
Kota Miura

EMBL-CMCI course II

Macro Programming in ImageJ
ver 2.1.0

Centre for Molecular & Cellular Imaging
EMBL Heidelberg

Abstract

Aim: Students acquire ImageJ macro programming technique to ease
their work loads with image processing / analysis.

Note: This textbook was written using Fiji (ImageJ 1.44e). When you want
to distribute, please ask Kota as this textbook is progressively edited.
Compiled on September 2, 2015
c© 2006 - 2015, Kota Miura (http://cmci.embl.de)

Contents

2.1 Aim: Why do we write ImageJ macro? 3

2.2 Introduction . 3

2.2.1 ImageJ macro makes your life easier 3

2.2.2 Other ways to Customize ImageJ 3

2.2.3 Comparison with Other scripting languages 4

2.2.4 How to learn Macro programming 6

2.2.5 Summary . 6

2.3 Basics . 7

2.3.1 “Hello World!” . 7

2.3.2 Variables and Strings 12

2.3.3 Parameter Input by User 16

2.3.4 Recording ImageJ macro functions 17

2.3.5 Batch Processing using "batch macro" function 22

2.4 Conditions and Loops . 24

2.4.1 Loop: for-looping . 24

2.4.2 Loop: while-looping 29

2.4.3 Conditions: if-else statements 34

2.5 Advanced Topics . 46

2.5.1 User-defined Functions 46

CMCI ImageJ Macro Course CONTENTS

2.5.2 Multi-parameter dialogue 51

2.5.3 Global Variables . 53

2.5.4 String Arrays . 56

2.5.5 Numerical Array . 58

2.5.6 Array Functions . 60

2.5.7 Application of Array in Image Analysis 62

2.6 File I/O . 70

2.6.1 Saving the Measurement Results Automatically . . . 70

2.6.2 Batch Processing of Files 74

2.6.3 Working with Strings 79

2.7 Secondary Measurement . 84

2.7.1 Using Values in Results Window 84

2.7.2 Using values in non-Results table 90

2.7.3 Accessing Data File: Simple Case 98

2.7.4 Accessing Data File: Complex Case 99

2.8 Using Javascript . 106

2.8.1 A trial with Javascript 107

2.8.2 Using Macro Recorder and ImageJ API 112

2.8.3 Example Codes . 121

2.8.4 Using none-ImageJ libraries in Fiji 122

2.8.5 Example Use of Library 125

2.9 Actual Macro programming 128

2.10 Homework . 128

2.10.1 Homework for basics 128

2.10.2 Homework for a bit advanced 131

2

CMCI ImageJ Macro Course 2.1 Aim: Why do we write ImageJ macro?

2.1 Aim: Why do we write ImageJ macro?

Learn the basics of how to automate image processing and analysis using
ImageJ macro language. We write macros to decrease our workloads in
image processing: less clicking and less repetitive procedures.

2.2 Introduction

2.2.1 ImageJ macro makes your life easier

To customize functions in ImageJ, a typical way is to write a Java plugin
that directly accesses the application interface of ImageJ. This is a powerful
method for customizing your own tool but in many cases is a bit too much
for small tasks we often encounter in biological research projects. Com-
pared to the Java programming, ImageJ macro is much easier for quickly
solving problems.

A typical usage is to automate repetitive tasks with hundreds of times of
mouse clicking. Clicking ranges from menu selections to inspection of sin-
gle pixel value. By writing a macro, we could save such exhausting job to a
single execution of a macro file, which is a text file with a sequence of image
processing commands. As ImageJ macro functions are directly mirroring
the GUI menu items, one could intuitively learn how to write one’s own
macro even without much experiences in programming.

Another important aspect of writing a macro is its role as a documenta-
tion: as the processing becomes complex, we easily forget the steps and
details of the procedures and the values of parameters that were used for
that task. Even if your job is not a repetitive one, a macro written for a task
becomes a valuable record of what was done to the image, and ensures the
reproducibility of your image analysis.

2.2.2 Other ways to Customize ImageJ

This and the next section explain the general capability of extending ImageJ
by programming. If you are not interested in general aspects, you could

3

CMCI ImageJ Macro Course 2.2 Introduction

skip these sections.

ImageJ could be extended by writing a Java plugin. Though you need to
know or learn the Java programming, this capability affords almost infinite
possibilities; you could write any kind of processing / analysis functions
you could imagine. Compared to the plugin development by Java, ImageJ
Macro language is much easier and lighter but has some limitations. It
might be worth mentioning here what would be the limitations.

1. If you need to process large images or stacks with many steps, you
might recognize that it is slow. Some benchmarks indicate that a plu-
gin would be about 40 times faster than a macro.

2. Macro cannot be used as a library 1. In Java, once a class is written,
this could be used later again for another class.

3. Macro is not efficient in implementing real-time interactive input dur-
ing when the macro function is executed; e.g. If you want to design
a program that requires real-time user input to select a ROI interac-
tively. Macro could only do such interactive tasks by closely related
macro set with each macro doing each step of interaction.

4. Macro is tightly coupled to GUI (Image Window), so that when you
want to process images without showing them on desktop, macros
are not really an optimal solution.

If you become unsatisfied with these limitations, learning more compli-
cated but more flexible Java plugin development is recommended.

2.2.3 Comparison with Other scripting languages

Besides ImageJ macro, there are several scripting languages that could be
used for programming with ImageJ. The bare ImageJ supports Javascript
(Rhino). Recent versions of ImageJ (> 1.47m, since 6 March 2013), Jython

1It is possible to write a macro in a library fashion using the function eval and use it
from another macro, but this is not as robust and as clear as it is in Java, which is a language
designed to be so.

4

CMCI ImageJ Macro Course 2.2 Introduction

became included in the menu as well. In the Fiji distribution, you could use
the following languages off the shelf 2 :

• Javascript

• BeanShell

• Jython (Java implemented Python)

• JRuby (Java implemented Ruby)

• Clojure

• Groovy

If you set up an environment by yourself, other languages such as Scala can
be used. Compared to the ImageJ macro language, all these languages are
more general scripting languages.

There are pros and cons. Pros of using the ImageJ Macro compared to these
scripting languages are:

• Easy to learn. ImageJ macro build-in functions are mirrors of ImageJ
menu, so scripting is intuitive if you know ImageJ already. Macro
recorder is a handy tool for finding out the macro function you need.

• A significant hurdle for coding with general scripting languages is
that one must know the ImageJ Java API well, meaning that you ba-
sically have to know fundamentals of Java programming language
for using these scripting languages.

• You could have multiple macros in one file (called ’Macro-set"). This
is useful for packaging complex processing tasks.

Thus, ImageJ macro language is the easiest way to access the scripting ca-
pability of ImageJ.

There are several disadvantages of ImageJ macro compared to other script-
ing languages. First is its generality. Since others are based on major script-
ing languages, you do not need to learn a lot if you know one of them

2As of June, 2015

5

CMCI ImageJ Macro Course 2.2 Introduction

already. For example, if you know Python already, it should be easy for
you to start writing codes in Jython (note: but you also need to know about
Java).

The second disadvantage of ImageJ macro is its extendability. Codes you
wrote could only be recycled by copying and pasting 3. With other scripting
languages, once you write a code, it could be used from other programs 4.

Lastly, although ImageJ Macro processes with a speed comparable to Javascript
and Jython, it is slow compared to Clojure and Scala.

2.2.4 How to learn Macro programming

In this course, you will encounter many example codes. You will write
example codes using your own computer and run those macros. Modify-
ing these examples by yourself is an important learning process as in most
cases, that is the way to acquire programming literacy. There are many
excellent macro codes you could find in Internet, which could be used as
starting points for writing your code5.

2.2.5 Summary

ImageJ Macro radically decreases your work load and is a practical way to
keep your image analysis workflow in text file. Less workload provides
more time for us to analyze details of image data. The potential of macro
is similar to other scripting languages and Java Plugins, all adding capa-
bility to customize your image analysis. For coding interactive procedures
PlugIn works better than macro. Macro cannot be used as a library. Image
processing by macro is slower than that by Java written plugins.

3One could also use getArgument() and File related functions to pass arguments from a
macro file to the other, but ImageJ macro is not designed to construct a library of functions.

4Calling other Javascript file from another Javascript file had been difficult but became
easily possible in the Fiji distribution from March 2012.

