux/Cal Notes

Fixity ✓* -- *via Fedora

Storage audits/reports ✓* ** *PREMIS event service in Fedora:
https://wiki.duraspace.org/display/FF/Design+-+PR
EMIS+Event+Service
**Request from CDL?

Status (workflow tracking) ✓+ ✓- Hyrax more granular than Nuxeo

Change log/audit trail ✓ ?** **Request from CDL?

Deposit to preservation
layer

✓ ✓ Both options are ready for this; we might
potentially develop our own feature in-house

Asset Management
(workflows)

Hyrax Nux/Cal Notes

Bulk ingest of assets
(recursive) and metadata

✓+ * ✓- ** *Recursive folder ingest enabled
**No recursive or complex batch ingest
With either, we will likely need to develop scripts
or tools for our needs, but this might be easier
with Hyrax

Form for manual entry of
metadata

✓ ✓ ** **Nuxeo has spreadsheet mode

6 For more information on features available in the Samvera (Hydra) ecosystem, see the Sufia Feature Matrix
(https://github.com/projecthydra/sufia/wiki/Feature-matrix) and the LDCX lightning talks
(https://drive.google.com/drive/folders/0B20rJmC1X-AmLWNaXzZMU0cxb2s)

24 of 45

https://wiki.duraspace.org/display/FF/Design+-+PREMIS+Event+Service
https://wiki.duraspace.org/display/FF/Design+-+PREMIS+Event+Service
https://github.com/projecthydra/sufia/wiki/Feature-matrix
https://drive.google.com/drive/folders/0B20rJmC1X-AmLWNaXzZMU0cxb2s

Export metadata as csv or
other structured formats
for internal use

 -- Need more research on Hyrax

Rights management tied
to publication/access

✓ -- ** **Calisphere = public items only. CDL’s Nux has
access field that we could use if developing our
own front-end

Authority
auto-fill/reconciliation
service built in / LOD
(Questioning Authority)

✓ * ** *See Cornell presentation:
https://docs.google.com/presentation/d/1L3rhAtH
UqyxS2wo_cBo5Ny1iAx9BiBZe5zKAr6KYXKA/edit#
slide=id.g1daf2d4a0f_2_19
**CDL is interested, but no plans

Unique identifier/handle
creation and management

✓ -- We could probably set this up in Nuxeo, but would
have to develop it ourselves. Baked in to Hyrax

OCR on ingest… this is not
a high priority, but we
mention it since there is a
possible Samvera (Hydra)
solution (Plum) and it
came up in the focus
groups

 -- Possibly with Plum (Samvera):
https://github.com/pulibrary/plum. Also, the
libnova suite has Tesseract baked into its
digitization workflows solution, so adoption of a
similar solution might be a more logical place for
OCR. 7

Asset Management
(other features)

Hyrax Nux/Cal Notes

Maintain robust data
model

✓ -- DLCS has a robust data model and we don’t want
to lose that, although it could probably use some
streamlining.

User roles well-defined
and somewhat granular

✓+ ✓- Hyrax has much more well-defined and granular
user roles than Nuxeo

File download from DAMS
(for internal)

✓ ✓

Set embargos and
time-restrictions
(copyright expiry dates)

✓ --

Restricting user access -
not just Shib, but IP

✓ -- This is essential for our collections and workflows.
We cannot do this with CDL’s instance of Nuxeo
unless we build frontend

Asset management for
non-published assets

✓ ✓

7 OCR as a service would likely be tied to Fedora's message queue, not coupled to a UI, even one as nice as
Plum's. That doesn't mean there shouldn't be a UI for OCR cleanup, but the DL is in favor of a disintegrated /
modular as possible system so that best of breed apps can be swapped in as needed.

25 of 45

https://docs.google.com/presentation/d/1L3rhAtHUqyxS2wo_cBo5Ny1iAx9BiBZe5zKAr6KYXKA/edit#slide=id.g1daf2d4a0f_2_19
https://docs.google.com/presentation/d/1L3rhAtHUqyxS2wo_cBo5Ny1iAx9BiBZe5zKAr6KYXKA/edit#slide=id.g1daf2d4a0f_2_19
https://docs.google.com/presentation/d/1L3rhAtHUqyxS2wo_cBo5Ny1iAx9BiBZe5zKAr6KYXKA/edit#slide=id.g1daf2d4a0f_2_19
https://github.com/pulibrary/plum

(with metadata and for
retrieval)

Front-end Hyrax Nux/Cal Notes

Self-deposit (user
contributed content for
IR/data repo)

✓ This would be useful for Digital Stacks

Crowd-sourcing of assets
a possible longer-term
goal

✓ * * Hyrax self-deposit feature could make this
possible

User-friendly asset export
formats - also restricted in
some cases to low-res

 This is mainly front-end, but might have
implications for the DAMS - does the DAMS need
to auto create certain derivatives in certain
scenarios?