5200+ macros are available in ImageJ web site. http://rsb.info.nih.gov/ij/macros/

6

http://rsb.info.nih.gov/ij/macros/

CMCI ImageJ Macro Course 2.3 Basics

2.3 Basics

2.3.1 “Hello World!”

We first try writing a simple macro that prints ”Hello World!” in the log
window of ImageJ.

To open the macro editor, select [PlugIns -> New -> Macro] from the
menu. This will create a new window where you can write macro (we call
this ”macro editor”, fig2.1).

In Fiji you could use more advanced interface called ”script editor” by
[File -> New -> Script]. It should look like 2.2. In the script editor,
you already see a blank text field where you could write a macro. From
script editor’s own menu, select [Language -> IJ1 Macro]. By sepci-
fying the language, syntax highlighter turns on to do automatic coloring
of ImageJ functions.6.

Later when you want to start writing another new macro, just generate a
new tab by [File > New] and then select [Language -> ImageJ Macro]

again.

Then write your first macro as shown below. In the second line DON’T
forget to indent the line using tab or spaces7. Omit the line numbers! These
numbers were added just for explanation.

1 macro "print_out" {

2 print("Hello World!");

3 }

code/code01.ijm

6The macro editor (also the Fiji script editor) has simple debugger function. Debugger
assists you to correct mistakes in the code. This is convenient when the code becomes long.
Macro can be written in any text editor such as "Notepad" in Windows but of course there
is no debugger function available in this case.

7In ImageJ macro, indenting is not a required syntax for writing macros but doing this
will be very very helpful afterward. You will understand it as the macro you write becomes
longer

7

CMCI ImageJ Macro Course 2.3 Basics

Figure 2.1: Macro Editor of ImageJ

Figure 2.2: Script Editor of the Fiji distribution

8

CMCI ImageJ Macro Course 2.3 Basics

From the macro editor menu, running the code by [Macros-> Run Macro]8.
You could also run the code by shortcut keys (Windows: ctrl-r, OSX command-
r) as well.

Fiji: Use [Run -> Run] from the script editor menu. Shortcut keys are
same as in ImageJ. You could also use “run” button in the script editor.

This will create a new window "Log". Within the log window, "Hello World"
will be printed.

Figure 2.3: Hello World Output

Explanation for the Code 1:

• line 1: You are declaring that a macro code starts and the code is con-
tained between curly braces {}. "print_out" will be the name of macro.

• line2: print() function orders ImageJ to print out the content within
the parenthesis in the "Log" window. The text to be printed must be
contained within the double quotes (""). The best reference for ImageJ
macro functions is in the ImageJ web site 9. For example, you could
find definition of print("") function on the web site as quoted below:

8"Macros" in the menu appears only when the macro editing window is active
9http://rsbweb.nih.gov/ij/developer/macro/functions.html

9

http://rsbweb.nih.gov/ij/developer/macro/functions.html

CMCI ImageJ Macro Course 2.3 Basics

print(string)
Outputs a string to the "Log" window. Numeric argu-
ments are automatically converted to strings. The print()
function accepts multiple arguments. For example, you
can use print(x,y,width, height) instead of print(x+" "+y+"
"+width+" "+height). If the first argument is a file handle
returned by File.open(path), then the second is saved in the
referred file (see SaveTextFileDemo).
Numeric expressions are automatically converted to strings
using four decimal places, or use the d2s function to specify
the decimal places. For example, print(2/3) outputs "0.6667"
but print(d2s(2/3,1)) outputs "0.7".

• line 3: a brace tells ImageJ that the code "print_out" finishes at this
line.

So that was the very basic of how you use a macro. To integrate the macro
into the ImageJ Menu bar, the macro must be "installed". To do so, in the
editor menu, [Macros -> Install Macros]

Fiji: [Run -> Install Macro]).

Check IJ menu [Macros ->] to see that the macro is now in the menu.

Figure 2.4: Macro Now in ImageJ menu

Macro can be saved as a file and can be directly installed also. In the edi-
tor, do [File -> Save]. Saving dialogue window appears, and just save

10

CMCI ImageJ Macro Course 2.3 Basics

the file wherever you can remember afterwards . To install the macro, do
[PlugIns -> Macro -> Install...] Select the macro file you want to
install.

Exercise 2.3.1-1

Add another line "print("\\Clear");" after the second line (be-
low, code 1.5. don’t forget the semi-colon at the end!).

1 //code 1.5

2 macro "print_out 1.5" {

3 print("\\Clear");

4 print("Hello World!");

5 }

code/code01_5.ijm

Then test also another macro when you insert the same function in
the third line (code 1.75). What happened?

1 //Code 1.75

2 macro "print_out 1.75" {

3 print("Hello World!");

4 print("\\Clear");

5 }

code/code01_75.ijm

Exercise 2.3.1-2

Try modifying the third line in code 1.5 and check that the modified
text will be printed in the "Log" window.

Exercise 2.3.1-3

Multiple macros can exist in a single file. We call this "macro sets".
Duplicate the code you wrote by copying and pasting it under the
first macro. The second macro should have a different name. In the
example shown in fig. 2.5, the second macro is named "pirnt_out2".

11

CMCI ImageJ Macro Course 2.3 Basics

Figure 2.5: Macro Set

When macro is properly declared in this way, you could install the macro
to have it as a menu item. To do so, in the editor menu select:

[Run -> Install Macro]).

In the main menu you should no be able to see the macro names under
[Plugins > Macros >].

2.3.2 Variables and Strings

Texts such as "Hello World!" can be represented by a variable 10. Let’s un-
derstand this by examining a short macro below.

1 //Code 2

2 macro "print_out 2" {

3 text = "Hello World";

10there is no declaration of types, such as number or string, in ImageJ macro.

12

CMCI ImageJ Macro Course 2.3 Basics

4 print(text);

5 text = "Bye World";

6 print(text);

7 }

code/code02.ijm

text is a "String Variable" or simply a "String". ImageJ prepares a memory
space for this variable, and you can change the content by re-defining the
content. Two (or maybe more) variables could be used to construct another
variable.

1 //Code 3

2 macro "print_out 3" {

3 text1 = "Hello";

4 text2 = " World!";

5 text3 = text1 + text2;

6 print(text3);

7 }

code/code03.ijm

The above operation concatenates content of text2 to the content of text1
and produces a third variable text3 that holds the result of concatenation.
It should be noted here, that macro has two ways of usage for +. What we
tested in above is “concatenation”. Another usage is “addition” in the next
section.

Exercise 2.3.2-1

Add more string variables and make a longer sentence.

It is also possible to store a number in a variable. For example,

text = 256;

With this assignment, the variable is now a "numerical variable" or simply
"variable". In other programming languages such as C or Java, difference
between numbers and characters matters a lot. In ImageJ macro you do

13

CMCI ImageJ Macro Course 2.3 Basics

not have to care whether the variable is number or string (we call them
“types”) ad they are defined automatically by the type of value provided
for a variable, and this makes the macro coding to be light and easy. How-
ever, since types are implicitly defined without declaration it could cause
simple mistakes such as type mismatching. So be sure keep the difference
in types DOES matter but they are not shown in the code. We will see an
example of such confusion, and also a way to avoid the confusion.

Test the following macro to see how the numerical variable works.

1 //Code 4

2 macro "print_out_calc" {

3 a = 1;

4 b = 2;

5 c = a + b;

6 print(c);

7 print(a + "+"+ b + "="+c);

8 txt=""+a + "+"+ b + "="+c;

9 print(txt);

10 }

code/code04.ijm

Did you get some results printed out? It should, but you should read the
code carefully as there is a small trick in this code. This trick is something
special in IJ macro language compared to other general scripting languages.

You might have noticed a strange expression at line 8, in the way it assigns
the variable txt. It starts with double quotation marks.

txt= "" + a + "+" + b + "=" + c;

Seemingly this looks like meaningless. If you define ilcomtxt without the
first "useless" quotation marks, then it will be like

txt= a + "+"+ b + "=" + c;

14

CMCI ImageJ Macro Course 2.3 Basics

Theoretically this should work, since the double quote does not have any
content so its presence should be meaningless. But if you try to run this
what it seems to be straight-forward assignment, ImageJ returns an error
message.

Figure 2.6: Error with Variable Assignment

This is because when ImageJ scans through the macro from top to bottom,
line by line, it reaches the line for the assignment of the variable txt and
first sees the variable a and interprets that txt should be a numerical vari-
able (or function), since a is known to be a number as it was defined so in
one of the lines above. Then ImageJ goes on interpreting rightward think-
ing that this is math. Then finding a "+" which surprisingly is a character
ImageJ cannot interpret string variable within a numerical function, so it
returns an error message. The macro aborts.

To overcome this problem, the programmer can tell ImageJ that txt is a
string function at the beginning of the assignment by putting a set of dou-
ble quote. This tells the interpreter that this assignment is a string concate-
nation assignment and not a numerical assignment. ImageJ does handle
numerical values within string function, so the line is interpreted without
problem and prints out the result successfully. Note that such confusion of
string and numerical types are rarely seen in general scripting languages
and specific to ImageJ macro language.

Exercise 2.3.2-2

15

CMCI ImageJ Macro Course 2.3 Basics

Modify the code 4, so that the calculation involves subtraction (-),
multiplication (*) and division (/).

2.3.3 Parameter Input by User

At some point you might want to make a macro to ask the user to input
numerical values or file names. We now learn how to do that, by first ex-
amining the following code. Run the code first.

1 //Code 5

2 macro "input_print_out_calc" {

3 a = getNumber("a?", 10);

4 b = getNumber("b?", 5);

5 c = a*b;

6 print("\\Clear");

7 print(c);

8 }

code/code05.ijm

Running this macro, a dialogue window pops-up.

Figure 2.7: getNumber Dialog

The function getNumber consists of two parameters (programmers call such
parameters "arguments" so we use this word in the reminder of this text-
book).

getNumber(message string, default number)

16

CMCI ImageJ Macro Course 2.3 Basics

The first argument is a string wrapped by double quotes (see code 5, line 3
and 4). This string will appear in the dialog window such as shown above.
Default number will appear in the input field in the dialog window, and
the user is expected to modifies this default number. When OK button is
clicked, the number given by the user will be returned to the macro and
then substituted to a variable. In the above case, this could be either a or b.

To ask a user for providing a string in dialog, following is an example.

1 //Code 6

2 macro "input_print_out_str" {

3 a = getString("a?", 10);

4 b = getString("b?", 5);

5 c = a+b;

6 print("\\Clear");

7 print(c);

8 }

code/code06.ijm

The function getString also has two arguments, and only the difference is
that the user input will be treated as a string.

Exercise 2.3.3-1

Run the code 6 and input 1 for a and 2 for b. What happened? Explain
the reason.

2.3.4 Recording ImageJ macro functions

There are many commands in ImageJ as you could see them by exploring
the menu tree. In ImageJ native distribbution, there are ca. 500 commands.
In the Fiji distribution, there are 900+ commands. Some plugins are not
macro-ready, but except for those spacial cases almost all of these com-
mands can be accessed by build-in macro functions. We then encounter a
problem: how do we find a macro function that does what we want to do?

To show you how to find a function, we write a small macro that cre-
ates a new image, adds noise, blurs this image by Gaussian blurring, and

17

CMCI ImageJ Macro Course 2.3 Basics

then thresholds the image. There is a convenient tool called Command
Recorder. Do [PlugIns -> Macros -> Record...]. A window shown
in figure 2.8 opens.

Figure 2.8: Macro Recorder

All the menu commands that you execute will be printed out as a his-
tory of macro functions in this window. For composing a macro using this
recorder, we first do the processing manually from the menu as follows.

• Prepare a new image using [File -> New] command. The size of
the image can be anything.

• Then do [Process -> Noise -> Salt and Pepper] (Fig. 2.9).

• [Process -> Filters -> Gaussian Blur] (use Sigma = 2.0).

• [Image -> Adjust -> Threshold...]. Toggle the slider to make
signals red. Check "Dark Background", then click "Apply".

Now, check the Command Recorder window. It should now look like Fig.
2.10. Each line is a macro function that corresponds to a menu command
you selected.

18

CMCI ImageJ Macro Course 2.3 Basics

Figure 2.9: A demo image for Recording Macro

Figure 2.10: Macro Recorder after some lines Recorded

19

CMCI ImageJ Macro Course 2.3 Basics

These texts generated in the recorder can be used as it is in your macro.
You could copy and paste them11. Compose a macro like below by copying
and pasting the macro functions in the recorder. Delete the lines that are
commented out (lines that begin with "//" are lines that are skipped by the
macro interpreter).

1 //Code 6.9

2 newImage("test", "8-bit Black", 300, 300, 1);

3 run("Salt and Pepper");

4 run("Gaussian Blur...", "radius=2");

5 setThreshold(32, 100);

6 run("Convert to Mask");

code/code06_9.ijm

Run the macro! . . . I hope that you are amazed by now with the power of
Macro Recorder! Now, you could simply add a line at the top and bottom
to package this in a named macro by curly braces. This is optional in the
current case, but it’s always good to keep your macro packaged since the
boundary of the macro becomes clear.

1 //Code 7

2 macro "GB2_Thr" {

3 newImage("test", "8-bit Black", 300, 300, 1);

4 run("Salt and Pepper");

5 run("Gaussian Blur...", "radius=2");

6 setThreshold(32, 100);

7 run("Convert to Mask");

8 }

code/code07.ijm

The third line in the above macro has a function newImage(). This function
creates a new image. It has five arguments (in coding jargon, we say there
are "five arguments"). To know what these arguments are, the quickest way
is to read the Build-In Macro Function page in ImageJ web site12. In case of
the function newImage, the description looks like this.

11In case of OSX, you might probably need to click “Create” button to generate a dupli-
cate of macro functions in a new script window. Then you could copy the macro functions
from there.

12http://rsbweb.nih.gov/ij/developer/macro/functions.html

20

http://rsbweb.nih.gov/ij/developer/macro/functions.html

CMCI ImageJ Macro Course 2.3 Basics

newImage(title, type, width, height, depth)
Opens a new image or stack using the name title. The string
type should contain "8-bit", "16-bit", "32-bit" or "RGB". In ad-
dition, it can contain "white", "black" or "ramp" (the default
is "white"). As an example, use "16-bit ramp" to create a 16-
bit image containing a grayscale ramp. Width and height
specify the width and height of the image in pixels. Depth
specifies the number of stack slices.

Using this information, you can modify the macro to change the size of the
image.

Exercise 2.3.4-1

Modify the code 8, so that user can input the desired Gaussian sigma.

Other optional lines you could add to the macro are “comments”. This does
not affect the macro but adding some comment about what the macro does
helps you to understand what the macro is doing when you open the file
some time later. There are two ways to add comment. One is the block
comment. Texts bounded by /* and */ will be ignored by interpreter.
Another is the line comment. Texts in a line starting with double slash //

will be ignored by the interpreter. Below is an example of commenting code
07.

1 //Code 7.1

2 /*
3 This macro creates binary image with randomly positioned

dots.

4 */

5 macro "GB2_Thr" {

6 //creates a new image window

7 newImage("test", "8-bit Black", 300, 300, 1);

8 //add noise

9 run("Salt and Pepper");

10 //blur the image

11 run("Gaussian Blur...", "radius=2");

21

CMCI ImageJ Macro Course 2.3 Basics

12 //binarize the image

13 setThreshold(32, 100);

14 run("Convert to Mask");

15 }

code/code07_1.ijm

2.3.5 Batch Processing using "batch macro" function

In above macro, list of functions were wrapped inside macro "title"{ code }
so that these macro functions could be executed by single command from
menu. To apply such a sequence of macro functions for many images in
a single folder (say you have one-thousand images you want to contrast
enhance and also to Gaussian-blur), there are two ways. One way is to fur-
ther extend the macro by adding file-accessing macro functions and loop-
ing those functions (you will learn this later). Another way is to do such
"batch processing" by copy and pasting list of macro functions to batch-
processing interface. This interface could be used by [Process -> Batch

-> Macro]

22

CMCI ImageJ Macro Course 2.3 Basics

Figure 2.11: Batch Processing Dialog

In "Input" field, select the folder where image files are stored. In output
field, select a destination folder where processed images will be stored. You
then copy and paste the list of macro functions in the code field such as
shown in Fig. 2.11. In the case shown in this figure, line 6 to 9 was copied
and pasted. Clicking "Process" button will start the processing.

23

CMCI ImageJ Macro Course 2.4 Conditions and Loops

2.4 Conditions and Loops

In many cases, we want to iterate certain processing steps many times (see
"Loops" in the figure 2.12), or we want to limit some of the process in the
program only for certain situations (see "Conditions": in the figure 2.12). In
this section we learn how to include these loops and conditional behaviors
into macro.