Multiple ways of viewing
collections - by structure
(box, folder), gallery (all of
it), by series…

 Again, front-end, but a DAMS that supports display
structure from metadata would be great. This is
something that we would potentially develop
in-house to meet local needs.

Export metadata in
various structured
formats from public
interface

 Maybe this would happen from a query interface
in the “Collections Lab”? Need to be able to query
Solr prolly

More robust
searching/browsing/faceti
ng across collections

✓+ ✓- Front-end, but dependent on good DAMS
structure and good metadata!

Other Layers Hyrax Nux/Cal Notes

Support harvesting
(OAI-PMH, ResourceSync)

✓ API only Hyrax has ResourceSync enabled

API that is agnostic of
other layers for access to
assets

✓ * ✓ ** *Hyrax API: see
https://drive.google.com/drive/folders/0B20rJmC1
X-AmLWNaXzZMU0cxb2s; also API-X (Fedora):
https://wiki.duraspace.org/display/FF/Design+-+AP
I+Extension+Architecture and Fedora API: see
http://fedora.info/spec/
**Calisphere -> DPLA
We would also want to develop multiple APIs for
access in different contexts - Hyrax enviro would
give us more possibilities

GIS tools/data vis layers -- -- GeoBlacklight and other services would be
layered, developed as appropriate. Likely used via
APIs and Solr

26 of 45

https://drive.google.com/drive/folders/0B20rJmC1X-AmLWNaXzZMU0cxb2s
https://drive.google.com/drive/folders/0B20rJmC1X-AmLWNaXzZMU0cxb2s
https://wiki.duraspace.org/display/FF/Design+-+API+Extension+Architecture
https://wiki.duraspace.org/display/FF/Design+-+API+Extension+Architecture
http://fedora.info/spec/

Support for large
packages of things like
VMs, containers, code

 -- This doesn’t seem to be an immediate need, but
there were some “what-ifs” mentioned during
focus groups.

Conclusions
The following section outlines a few of the most likely scenarios for near- and
medium-term technological adoption in the UCLA Digital Library. These discussions
are not meant as a full endorsement of any single approach and technology stack;
in fact one of our primary recommendations is that any strategy of adoption should
first involve pilot studies and limited deployment to determine the suitability of the
new technology and to avoid committing too many resources to a path that may
ultimately be a false start or at best a short-term solution.

To help avoid the worst of these dead ends, we also speculate on the amount of
staff resources, retraining, and other investments that would be necessary to
produce an acceptable timeline to viability, and we include a section on additional
considerations related to how the central DAMS/repository software this scan
focuses on would interact with some of the publishing/UI and preservation layers
that are most likely to accompany them.

27 of 45

Figure 3: A detailed view of the components and modules we expect that a current digital library
software “stack” would need to incorporate or interact with.

Potential scenarios

Outlined below are a few viable scenarios of technological adoptions in the short
and medium-long term. This section attempts to evaluate/discuss the implications
of the scenarios, including staff resources and re-skilling, community and support,
and integration with front-end layers, preservation systems, and other layers.

Option 1: CDL’s Nuxeo/Calisphere
Short term: Use CDL’s Nuxeo to publish publicly-accessible collections to Calisphere.
This will help to relieve the ingest portion of the digital collections backlog and
allow CCDT to resume accepting digital project proposals in the interim. Nuxeo
could also serve as a solution for UCLA-restricted assets, the Syriac and Arabic
manuscripts., and other projects as needed if programmer time is allocated to spin
up additional front-ends, connecting to Nuxeo via its API. Blacklight, Angular2, and
Django are a few options; the Calisphere code (Django) could also potentially be
repurposed. Some upfront front-end development could buy a year or two to
develop a more robust DL system.

Long term: Long-term adoption of CDL’s Nuxeo would require further development
on a number of fronts. Custom front-ends for harvesting UCLA-only content and for
special projects (for example, IDEP and Syriac/Arabic Manuscripts) would need to
be developed. UCLA would also need to work with CDL to boost CDL’s storage and
server capacity to support the increased system load from existing and future UCLA
assets and traffic. It would also be wise to negotiate with CDL for more access to
the underlying database and systems as well as to expand the data model to meet
UCLA collection needs. This being said, it is unlikely that there will be a CDL Nuxeo
option in the next few years. CDL will eventually migrate to Samvera, so UCLA
would need to be willing to take over the Nuxeo instance or migrate to a new
system at that time. Another option would be for UCLA to host and pay for its own
instance of Nuxeo; although this falls under the “Roll our own” option listed below,
it should be noted that If UCLA were to consider adopting its own instance of
Nuxeo, it might be prudent to explore other commercial DAMS, like Canto Cumulus,
which may have more robust features and integrations than Nuxeo.