Figure 2.12: Schematic view of conditions and loops. Straightly top to bottom, line by line
processing (left) and macro with loops (middle) and with a condition (right).

2.4.1 Loop: for-looping

Here is a simple example macro using for-loop. Write the macro in your
editor and run it.

1 //Code 9

2 macro "loop1" {

3 message_txt = getString("message to loop?", "whatever");

4 for(i=0; i<5; i+=1) {

5 print(i + ": " + message_txt);

6 }

7 }

code/code09.ijm

The result should look like figure 2.13.

24

CMCI ImageJ Macro Course 2.4 Conditions and Loops

Figure 2.13: Code 9 output in Log Window

• Line 3 asks the user to input a string (we did this already). If user
does not change the default text ("whatever") and click "OK", then
the macro interpreter proceeds to line 4.

• Line 4 for(i = 0 ; i < 5 ; i+= 1) sets the number of loops.
Three parameters are required for "for" loop. The first parameter de-
fines the variable used for the counting loop and its initial value (i
= 0). The second parameter sets the condition for exiting from the
loop (i < 5). Third parameter sets the step size of i, meaning that
how much value is added per loop (i += 1, could also be subtrac-
tion, multiplication, division e.g. i -= 1). Spaces between variables,
numbers, operators and separators (e.g. semicolon, parenthesis) can
be ignored and they could be written continuously. Macro runs with-
out those spaces. However, this is not recommended for keeping a
better readability of the code. Don’t try to rush, make spaces!

• After this for(...;...;...) statement, there is a brace ({) at the
end of line 4 and the second one (}) in the line 6. These curly braces
tell ImageJ to loop macro functions in between so the function in line
5 will be iterated according to the parameters defined in the paren-
thesis of for. Between braces, you could add as many more lines of
macro functions as you want, including inner for-loops and if-else

conditions.

25

CMCI ImageJ Macro Course 2.4 Conditions and Loops

So when the macro interpreter reaches line 4 and sees for(, it starts look-
ing inside the parenthesis and defines that the counting starts with 0 using
a variable i, and then line 5 is executed. The macro prints out "0 :whatever"
using the content of i, string : and the string variable txt. Then in line 6
interpreter sees the boundary } and goes back to line 4 and adds 1 to i (be-
cause of i+=1). i = 1 then, so i<5 is true. The interpreter proceeds to line 5
and executes the macro function and prints out "1:whatever". Such looping
will continue until i = 5, since only by then i<5 is no longer true so inter-
preter exits from the for-loop.

Exercise 2.4.1-1

(1) Change the first parameter in for(i=0;i<5;i+=1) so that the
macro prints out only 1 line.

(2) Change the second parameter in for(i=0;i<5;i+=1) so that the
macro prints out 10 lines.

(3) Change the third parameter in for(i=0;i<5;i+=1) so that the
macro prints out 10 lines.

Stack Analysis by for-looping

One of frequently encountered tasks is image stack management, such as
measuring dynamics or multi-frame processing. Many ImageJ functions
work with only single frame within a stack. Without macro programming,
you need to execute the command while you flip the frame manually. Macro
programming enables you to automate this process. Here is an example of
measuring intensity change over time13.

1 //Code 10

2 macro "Measure Ave Intensity Stack" {

3 frames=nSlices;

4 run("Set Measurements...", " mean min integrated

redirect=None decimal=4");

5 run("Clear Results");

13What we write as macro here could be done with a single command [Image >
Stacks > Plot Z-Profile] but this only measures intensity. If you want to mea-
sure other values such as the minimum intensity, a macro should be written.

26

CMCI ImageJ Macro Course 2.4 Conditions and Loops

6 for(i=0; i<frames; i++) {

7 currentslice=i+1;

8 setSlice(currentslice);

9 run("Measure");

10 }

11 }

code/code10.ijm

• Line 3: nSlices is a macro function that returns the number of slices
in the active stack.

• Line 4: Sets measurement parameters, from the menu would be [Analyze
> Set measurements...]. In this case "mean min integrated" is
added as part of the second argument. “mean” is the mean inten-
sity, “min” is the minimum intensity and “integrated” is integrated
density (total intensity). These keys for measured parameters could
be known by using the command recorder. You do not have to care
for now about the "redirect" argument. “decimal” is the number of
digits to the right of the decimal point in real numbers displayed in
the results table.

• Line 5: clears the results table.

• Line 6 to 9 is the loop. Loop starts from count i=0, and ends at
i=frame-1. i++ is another way of writing i = i + 1, so the incre-
ment is 1.

• Line 7: calculates the current frame number.

• Line 8: setSlice function sets the frame according to the frame num-
ber calculated in line 6.

• Line 9: actual measurement is done. Result will be recorded in the
memory and will be displayed in the Results table window.

Open an example stack 1703-2(3s-20s).stk 14. This is a short sequence of
FRAP analysis, so the edge of the one of the cells is bleached and then

14Some of you may realize that you used this sequence in the Image Processing / Analysis
Course for learning stack measurements using Z-profiler [Image > Stacks > Plot
Z-Profile]. Now, you can program similar device in macro. Good thing about the cus-

27

CMCI ImageJ Macro Course 2.4 Conditions and Loops

fluorescence signal at that bleached position recovers by time. Select the
frapped region by ROI tool (such as in the figure below). Execute the macro.
Results will be printed in the Results window (see the table in the figure
right: this table is showing only "Mean" column as only “Mean Intensity”
was selected in the measurement option).

(a) (b)

Figure 2.14: Measuring Stack Intensity Series. (a) Setting a Segmented ROI at the FRAPped
area. (b) Results of Measuring Mean Intensity Dynamics.

Measurement parameters can be added as argument by modifying the line
4 in the code 10. "Set Measurement" could be added with more parameters
to be measured, and the digits after the decimal point could be increased
by increasing the number after “decimal=”. For example,

run("Set Measurements...", "area mean standard modal min

centroid center perimeter bounding integrated median

stack redirect=None decimal=5");

Exercise 2.4.1-1

Modify code 10 to include more measurement parameters (whatever
you like), and test the macro. Check the results.

tom program is that you will be able to modify the program further to add more functions.
For example, You could measure the time course of standard deviation of intensity within
the selected ROI.

28

CMCI ImageJ Macro Course 2.4 Conditions and Loops

Figure 2.15: An example result after adding more measurement parameters.

2.4.2 Loop: while-looping

Another way of letting a part of macro to loop is while-statement. In this
case, iteration is not defined strictly. Looping continues until certain condi-
tion is met. As soon as the condition is violated, macro interpreter goes out
from the loop.

Basics of while statement

Here is a simple example macro using while.

1 //Code 11

2 macro "while looping1" {

3 counter=0;

4 while (counter<=90) {

5 print(counter);

6 counter = counter + 10;

7 }

8 }

code/code11.ijm

This macro prints out characters 0 to 90 with a 10 increment.

• line 3: The macro interpreter first assigns 0 to the counter.

29

CMCI ImageJ Macro Course 2.4 Conditions and Loops

Figure 2.16: Output of code 11

• line 4: The interpreter evaluates if the counter value is less than or
equal to 90. Since counter is initially 0. . .

• line 5: Printing function is executed.

• line 6: counter is added with 10.

• line 7: the interpreter realizes the end of "while" boundary and goes
back to line 4. Since counter= 10 <= 90, line 5 is again executed. . . and
so on. When counter becomes 100 in line 6 after several more loops,
counter is no longer <=90. So the interpreter goes out from the loop,
moves to line 8. Then the macro is terminated.

Line 5 could be written in the following way as well.

counter += 10;

This means that "counter" is added with 10. Similarly, subtracting 10 from
counter is

counter -= 10;

Multiplication is

counter *= 10;

30

CMCI ImageJ Macro Course 2.4 Conditions and Loops

Division is

counter /= 10;

If the increment is 1 or -1, (counter +=1 or counter-=1), then one could also
write them as

counter++;

or

counter--;

These two last macro functions are said to work faster than +=1 or -=1, but I
myself do not see much difference. Computers are fast enough these days.

Exercise 2.4.2-1

(1) Try changing code 11 so that it uses "+=" sign.
(2) Change code 11 so that it uses "++" sign, and prints out integers
from 0 to 9.