Option 2: Fedora/Samvera (formerly Hydra) family: Hyrax & Hyku

28 of 45

Short term: This path would begin by conducting pilot experiments of Hyrax, setting
up a local instance of Hyrax, testing its built-in features and also investigating how
other modules could be added to it. At the same time, we would want to gain
familiarity with the languages and frameworks it uses, perhaps holding Ruby
bootcamps for developers, and also experimenting with a Blacklight front-end to
gain experience with the interaction between Rails and Solr. It would be helpful to
identify a target collection or two to focus on during these experiments, or perhaps
adopt it for one of our grant-funded projects. A short-term hire or two to take over
day-to-day activities could help to facilitate these experiments by allowing the
permanent DL developers to get up to speed on the Hyrax system. We would also
want to take advantage of the Hydra/Samvera community to help bootstrap the DL
developers’ knowledge.

UCLA would need to determine where we stand relative to the points of divergence
within the Samvera ecosystem and community (assuming the entire community
hasn’t coalesced around a single stack design in the meantime, which seems highly
unlikely). In particular, we’d need to evaluate whether Hyrax offers a sufficiently
comprehensive feature set out of the box for the immediate future, if Fedora 4 is
sufficiently mature and whether or not the Hyrax bridge to Fedora 4 is sufficiently
mature, or whether we’d need to contribute development in these areas. Hyrax
does offer potential for modular development of the “missing” features; however,
learning a new programming language and framework (Ruby/Rails) takes time and
it would likely be some time before UCLA could make significant contributions to
the Samvera ecosystem.

Long term: If the Hyrax pilot is successful, full-scale adoption would likely require 2
temporary hires (1-2 years) to keep the DL program afloat while the DL developers
get the Hyrax system and its integrations up-and-running. Since the infrastructure
required for this option would be significant, it would be wise to do an up-front
inventory of the technical resources needed (servers, storage, AWS instances, etc.)
and establish these early on so time is not spent negotiating these requirements at
the point of need. Long-term adoption of Hyrax will require at minimum a Linux
environment with Ruby, Redis, Rails, and Javascript; installation and maintenance
of a Fedora 4 repository, Solr, ImageMagick, FITS, LibreOffice, and Hyrax itself; and
re-skilling of digital library staff, including Rails and PCDM. For information on what
the management Hyrax likely will involve, see the Sufia Management Guide. It 8

would also be beneficial to coordinate with peer institutions to integrate more

8 https://github.com/projecthydra/sufia/wiki/Sufia-Management-Guide

29 of 45

https://github.com/projecthydra/sufia/wiki/Sufia-Management-Guide

closely into the Samvera/Hyrax development community -- this would give UCLA
the structure and support needed to adopt the new technology.

Option 3: Roll our own!
Short term: We would need to go back to first principles to decide on the base
technologies on which to build the homegrown DAMS. This could take a while to
determine, and likely would be influenced by the pre-existing specialties (or
technological aspirations) of our developers. A new position paper would be
required to evaluate core technologies and approaches.

Long term: Implementation of the system also would take quite a while; we would
need to continue to use legacy and/or stopgap systems in the meantime. Ideally,
building our own system would allow us to tailor it to the unique needs of the UCLA
Digital Library, ultimately streamlining processes to be more efficient than they
probably ever could be with an externally sourced solution. Yet it is also important
to keep in mind that the “unique needs” of the DLP are more or less constantly
changing in response to outside influences such as grant funding, the emergency of
new partners from on campus and off, etc. In this environment, a
community-based approach and particularly the ability to take advantage of
contributed modules as well as others’ expertise with the system may ultimately
prove to be a more desirable situation.

Conditions for success: A handful of institutions from our external interviews had
successfully implemented some or all of their digital library system more or less
from scratch, though in most cases even the “from scratch” components were
based on open-source packages at some level. Two places -- North Texas and UIUC
-- had built the majority of their DL stack from scratch and remained generally
satisfied with it, while two others -- UC San Diego and Duke -- had designed
home-grown components of their DL stack (Duke had a home-grown
Python/Django-based front-end and DAMS, UCSD had a custom back-end) that they
either had replaced or were planning to replace with components of the Samvera
stack.

Though this sample size is admittedly very small, we can summarize some
observations regarding the conditions that seemed necessary at the above
institutions in order for them to roll their own DAMS layers and be at least generally
satisfied with the results:

● Dedicated DAMS stack developers who have few if any other responsibilities
other than developing and maintaining the system. The DAMS developers

30 of 45

also seemed to be fairly involved in the ingest of data into the systems once
they were running.

● Few external time/funding pressures, i.e., no grant-funded projects that need
a working site immediately, which might have prompted them to adopt a
pre-built system that works “out of the box,” and/or make hasty decisions
regarding the design of their home-grown system that they would come to
regret later.