Evaluation of while condition could also be at the end of loop. In this case,
do should be stated at the beginning of the loop. With do-while combina-
tion, the loop is always executed at least once, regardless of the condition
defined by while since macro interpreter reads lines from top to bottom.
Try with the following exercise.

Exercise 2.4.2-2

Change line 4 of code 11 to while (counter <0) and check the effect
(see below).

1 //Code 11.5

2 macro "while looping2" {

3 counter=0;

4 do {

5 print(counter);

6 counter += 10;

7 } while (counter<0);

31

CMCI ImageJ Macro Course 2.4 Conditions and Loops

8 }

code/code11_5.ijm

Condition for the while-statement could be various. Here is a small list of
comparison operators.

< less than
<= less than or equal
> greater than
>= greater than or equal to
== equal
!= not equal

Exercise 2.4.2-3

Modify code 11 so that the macro prints out numbers from 200 to 100,
with an increment of -10.

Why is there while-loop?

An often raised question with the while-loop is why do we have two types
of loops, the for-loop and the while-loop. Answering to this question, they
have different flexibility. The for-loop is rather solid and the while-loop
is more flexible. In the example code below, the user is asked for a cor-
rect number and if the answer is wrong, the question is asked 5 times re-
peatedly. Number of loop is not determined by the programmer, but in-
teractively when the code is running. We will study the branching of the
program based on if-else in the next section.

1 macro "flexible loop by while" {

2 answer_is_wrong = true;

3 imagej_first_release = 1997;

4 trial = 5;

5 while (answer_is_wrong) {

6 answer = getNumber("In which year did the first version

of ImageJ released?", 1900);

7 if (answer == imagej_first_release)}

8 answer_is_wrong = false;

32

CMCI ImageJ Macro Course 2.4 Conditions and Loops

9 showMessage("CORRECT! The year" +

imagej_first_release);

10 } else {

11 showMessage("NO. try again: trials left:" +

trial);

12 trial--;

13 }

14 if (trial < 1)

15 answer_is_wrong = false;

16 }

17 }

code/code11_6.ijm

Writing a similar code using the for-loop is possible but the code becomes
tricky. Below is the for-loop version of the above code.

1 macro "flexible loop by for" {

2 imagej_first_release = 1997;

3 trial = 10;

4 for (correct = 0; correct < 1;) {

5 answer = getNumber("In which year did the first version

of ImageJ released?", 1900);

6 if (answer == imagej_first_release){

7 showMessage("CORRECT! The year" +

imagej_first_release);

8 correct++;

9 } else {

10 showMessage("NO. try again: trials left:" + trial);

11 trial--;

12 }

13 if (trial < 1)

14 correct++;

15 }

16 }

code/code11_7.ijm

Note that the third argument of for-loop is missing. Since the variable
correct does not change as long as the answer is wrong, we leave it not
incrementing nor decrementing. In such case we can leave the third argu-
ment vacant.

33

CMCI ImageJ Macro Course 2.4 Conditions and Loops

2.4.3 Conditions: if-else statements

Introducing if-else

A macro program could have parts which are executed depending on some
conditions. Here is an example of macro with conditions.

1 //Code 12

2 macro "Condition_if_else 1"{

3 input_num = getNumber("Input a number", 5);

4 if (input_num == 5) {

5 print(input_num+ ": The number is 5 ");

6 }

7 }

code/code12.ijm

• Line 3 The macro asks user to input a number and the number is
substituted to the variable input_num.

• Line 4 Content of input_num is evaluated. If input_num is equal to
5, line 5 is executed and prints out the message in the Log window.
Otherwise macro interpreter jumps to line 7, and ends the operation.
By adding "else" which will be executed if input_num is not 5, the
macro prints out message in all cases (see code 12.5 for this if - else
case).

• Line 4 We used double equal signs for evaluating the value in the
right side and the left side (e.g. if (a==5)). Note that the role of the
sign = is different from assignments, or substitution (e.g. a = b + c).

Now, we examine the content between parenthesis after “if” in more detail.
Write the following code in your script editor and run it.

1 a = (5==5);

2 print(a);

code/code12_1.ijm

The output in the log window should be 1 indicating that “(5 == 5)” is 1.
Next, modify the code like below and run it.

34

CMCI ImageJ Macro Course 2.4 Conditions and Loops

Figure 2.17: Output of code 12

1 a = (5 == 4);

2 print(a);

code/code12_2.ijm

The output is now 0, indicating that “(5 == 4)” is 0. What double equal
signs == are doing in these examples are comparison of numbers in the left
and the right side, and if the numbers are the same, it returns 1 and if they
are not the same, it returns 0. 1 and 0 actually are representing true (= 1) or
false (= 0), the boolean values.

We could also test if they are NOT equal. For this, replace == by !=.

1 a = (5 != 4);

2 print(a);

code/code12_3.ijm

Run the code above, and it returns 1, because 5 is NOT 4 and that is true.
Now, you could introduce the if again as follows.

1 if (5 != 4){

2 print("true");

3 }

code/code12_35.ijm

In the parenthesis after “if”, there is obvious TRUE statement (5 is not 4).
This is true, so the macro function bounded by curly braces is executed,
which is to print out “true” in the log window.

35

CMCI ImageJ Macro Course 2.4 Conditions and Loops

Try changing the line 2 to if (5 == 4). Running this prints nothing in the
log window, because 5 is not 4 (FALSE!) so that the macro function in line
3 is ignored. To avoid such ignorant no-output behavior, you could add
“else” as follows.

1 if (5 == 4){

2 print("true");

3 } else {

4 print("false!");

5 }

code/code12_4.ijm

The code works also with the direct true or false declaration inside the if
parenthesis. Try the following code.

1 if (0){

2 print("true");

3 } else {

4 print("false!");

5 }

6

7 if (false){

8 print("true");

9 } else {

10 print("false!");

11 }

code/code12_5.ijm

The above prints two lines of “false!” in the log window. You could replace
the if parenthesis values to 1 and true to check that it works as well.

By now, it is probably pretty clear to you wi what is going on in the code
below.

1 macro "Condition_if_else 2"{

2 input_num = getNumber("Input a number", 5);

3 if (input_num == 5) {

4 print(input_num+ ": The number is 5 ");

5 } else {

6 print(input_num+ ": The number is not 5 ");

7 }

36

CMCI ImageJ Macro Course 2.4 Conditions and Loops

8 print("--------------");

9 }

code/code12_6.ijm

Complex Conditions

In many cases, you might need to evaluate the condition of multiple vari-
ables at once. For such demands, several different comparisons can be com-
bined by using following Boolean operators.

&& boolean AND
|| boolean OR

Let’s first test what these symbols do by directly using true and false in
macro.

1 a = true;

2 b = true;

3 if (a && b){

4 print("&& both true")

5 }

6

7 if (a || b){

8 print("|| one of them or both is true")

9 }

code/code12_65.ijm

When you run this code as it is, line 4 and line 8 are both executed and
prints the messages. For the first if parenthesis, && operator tests if both
sides are true. If both are indeed true, it returns true (1), and that is the case
above. If one of them or both are false, then && operator returns false(0).

On the other hand, in the second if parenthesis, || operator tests if one of
the two sides is true. Since both are true in the above code, OR operator
returns true because at least one of them is true. Only when both sides are
false, the returned value becomes false (0).

Exercise 2.4.3-1

37

CMCI ImageJ Macro Course 2.4 Conditions and Loops

Change the values of a and b in code 12_65 to false and compose
other three possible combinations (e.g. a = true, b = false will
print only one line). Check the output. Change the values of a and b

also to 0 and/or 1 and check the results.

Here is a more realistic example (though not very useful), an extended ver-
sion of code 16_6.

1 //Code 12.75------------------------------

2

3 macro "Condition_if_else 3"{

4 input_num1 = getNumber("Input a number 1", 5);

5 input_num2 = getNumber("Input a number 2", 6);

6 message0 = ""+input_num1 + ","+input_num2; //use this

string four times

7 if ((input_num1==5) && (input_num2==6)) {

8 print(message0+ ": The parameter1 is 5 and the

parameter2 is 6");

9 } else {

10 if (input_num1!=5) && (input_num2!=6) {

11 print(message0 + ": The parameter1 is not 5 and the

parameter2 is not 6");

12 } else {

13 if (input_num2==6) {

14 print(message0 + ": The parameter1 is NOT 5 but the

parameter2 is 6");

15 } else {

16 print(message0 + ": The parameter1 is 5 but the

parameter2 is NOT 6");

17 }

18 }

code/code12_75.ijm

• Line 4 and 5 ask user to input two parameters.

• Line 6 is for setting a string variable, to abbreviate a long string as-
signment that appears four times in the macro.

• Line 7 evaluates these input parameters by comparing each of them
separately, but the decision is made by associating two decisions with
&&.

38

CMCI ImageJ Macro Course 2.4 Conditions and Loops

• Line 10, != compares left and right sides of the operators and returns
true if they are NOT equal.

From line 10 to 17, there are several layers of conditions. Macro program-
mer should use tab-shifting for deeper condition layers as above for the
visibility of code. Easy-to-understand code helps the programmer oneself
to debug afterward, and also for other programmers who might reuse the
code.

Application of if-statement

As an application of looping and conditions, we write a macro that pro-
duces an animation of moving dot. User inputs the speed of the dot, and
then the animation is generated. In the animation (which actually is a stack)
the dot moves horizontally and bounces back from the edge of the frame.
(if) operator is used to switch the movement direction.

1 //Code 13

2 macro "Generate Dot Animation back and forth" {

3

4 // **** initial values ****
5 sizenum=10; //dot size in pixel

6 int=255; //dot intensity in 8bit grayscale

7 frames=50; //frames in stack

8 w=200; //width of frame

9 h=50; //height of frame

10 x_position = sizenum; //starting x position:

11 y_position= (h/2)-(sizenum/2); //y positon of the oval

top-left corner: constant

12

13 //**** set colors *****
14 setForegroundColor(int, int, int);

15 setBackgroundColor(0, 0, 0);

16

17 //**** ask speed *****
18 speed=getNumber("Speed [pix/frame]?",10)

19

20 //**** prepare stack ****
21 stackname="dotanimation"+speed;

39

CMCI ImageJ Macro Course 2.4 Conditions and Loops

22 newImage(stackname, "8-bit Black", w, h, frames);

23

24 //**** drawing oval in the stack ****
25 for(i=0; i<frames; i++) {

26 setSlice(i+1);

27 x_position += speed;

28 if ((x_position > (w-sizenum)) || (x_position < 0)) {

29 speed*=-1;

30 x_position += speed*2; //avoids penetrating boundary

31 }

32 makeOval(x_position, y_position, sizenum, sizenum);

33 run("Fill", "slice");

34 }

35 run("Select None");

36 }

code/code13.ijm

• Lines 4 to 11: Set parameters for drawing a dot. It is also possible
to directly use numerical values in the later lines, but for the sake of
readability of the code, and also for possible later extension of the
code, it is always better to use easy-to-understand variable names
and explicitly define them before the main part starts.

• A short note on the x-y coordinate system in digital images: Since dig-
ital image is a matrix of numbers, each pixel position is represented as
coordinates. The top left corner of image is the position (x, y) = (0, 0).
X increases horizontally towards right side of the image. Y increases
vertically towards the bottom of the image. In line 9, y-position of the
dot is defined to be placed in the middle of the vertical axis.

• Lines 14, 15: These lines set the drawing and background color. Three
arguments are for intensity of each RGB component. Here the image
is in grayscale so all the RGB components are set to the same value. 0
is black, and int is white (255).

• Line 14 asks the user to input the speed of the dot movement.

• Lines 16, 17 prepares a new stack with parameters defined in lines 7,
8 and 9.

40

CMCI ImageJ Macro Course 2.4 Conditions and Loops

• Lines 21 to 34 is the loop for drawing moving dot. Loop will be it-
erated from the starting frame until the last frame. Line 21 creates
an oval Region-of-Interest (ROI), which will be filled in line 22 with
the foreground color that was already set in the line 14. makeOval

function is explained in the Built-on function page as follows.

makeOval(x, y, width, height)
Creates an elliptical selection, where (x,y) defines the upper left cor-
ner of the bounding rectangle of the ellipse.

• Line 27: Shifts the x position of the dot by “speed” distance.

• Line 28: if the position calculated in the line 27 exceeds the boundary,
either left (x_position < 0)OR right (x_position > (w-sizenum)),
then the direction of movement is switched by multiplying -1.

Exercise 2.4.3-2

Modify code 13 that the dot moves up and down vertically. Change
the stack width and height as well.

If you are successful with this, try further on to extend the code so
that the dot moves both in x and y directions. For this, you need to
have two independent speed xspeed and yspeed since change in the
direction by bouncing should be independent in x and y.

Application of "while" and "if" in image processing.

Now, we try solving a problem with image thresholding by an application
of while loop in a macro. Open image mt_darkening.tif in the sample
image you downloaded. This is a stack, so you could slide the bar at the
bottom of the window to see what is happening: the image gets darker and
darker, as frame number increases. When you study fluorescence images,
you will find such effect very often, because fluorescence bleaches due to
the irradiated excitation light for the acquisition. When you want to seg-
ment this structure (a microtubule), you might use image-thresholding as
follows.

41

CMCI ImageJ Macro Course 2.4 Conditions and Loops

Figure 2.18: A stack with darkening microtubule

Go back to the first frame and do [Image -> Adjust -> Thresholding...].
The image is then automatically adjusted with threshold level. and it seems
Ok that the structure is well segmented. But the problem appears as you
slid the bar at the bottom. Since image is darkening, area where highlighted
decreases.

(a) (b)

Figure 2.19: Adjusted with threshold level first frame (a) and the last frame (b)

This is because the threshold minimum and the maximum is kept constant
while the intensity of the image is decreasing. To segment the structure
while the image darkening is occurring, we must adjust the threshold in-
tensity range as the frame progresses.

The macro below finds the minimum value for the thresholding, that the
highlighted area in each frame in a stack is approximately similar to the
first frame. while is used to loop the adjustment until the highlighted area
is constant. Then the threshold is applied to the image to convert the stack
to a binary stack.

1 //Code 14

2 macro "Automatic Threshold Adjustment" {

3 if (nSlices==1) {

42

CMCI ImageJ Macro Course 2.4 Conditions and Loops

4 exit("Active window is not a stack");

5 }

6 getThreshold(lower, upper);

7 if ((lower==-1) && (upper==-1)) {

8 exit("Image must be thresholded");

9 }

10 w=getWidth();

11 h=getHeight();

12 frames=nSlices;

13 ref_slice=getSliceNumber(); //reference frame

14 originalStackID=getImageID();

15

16 run("Clear Results");

17 run("Set Measurements...", "area limit redirect=None

decimal=0");

18 run("Measure");

19 ref_area=getResult("Area", 0); //reference area

20 temp_area=0;

21 tol=0.03; // tolerence for the area difference +-3%

22

23 newImage("bin stack", "8-bit White", w, h, frames);

24 binStackID=getImageID();

25 for(i=0;i<frames;i++) { //flipping frames

26 selectImage(originalStackID);

27 setSlice(i+1);

28 run("Copy");

29 newImage("stack", "8-bit White", w, h, 1);

30 run("Paste");

31 while ((ref_area*(1-tol)>temp_area) || (temp_area>

ref_area*(1+tol))){

32 setThreshold(lower,upper);

33 run("Clear Results");

34 run("Measure");

35 temp_area=getResult("Area", 0);

36 lower--;

37 }

38 run("Convert to Mask");

39 run("Copy");

40 close();

41 selectImage(binStackID);

42 setSlice(i+1);

43

CMCI ImageJ Macro Course 2.4 Conditions and Loops

43 run("Paste");

44 }

45 }

code/code14.ijm

(a) (b)

Figure 2.20: Binarized last frame without threshold adjustment (a) and with adjustment
using macro (b).

• Lines 3 to 5 Check if the active window is a stack. If nSlices==1
(meaning that the image is not a stack), macro is terminated.

• Lines 6 to 9: Get the threshold parameter from image and check if the
image is adjusted with threshold level. If not, both upper and lower
values are -1. In this case, macro is terminated.

• Lines 10 to 14: Get stack information. getSliceNumber() returns the
current frame in the stack. Adjusted with threshold level area in this
frame (first frame) will be used as the reference area. getImageID()
returns a number that specifically identifies the active window. This
ImageID will be used later,by selectImageID(ImageID) to re-activate
the window.

getImageID()
Returns the unique ID (a negative number) of the active image. Use
the selectImage(id), isOpen(id) and isActive(id) functions to acti-
vate an image or to determine if it is open or active.

• Line 16: clears the results table without saving.

• Line 17: sets the measurement parameter Area, and limits the mea-
surement to the adjusted with threshold level region.