● Collaborative, nimble decision-making between DAMS developers and
architects with (apparently) little outside intervention, OR a single main
developer who makes all the decisions.

● Developer familiarity with the technologies used (programming languages,
DBs, APIs) was not cited by any of these institutions as a crucial requirement,
though they still often gravitated towards technologies they already knew.

If at least some of these conditions are not met, our attempts at developing our
own DAMS, in whole or in part, are unlikely to succeed.

Recommended course of action

Follow through with Option 1 short-term scenario and continue to use Nuxeo to
relieve pressure on the DL, possibly developing simple interfaces if needed for
high-value projects that cannot be published via Calisphere. The report does not
recommend adopting Nuxeo as a long-term solution, whether CDL’s instance or its
own.

Meanwhile, focus on implementing Option 2: Option 2 outlines a testing and
evaluation phase; however, given the short list of options and the strong case for
Hyrax, this report recommends that the DL begin planning for long-term adoption
of Hyrax. This would start with short-term hires: a technical project manager and
additional developers to take over day-to-day activities of the DL so that the
permanent DL developers can get up to speed on the Hyrax system and integrate
with the Hydra/Samvera community. Spin up an instance of Hyrax for testing and
exploration in order to make informed decisions and recommendations on how to
proceed with full-scale adoption of Hyrax. The initial focus of UCLA developers
should be aimed at learning the Samvera system, learning the idiosyncrasies of the
language and underlying platform (RAILS), and developing strong devops practices
that will help them adapt and succeed in this new environment. The DL can also
begin experimenting with Blacklight as the front-end for at least one project.

These recommendations are based on the following rationales:

31 of 45

● The concentration of adoption of Samvera/Hyrax on the West Coast and in
the UC system should provide the supportive, collaborative environment
needed and will increase UCLA’s connections to peer institutions.

● Of the systems available at the time of the report, Hyrax appears to offer the
most functionality out of the gate than the other available options. This
solution will likely best meet the UCLA DL needs going forward.

● The modularity and extensibility of Hyrax will allow the DL to develop a more
robust DAMS and DL stack over the years, especially give the community and
collaborative environment. We may be able to build a custom system that
meets UCLA-specific needs in a short period of time, but over time the lack of
community engagement and shared development will leave us struggling to
implement new technologies and features with our isolated system.

● There will certainly be a learning curve, but ultimately, making a decision and
following through, despite difficulties, should pay off in the form of a robust
digital library system and new knowledge.

Some further considerations

Functional and scalability evaluation
The recommended course of action involves setting up a test instance of Hyrax. In
addition to test-driving its features and workflows, it will be essential to do a
thorough evaluation of its scalability within the context of our anticipated use cases
and functional requirements as outlined in Appendix 1 (this advice really applies to
any system we might adopt or build on our own). Scalability tests of the Fedora
repository and Hyrax “heads” may include the following:

● Ingest/management: Can Hyrax ingest collections on the scale of Frontera
or all of the IDEP materials (i.e., hundreds of thousands of records) in a
reasonable amount of time, and subsequently manage them efficiently?

● Multimedia: If large multimedia objects (music and video) cannot be stored
in Fedora effectively, are the alternatives (e.g., file system storage with links
from metadata) workable?

● Search/browse: Can several large collections all be stored in a single Solr
index in a way that makes searching, browsing, and management of the
index itself tractable? If not, how workable are the alternatives (e.g.,
maintaining multiple Solr “cores”)?

Publishing/UI options

32 of 45

It is important to keep in mind the potential publishing, access and search layers
that the DAMS systems described above would interact with. Some of the
technologies involved:

● Solr (powers the search/browse features of Blacklight, among others)
● Python and Python frameworks (Django)
● AngularJS (and Angular2), other Javascript-based interfaces, e.g., React
● Blacklight (discovery layer framework built on Rails, with plugins for exhibits,

archival collections, and geospatial data discovery, etc.)
● IIIF server and viewer (such as Mirador, Loris, Universal Viewer)
● Media servers
● Other?

Linked-data/data API strategy and technologies

● Fedora RDF triples -- Should we expose these? If so, how to expose these? (no
one has really worked this out yet; most Samvera adopters don’t see full
semantic web integration as feasible, though it can be done for specific
collections)

● Rails microdata -- gems can automatically expose a great deal of collection
data via a built-in URL-based API

● Interaction with automated authority sources
● Metadata- and resource-syncing technologies: OAI-PMH,

ResourceSync/sitemaps
● IIIF (standards and APIs for sharing images)

Storage/preservation integration
We assume a workflow in which the digital library DAMS is the main point of entry
and management for new digital items, and these items eventually make their way
to the preservation layer after ingest into the DAMS. There are, however, alternative
workflows in which items could move from the preservation layer up into the DAMS
via software ecosystems like the ArchivesSpace/Archivematica suite (though these
tools also support top-down ingest procedures). See for example the University of 9

Michigan’s Bentley Historical Library’s ArchivesSpace->Archivematica->DSpace
workflow (http://journal.code4lib.org/articles/12105).

In any case, it is worth noting the main DAMS/preservation paradigms we observed
at peer institutions: although few of these systems were fully automated, several
had instituted policies by which preservation items were created as soon as an item

9 Allain, Sara. “Archivematica in the Middle”, https://sallain.github.io/c4l17-archivematica/#/

33 of 45

http://journal.code4lib.org/articles/12105
https://sallain.github.io/c4l17-archivematica/#/

was ingested into the DAMS (though the frequency of subsequent “syncs” could be
quite variable). Later edits of these items (which on the whole is quite rare) would
trigger the creation of a new, replacement item in the preservation layer.

User Stories / Functional Requirements

User Stories

Digital Library Collections (and Digital Collections Lab)

Narrative: The Digital Library Program collects and maintains collections of digitized
content on behalf of the University Library (the UCLA Digital Collections), the UCLA
Community, and for special and extramurally-funded projects (such as NewsScape, IDEP,
Sinai Palimpsests, and Frontera. These collections are often accessible to the world
without authentication. In many cases, these collections are accessible only to the UCLA
community. Some content may have download restrictions (downloads not permitted or
downloads restricted to derivatives only). The assets are in various formats including but
not limited to TIFF, JPG, WAV, MP4, MP3, TXT, PDF, XML) in addition to their metadata.
The proposed Digital Collections Lab will provide access to the Digital Library
Collections via downloadable CSV files, APIs, data endpoints, programming interfaces,
and crowdsourcing environments to facilitate scholarly use of these collections and their
data.

Story: As a DLP Staff member, I want to...

● bulk upload assets and metadata in a various data formats (see above)
● automatically generate/assign unique identifiers/handles (ARKs) on upload of assets
● edit permissions on collections, items and files
● assign administrative permissions for read/write/delete access on collections, items,

and files
● edit metadata on collections, items, and files
● search for collections, items, and files
● limit searching by tags
● attach tags to collections, items, and files
● limit searches by collections, items, and files
● Identify and view collections, items, and files based on their workflow status (no

metadata, metadata in progress, metadata complete; pre-/post-quality control, etc.)
● publish and unpublish collections, items, and files individually
● publish and unpublish collections in bulk
● leverage professional looking end-user search interfaces to my DLP collections,

items and files; including embedding search tools and results pages into other web
publishing interfaces (e.g. Blacklight, Spotlight, Mirador, Django, etc.)

34 of 45

● capture and present the organizational structure of complex objects (books, photos
with front/back, archival box/folder, serials, etc.) in our user-interfaces using
metadata

● embed links to published collections, items and files inside of other web publishing
interfaces (e.g. blogs, CMS pages, CCLE...)

● utilize technologies for sharing my collections widely and openly, such as IIIF
manifests, ResourceSync, OAI-PMH, etc.

● make use of APIs, IIIF, ResourceSync, etc. for republishing Digital Library Collections
materials in new interfaces and platforms that allow for transcription, annotation,
use by third-party applications, etc.

● delete collections, items, and files for which we no longer have retention or other
rights

● provide a mechanism for DLP partners (Special Collections, IDEP, CSRC, etc.) to enter
assets and metadata into the DAMS

● mask (hide from view based on permissions) collections, items, and files as
necessary, either manually or on a schedule (embargos)

● store and represent different versions of files which can change as a result of
corrections or additional data

● have library data & metadata processors (i.e. metadata librarians, approved
curators, assistants, and partners) process collections for use by end-users

● leverage internal and external controlled vocabularies when entering authoritative
terms into the metadata record

● export metadata from the DAMS for internal use/requests in various formats
including CSV, JSON, …

● deposit collection-level “bags” containing assets and metadata into preservation
layer from DAMS or repository (as needed or triggered by actions or state)

● query across collections and projects and take advantage of inter-collection linking
and indexing, either via semantic technologies or a unified search schema

Story: As a Subject Librarian or Curator, I want to:

● download files or groups of files from the DAMS to fulfil patron requests (as masters
or derivatives would be nice if I can get it)

● batch edit metadata for collections, items, and files for which I have permissions
● bulk upload assets and metadata in various formats to collections for which I have

permissions
● search for/browse digital assets in the DAMS by keyword or specific field search and

by browsing collection hierarchies
● create exhibits or “spotlight collections” using items already in the Digital Library

Collections

35 of 45

Story: As a DLP Partner, I want to:

● batch edit metadata for collections, items, and files for which I have permissions
● bulk upload assets and metadata in various formats to collections for which I have

permissions
● search for/browse digital assets in the DAMS by keyword or specific field search and

by browsing collection hierarchies
● create exhibits or “spotlight collections” using items already in the Digital Library