44

CMCI ImageJ Macro Course 2.4 Conditions and Loops

• Line 18: Do the measurements. Result is recorded in the first row of
the Results table.

• Line 19: The measured area is stored in the variable ref_area.

• Line 20: temp_area will be used later in the while loop.

• Line 21: the variable ilcomtol is a tolerance ratio of error against the
reference area. So the adjusted with threshold level area in each frame
should be between 97 and 103% of the reference area.

• Line 22: Create a destination stack, where adjusted with threshold
level images will be pasted.

• Line 23: get the Image ID of newly created image.

• Line 25: Loop for the frames starts.

• Lines 26, 7: Select the original stack and sets the frame number ac-
cording to the loop number. selectImageIDworks with getImageID

function in line 14.

selectImage(id)
Activates the image with the specified ID (a negative number). If
id is greater than zero, activates the idth image listed in the Win-
dow menu. With ImageJ 1.33n and later, id can be an image title (a
string).

• Line 28: Copy the full frame.

• Lines 29, 30: creates a temporally single frame image and the image
copied in line 28 is pasted.

• Lines 31 to 37: While loop. temp_area is evaluated if the area is out-
side 97 and 103% of the reference area. If true, then loop continues.
Initial temp_area value is 0 so the loop is at least one time. Set Thresh-
old with lower and upper (line 32). Measure the adjusted with thresh-
old level area, and then lower is incremented -1. The area is evalu-
ated, and if it does not meet the criteria set in line 31, then the loop
continues with wider threshold range.

45

CMCI ImageJ Macro Course 2.5 Advanced Topics

• Lines 38 to 40: The adjusted with threshold level image will be con-
verted to black & white image and then copied. The single frame
temporary image is closed.

• Line 41, 42: destination stack is activated and the same frame as the
source stack is set.

• Line 43: Binarized image in the clipboard is pasted into the destina-
tion stack.

• Line 44: returns to Line 25 until all stack frames are processed.

• Line 45: Terminates the macro.

2.5 Advanced Topics

This section could be a bit boring for you in terms of biology, but try to
be patient. All these knowledge are required for advanced programming.
Ability to do complex image processing using macro widens your view on
planning experiments also.

2.5.1 User-defined Functions

As your code becomes longer, you will start to realize that similar process-
ing or calculation appears several times in a macro or through macro sets.
To simplify such redundancy, one could write a separate function that
works as a module for macros. For example, if you have a simple code like:

1 //Code 15

2 macro "addition" {

3 a = 1;

4 b = 2;

5 c = a + b;

6 print(c);

7 }

code/code15.ijm

46

CMCI ImageJ Macro Course 2.5 Advanced Topics

It should be easy for you to expect that this macro will print out "3" in
the Log window. From this macro, we could extract part of it and make a
separate function.

1 //Code 15.1

2 function ReturnAdd(n, m) {

3 p = n + m;

4 return p;

5 }

code/code15_1.ijm

This is not a macro, but is a program that works as a unit. Functions can
be embedded in macro. ReturnAdd (code 15.1) is the name of the function,
and the following (n, m) are the variables that will be used in the func-
tion. Within the function, n and m will be added and the result of which is
substituted in to a new variable p. return p in line 4 will return a value
as an output of the function. We call such custom-made function as “user-
defined function”. Using this function, code 15 can be rewritten as

1 //Code 15.2

2 macro "addition with function1" {

3 a = 1;

4 b = 2;

5 c = ReturnAdd(a, b);

6 print(c);

7 }

8 //Code 15.1

9 function ReturnAdd(n, m) {

10 p = n + m;

11 return p;

12 }

code/code15_2.ijm

or simpler, by nesting the custom made function inside ImageJ native func-
tion print(),

1 //Code 15.3

2 macro "addition with function2" {

3 a = 1;

4 b = 2;

5 print(ReturnAdd(a, b));

47

CMCI ImageJ Macro Course 2.5 Advanced Topics

6 }

7 //Code 15.1

8 function ReturnAdd(n, m) {

9 p = n + m;

10 return p;

11 }

code/code15_3.ijm

Macro interpreter reads the macro line by line. When the interpreter sees
ReturnAdd(a, b), the interpreter first tries to find the function within the
ImageJ Build-in function. If its not there, the interpreter looks for the func-
tion within the same macro file. . . (user-defined function (e.g. ReturnAdd(a,
b) must be written in the same macro file. Here is how it looks like: a macro
that uses a function.

Figure 2.21: A macro file with function

In this simple case, you might not feel the convenience of the user-defined
function, but you will start to feel its power as you start writing longer
codes. Advantages of using function are

1. Once written in a macro file, it could be used as a single line function
as many times as you want in the macro file. This also means that
if there is a bug, fixing the function solves the problem in all places
where the function is used.

48

CMCI ImageJ Macro Course 2.5 Advanced Topics

2. Long codes could be simplified to an explicit outline of events. Such
as:

macro "whatever" {

function1;

function2;

function3;

}

Let’s go back to the code 14, the automatic threshold adjusting macro.

At the beginning of the code, we check if the active image if it is a stack.
There is another check after that, to see if the image is adjusted with thresh-
old level.

1 //Code 14

2 macro "Automatic Threshold Adjustment" {

3 if (nSlices==1) {

4 exit("Active window is not a stack");

5 }

6 getThreshold(lower, upper);

7 if ((lower==-1) && (upper==-1)) {

8 exit("Image must be thresholded");

9 }

10 w=getWidth();

code/code14.ijm

We can make a function for checking stack (line 3 to 5) and another function
that checks if the stack is adjusted with threshold level (from line 6 to 9) as
below.

1 //Code 16

2 function CheckStack() {

3 if (nSlices==1) {

4 exit("Active window is not a stack");

5 }

6 }

7

8 //Code 17

9 function CheckThreshold() {

49

CMCI ImageJ Macro Course 2.5 Advanced Topics

10 getThreshold(lower, upper);

11 if ((lower==-1) && (upper==-1)) {

12 exit("Image must be thresholded");

13 }

14 }

code/code16_17functions.ijm

Then the initial part of code 14 (line 3 to 9) can now be replaced with these
two functions15.

1 //Code 14.1

2 macro "Automatic Threshold Adjustment with function" {

3 CheckStack();

4 CheckThreshold();

5 getThreshold(lower, upper);

code/code14_1.ijm

Exercise 2.5.1-1

The following macro asks the user to input x and y coordinates of two
points, calculate the distance between those points and prints out the
distance. Modify the code so that the distance calculation is done in
a separate function.

1 //Code 18

2 macro "Calculate Distance" {

3 p1x = getNumber("point 1 x coordinate", 0);

4 p1y = getNumber("point 1 y coordinate",0);

5 p2x = getNumber("point 2 x coordinate",2);

6 p2y = getNumber("point 2 y coordinate",2);

7

8 sum_difference_squared = pow((p2x - p1x),2) + pow((

p2y - p1y),2);

9 distance = pow(sum_difference_squared, 0.5);

10

11 print("p1:", p1x, ",", p1y);

12 print("p2:", p2x, ",", p2y);

13 print("distance:" + distance);

15For a complete coding of 14.1, getThreshold(lower, upper) should appear again in line
8 to get lower and upper threshold value of the reference image.

50

CMCI ImageJ Macro Course 2.5 Advanced Topics

14 }

code/code18.ijm

Note that function pow() in the code is defined as

pow(base, exponent)
Returns the value of base raised to the power of exponent.

For example, pow(4, 2) returns 16.

2.5.2 Multi-parameter dialogue

In code 18 we examined above, user-interface is very poor since before
calculation the user must input. . . click. . . input. . . click. . . for total of four
times. To ease this exhausting series of input process, you could create a
dialog box that asks the user to input several parameters at once. We use
Dialog functions.