Collections

Story: As an end user, I want to…

● access a search page that returns faceted results of the collections, items, and files
○ facet should limit by subject, tags, keywords, dates, collections, format,

language, geographic, etc.
● browse the collections, items, and files via multiple views (list, gallery, map, network

graph, archival arrangement, etc.)
● be prompted for UCLA Shibboleth permissions at the point of need
● download collections, items, and files for which I have permissions
● browse and search the metadata and descriptions for items for which I do not have

download permissions (and be properly notified of my privileges before attempting
to download files)

● embed Digital Library Collections content for which I have permissions into web
pages and other media

● have the option to view book objects in a book reader format; have the option to
view archival collections by box and folder

Story: As a scholar, I want to…

● access Digital Library Collections assets and data via various options including:
○ APIs and data endpoints for use in computational research methods and in

scholar-led thematic research collections or projects
○ downloadable files (csv, json) files (most researchers prefer to download data

as csv over using APIs and other data endpoints)
● access and/or download textual content (OCR and text files) from the Digital Library

Collections for text mining and analysis
● create exhibits or “spotlight collections” using items already in the Digital Library

Collections
● make use of IIIF manifests to gather together high resolution images of certain

collections and items (ex. books and manuscripts) from the Digital Library
Collections and other institutions into my own Mirador (of other viewer) instance

36 of 45

and publish my own manifests and annotations to share with others, use in my
classes, etc.

Story: As an instructor, I want to…

● create exhibits or “spotlight collections” using items already in the Digital Library
Collections

● embed Digital Library Collections content for which I have permissions into web
pages and other media

● have access to training packages (datasets with learning modules for collections as
data)

● make use of IIIF manifests to gather together high resolution images of certain
collections and items (ex. books and manuscripts) from the Digital Library
Collections and other institutions into my own Mirador (of other viewer) instance
and publish my own manifests and annotations to share with others, use in my
classes, etc.

Digital Stacks

Narrative: Subject librarians and Curators often acquire published digital content (ebooks,
audio files, excel worksheets) that are restricted by copyright, but are not hosted by
vendors. This content tends to not fit the scope of the Digital Library Collections and has
specific access and restriction needs. The Digital Stacks will provide librarians and
curators a place to upload and host this content and set access and download
permissions as needed. Items would be discoverable via the Library OPAC.

Story: As a Subject Librarian or Curator, I want to:

● provide online access to curated digital content in various formats (PDF, MP3, MP4,
Excel)

● upload content and metadata without remediation from the Digital Library Program
● restrict access to UCLA-only when appropriate
● restrict download of items for all users when appropriate (including PDFs)

Story: As an end user, I want to:

● find UCLA-hosted online content via the UCLA library catalog and access this content
via a link in the catalog

● view / read items for which I have permissions
● download items for which I have permissions
● be prompted for UCLA Shibboleth permissions at the point of need

37 of 45

A/V Preservation (still in progress)

Narrative: The A/V Preservation unit digitizes audio and moving image materials from the
UCLA collections. These collections are often accessible to the world without
authentication. In many cases, these collections are accessible only to the UCLA
community. When digitizing moving image, lesser quality derivatives are often created for
streaming on public interfaces while the larger, high quality preservation master files are
stored as an archival copy and not publicly accessible. These are currently stored on our
NetApp shared storage.

Story: As an A/V Preservation Librarian, I want to:

● store, describe, and access master versions of audio and video files alongside their
published derivatives

● record technical and digital provenance metadata for audio and video files (capture,
processing and QC metadata, etc.)

● deposit collection-level archival “bags” containing masters versions and metadata
into preservation layer from DAMS or repository (as needed or triggered by actions
or state)

● Automatically generate intermediate and access derivative files from deposited
preservation master according to our standard specifications.

● Automatically generate MD5 checksums for files upon deposit into DAMS or
repository. These checksums will be used as a baseline for future fixity or “health
checks” of the files.

● Automatically embed metadata into the files such as the Federal Agencies Digital
Guidelines Initiative (FADGI) Specification of the Broadcast Wave Format Version 2
(2011).

38 of 45

Requirements

Architecture
● Must be highly scalable, open, and flexible. System must scale to accommodate:

○ 2 million (and growing) items
○ high usage levels from both inside and outside the University
○ high ingest volume within a reasonable timeframe (system load)
○ high volume of simultaneous users (do we have any stats on this?),
○ users harvesting our collections via APIs and other tools (need to moderate

that or partition?)
● Support for a multitude of formats (or content agnostic) - need to be able to serve

up different formats
● Expose as much data as possible via RESTful or the like
● Support our existing rich data model
● Infrastructure must not limit access to particular types of workstations, operating

systems, or creative software
● Support the translation of digital assets into a wide variety of formats

Checks/preservation (these are just examples - I don’t really know)
● Fixity:

○ Fixity checks are executed daily on a limited number of repository objects.
For each object a "fixity check event" is recorded in the database (not the
repository) with the results of checksum validations of all its current data
streams (latest versions only).

○ Fixity should be checked on each object at 60-day intervals.
● Checksum guidelines
● Include PREMIS interoperability
● Audits (needs review with experts)

○ What questions do you want to be able to answer from the audit trail?
■ Object version history

● Agent that created the version (user or system)
● Optional (?) comment on change (could be stored in

event_detail)
■ Actions performed on object

● Ingest
● Derivative generation
● Fixity calculated
● Fixity checked
● object versioned
● version restored
● object withdrawn

39 of 45

● object purged
● Deposit to preservation layer: pointer to preservation logs, track format migrations,

link to or record preservation/conservation documentation

Appendices

Appendix 1: User Stories / Functional Requirements
Available here:
https://docs.google.com/document/d/1YShZiTCMBViFhvT5aeig88UZuNn2ERdkewO
LzBtJS_E/edit?usp=sharing

Appendix 2: DL Services View Diagram (work in progress)

Appendix 3: Glossary of terms

Note: some were shamelessly plagiarized from the Nov. 2016 UC Libraries DAMS
Technology Report and the LDCX 2017 terms, abbreviations and acronyms glossary

40 of 45

https://docs.google.com/document/d/1YShZiTCMBViFhvT5aeig88UZuNn2ERdkewOLzBtJS_E/edit?usp=sharing
https://docs.google.com/document/d/1YShZiTCMBViFhvT5aeig88UZuNn2ERdkewOLzBtJS_E/edit?usp=sharing

ArcLight - an in-development implementation of Blacklight serving the discovery
and delivery of archival description

ArchivesSpace - an open source archives management platform and community
affiliated with Lyrasis. The successor tool to Archivists’ Toolkit (AT) and ArchOn,
which were competitor systems to serve the archives community in processing and
description workflows.

Avalon - a Hydra-based application for delivering and managing time-based media
(audiovisual materials). (A Hyrax proof-of-concept version appears to be in
development)

Blacklight - a Ruby-on-Rails engine for retrieving and searching Solr content (in
addition to Rails's RDBMS data)

Complex Objects: Common in digital library projects, complex objects consist of
many files and may have a complex hierarchy of relationships between component
parts; for example, a photo with front and back content or a book object with
pages.

DAMS: Digital Asset Management System, for managing digital files and related
metadata [could use further elaboration]

Duraspace: Umbrella 501(3)(c) organization founded in 2009 that works with
Fedora, Samvera Project, and other open source software projects.

Export, Transform, and Load (ETL): Process for bulk loading metadata from a
local system into a DAMS.

Fedora Repository: a backend component for digital object repository systems
developed by DuraSpace affiliates, supporting repository services such as fixity,
versioning, transactions, import, and export. Modular, open source, and now with
native linked data support.

GeoBlacklight - a Blacklight engine for providing geodata interfaces for discovery

Samvera (Hydra) Project: Open source repository solution and community, built
on top of Fedora using Ruby on Rails, as well as Solr/Blacklight. Focuses on

41 of 45

https://wiki.duraspace.org/display/hydra/ArcLight
http://archivesspace.org/
http://archivesspace.org/about/mission-and-history/
http://avalonmediasystem.org/
http://projectblacklight.org/
http://rubyonrails.org/
http://guides.rubyonrails.org/engines.html
https://lucene.apache.org/solr/
https://en.wikipedia.org/wiki/Relational_database_management_system
http://geoblacklight.org/
http://guides.rubyonrails.org/engines.html

front-ends and middleware. There are currently two viable Samvera solutions:
Hyrax and Hyku. Hyrax could be considered an alternative to Islandora.

Hydra Head: An application built using Samvera technology that takes advantage
of the underlying repository layer (Fedora) and other Samvera middleware.

Hydra-in-a-Box: See “Hyku”

Hyku (Hydra-in-a Box): A project aimed at making it easier to adopt a Samvera
based solution for a repository. A Samvera app, based on Hyrax, meant to support
multiple tenants (one for research data, one for ETDs, one for library collections).
The plan is to offer a “Hyku Direct” hosted solution for smaller institutions, in
addition to the standalone version. This is more of a “blackbox” solution.

Hyrax: A Samvera application or “head” that merges and enhances two earlier
Hydra heads, Sufia and CurationConcerns. It is the foundation of Hyku. Hyrax is
meant to be more modular and configurable, supporting features such as
ResourceSync integration.

Islandora: An open source repository solution and community, built on top of
Fedora using Drupal/PHP. The current “1.0” version of the stack uses Fedora 3 and
Drupal 7, while the forthcoming Islandora “CLAW” will feature Fedora 4, Drupal 8,
and a suite of new middleware services.

Linked Data Platform (LDP): Standardized architecture for creating linked data
applications used in version 4 of the Fedora Repository.

Linked Data: An approach to data modeling that uses the Resource Description
Framework (RDF) of the Semantic Web.

Lyrasis - non-profit library consortium, providing hosted software services for
deployments of ArchivesSpace and Islandora

METS: Metadata Encoding and Transmission Standard, originally based on work by
UCB; XML standard that can be used to manage complex objects.

Nuxeo: Enterprise content management platform, open source with commercial
support.

42 of 45

https://www.lyrasis.org/

Portland Common Data Model (PCDM): Based on work originally undertaken by
UCSD, the PCDM is a linked data standard that can be used to manage complex
objects. Samvera Project and Islandora are working together on PCDM, with the
aim of interoperability between systems using Fedora.

Repository: For the purposes of this study, this term is generally used
interchangeably with a DAMS.

ResourceSync - a syndication and synchronization specification supporting the
discovery of web resources

Appendix 4: Focus group and interview questions

Technical leads and stakeholders at peer institutions

Understand current work and capacity

● Who at your campus is actively participating in digital content/collection
creation? ex. data curators, digital librarians, tech services, metadata
librarians, special collections, IT staff.

● How many assets are in your digital collections in total? Do you have a
breakdown by type, topic (collecting area), etc.?

Workflow

● Describe your current workflow (selection, ingest, metadata, access,
preservation, etc.)

● What kind of content do you primarily work with?
● What is the most complex digital asset type you work with? Describe your

most complex collection.
● Do assets always belong to collections, or are there one-off assets?
● Describe the type of hierarchy used to organize digital assets.
● What's your workflow for creating metadata, and loading and staging files

associated with the metadata?

DL Systems

● How would you define the terms we throw around to talk about various
components of DL systems (see list on parent page)?

● What do you think the components of a DL system are and which are the
most important?

43 of 45

https://www.openarchives.org/rs/toc

● Can you tell us about where the DL stack fits into/overlaps with other
systems? Is there shared infrastructure? Other services like data repo, IR,
etc.?

Management - probably most important for us

● What kind of system are you using to create and manage your digital assets,
and what features are you using?

● How are you utilizing and managing authority records and controlled
vocabularies, within the context of your system?

● Are you managing end-user contributed content in your system?
● What kinds of export formats can you generate (or need to) for your

collection?
● How are you preserving your digital content?

Extended features

● Are you able to provide metadata for harvesting (OAI-PMH), and, if so, what
kind? What about LOD?

● Does your system support bulk editing and uploading of item records, and
how? If so, who has the ability to do it?

● Can items belong to multiple collections within your system?
● Do you intend to expose/export some collection items for access via other

systems (at other places?) if so, how?
● What is your total digital asset storage requirement now and in 5 years? Are

there any plans for the future for your digital library resources that we
should know about?

End user needs

● Does your system support multi-language collections and/or interfaces?
● Does your system support end users maintaining “personal collections”?

such as bookbag or a shopping cart?
● Tell us about your search and browse functionality

DL developers, administrators, and stakeholders at UCLA

Understand current work and capacity

● Who do you know who is actively participating in digital content/collection
creation on campus (in case we've missed anyone)? ex. data curators, digital
librarians, tech services, metadata librarians, special collections, IT staff.

44 of 45

Experience using DL systems

● Which DL systems do you work with (DLCS, Islandora, etc.)? What do you
wish we could do with the collections that the system doesn't provide?

● What types of materials/content do you wish we could do more with?
● Are the metadata/object description features we have now sufficient? If not,

what would you like to add?
● How would you define the terms we throw around to talk about various

components of DL systems (see list on parent page)?
● What do you think the components of a DL system are and which are the

most important?

Management

● What digital asset management features do you think a DL system should
provide? What component of the stack should provide this? Can you describe
your desired architecture or an implemented example of it?

● Do you want to be able to manage end-user contributed content in our
system?

● What kinds of export features and formats should we support?
● How should the DL system fit into the digital preservation question?

Extended features

● What kinds of metadata harvesting services (OAI-PMH) should we provide?
How about LOD – and where should this go in the stack?

● Does should a DL system support bulk editing and uploading of item records,
and how? If so, who has the ability to do it?

● Should items belong to multiple collections within your system?
● How should we expose/export collection items for access via other systems

(at other places?) and how do you expect to see this practice expand in the
future?

● What will be your total digital asset storage requirement now and in 5 years?
Are there any plans for the future for your digital library resources that we
should know about?

End user needs

● How should a DL system support multi-language collections/interfaces?
● Should we support end users maintaining “personal collections”? such as

bookbag or a shopping cart? If so, which DL system lets us do this?
● Search and browse functionality – tell us what you think!

45 of 45