1 //Code 18.5

2 macro "Calculate Distance 2" {

3 Dialog.create("Calculate Distance");

4 Dialog.addMessage("Calculates distance between two points

");

5

6 Dialog.addNumber("point1 x:", 0); //number 1

7 Dialog.addNumber("point1 y:", 0); //number 2

8 Dialog.addNumber("point2 x:", 2); //number 3

9 Dialog.addNumber("point2 y:", 2); //number 4

10 Dialog.addNumber("Scale [um/pixel]:", 0.1); //number 5

11 Dialog.addCheckbox("scale?", true); //check 1

12

13 Dialog.show();

14

15 p1x = Dialog.getNumber(); //1

16 p1y = Dialog.getNumber(); //2

17 p2x = Dialog.getNumber(); //3

18 p2y = Dialog.getNumber(); //4

19 scale = Dialog.getNumber(); //5

20 scaleswitch = Dialog.getCheckbox();

21

51

CMCI ImageJ Macro Course 2.5 Advanced Topics

22 distance = CalcDistance(p1x, p1y, p2x, p2y);

23

24 if (scaleswitch) distance *= scale;

25

26 print("p1:" + p1x + "," + p1y);

27 print("p2:" + p2x + "," + p2y);

28 if (scaleswitch) {

29 print("distance:" + distance + " [um]");

30 } else {

31 print("distance:" + distance + " [pixels]");

32 }

33 }

code/code18_5.ijm

Figure 2.22: Custom Parameter Input Dialog

Line 2 to 9 creates a dialog box that has multiple input boxes that looks like
Fig. 2.22.

• Line 3 defines the title of the dialog window.

• Line 4 texts will be shown within the window.

• Line 5 to 11 defines the parameter input fields. Fields appear in the
dialog box in the order of lines with Dialog.addNumber function in
the macro. When you press OK button in the dialog box, parameter
will be stored in the same order.

52

CMCI ImageJ Macro Course 2.5 Advanced Topics

• Line 15 to 19 These values then are assigned to each variable by Dia-
log.getNumber().

• Line 20 Checkbox is independent from these number fields and the
value is returned by Dialog.getCheckbox(). When you check the
check box, the return value is 1. If not, the return value is 0. We
use this Boolean value (true or false) to decide if the scale will be
multiplied to the distance [pixel] in Line 24.

• Line 24 This if-statement does not have braces. Such simplification is
possible if there is one line when "if" is true.

You may also realize that the if statement in line 24 (and also in Line 28)
does not have comparison like == or < or so on. This is because switchscale
takes only 0 or 1 (boolean), which are interpreted as true (switchscale =
1) or false (switchscale = 0). So even without comparison, switchscale
is already a decision.

Exercise 2.5.2-1

Modify Code 5 so that two parameters are asked in a single dialog
box.

2.5.3 Global Variables

"Global variables" are variables that are defined outside macro or function
within the same macro file. So what is good about Global variables? For
instance in Code 18.5, we had a variable called scale. scale had to be
typed every time when you execute the macro. One way to avoid such
tedious interaction with the program is forget about the line 10 and 19,
where the user input is asked for the scale, and instead place something
like

scale = 0.1

somewhere at the beginning of the macro. This works OK, but the problem
appears when there are many macros in the file, since it will be a loads

53

CMCI ImageJ Macro Course 2.5 Advanced Topics

of work to find the variable scale in the file and change the value. It
could also be that the name of variable is not scale and something like
pixelsize, which then you have to check what this variable is doing. Fur-
thermore, it becomes redundant if you need to calculate the scale in every
macro. For this reason, you could define the scale only once in the macro
file such that:

1 //Code 18.75

2 var Gscale = 0.1;

3 macro "Calculate Distance 2" {

4 Dialog.create("Calculate Distance");

5 Dialog.addMessage("Calculates distance between two points

");

6

7 Dialog.addNumber("point1 x:", 0); //number 1

8 Dialog.addNumber("point1 y:", 0); //number 2

9 Dialog.addNumber("point2 x:", 2); //number 3

10 Dialog.addNumber("point2 y:", 2); //number 4

11 Dialog.addNumber("Scale [um/pixel]:", Gscale); //number

5

12 Dialog.addCheckbox("scale?", true); //check 1

13

14 Dialog.show();

15

16 p1x = Dialog.getNumber(); //1

17 p1y = Dialog.getNumber(); //2

18 p2x = Dialog.getNumber(); //3

19 p2y = Dialog.getNumber(); //4

20 scale = Dialog.getNumber(); //5

code/code18_75.ijm

var is a statement that tells macro interpreter to treat the variable as a
global variable. It should be always outside the scope (braces) of macro
or function. I replaced the default value in the scale input field of the
dialog.addnumber() at line 11 to Gscale, so that the initial value defined
in line 2 appears in the dialog box. The value in the field could be modified
by the user, but this does not affect the Gscale value defined in Line 2. This
is because the flow of information is:

54

CMCI ImageJ Macro Course 2.5 Advanced Topics

Gscale

> default value for the Dialog.addNumber field 5
> user changes the value

> stored in the Dialog.addNumber field 5
> scale = Dialog.getNumber (field 5)

So Gscale is referenced, but not modified. If you want to change the Global
value from inside the macro, you must redefine by such as

Gscale = scale;

In the macro set below, we test the use of global variable (+ function!). The
macro is for the conversion of pixel length into micrometer. The second
macro changes the scale value. I usually put G for all global variable. This
is not necessary, but in a file with many macros this is convenient.

1 //Code 19 ************* Global variable ************
2 var G_scale=0.2;

3

4 macro "convert pixel to um" {

5 length_pix = getNumber("Length? [pixel]", 10);

6 print(length_pix+" [pixel] --> " + Conv_pix2um(length_pix

) + " [um]");

7 }

8

9 function Conv_pix2um(in_pix){

10 in_um = in_pix * G_scale;

11 return in_um;

12 }

13

14 macro "Change Scale" {

15 new_scale = getNumber("Length? [pixel]", G_scale);

16 G_scale = new_scale;

17 print("scale chaged to " + G_scale + " [um/pixel]");

18 }

code/code19_globalVariable.ijm

Exercise 2.5.3-1

55

CMCI ImageJ Macro Course 2.5 Advanced Topics

Add another global variable G_scale_z ([µm]) for storing spacing in
z-axis. Change the first macro, that it calculates the size of Voxel in
um3. Then add another macro for changing the scale in Z axis.

2.5.4 String Arrays

Array is a powerful tool. before going into how to use it, here is an easy
explanation. Imagine that an array is a stack of boxes. Boxes could con-
tain either numbers or strings. For instance, if you have a following list of
strings:

Heidelberg, Hamburg, Hixton, Grenoble, Monterotondo

An array "EMBL" could be prepared and each array element could contain
one of these five strings.

Figure 2.23: EMBL array

Then when you want to retrieve some name from the array, you refer to the
address within the array. So EMBL[0] will be Heidelberg, EMBL[4] will be
Monterotondo, and so on. In such a way, files names contained in a folder
could be listed and stored, or x-y coordinates of free-hand ROI could be
stored for further use.

Here is a macro using the EMBL array example.

1 //Code 20

2 macro "EMBL array" {

3 EMBL = newArray(5);

56

CMCI ImageJ Macro Course 2.5 Advanced Topics

4 EMBL[0] = "Heidelberg";

5 EMBL[1] = "Hamburg";

6 EMBL[2] = "Hixton";

7 EMBL[3] = "Grenoble";

8 EMBL[4] = "Monterotondo";

9 address = getNumber("which address [0-4]?", 0);

10 if ((0<=address) && (address<4)) {

11 print("address"+address+" -> "+EMBL[address]);

12 } else {

13 print("That address is somewhere else not EMBL");

14 }

15 }

code/code20.ijm

• Line 3 uses a function that creates a new array (newArray()), defined
by a parameter for number of array elements (in the example case its
5) and its name EMBL.

• From line 4 to 8, each array from position 0 to 4 will be filled with
names (Array starts with 0th element).

• Line 9 asks the user to input the address (position) within the array.
Then this input address is examined if the address exists within the
EMBL array in line 10. EMBL.length returns the number of "boxes"
within the array. If this is satisfied, then line 10 prints out the string
in that address.

Array could be created and initialized with actual values at the same time,
so line 3 to 8 could be written in a single line like this:

EMBL = newArray("Heidelberg","Hamburg","Hixton","Grenoble",

"Monterotondo");

for (i = 0; i < EMBL.length; i++)

print(EMBL[i]);

57

CMCI ImageJ Macro Course 2.5 Advanced Topics

2.5.5 Numerical Array

Array could also contain numerical values, and this way of usage is more
common when you do image analysis. Here is a simple example of numer-
ical array that prints out intensity profile along selected line ROI.

1 //code 20.5

2 macro "get profile and printout" {

3 if (selectionType() !=5) exit("selection type must be a

straight line ROI");

4 tempProfile=getProfile();

5 output_results(tempProfile);

6 }

7 function output_results(rA) {

8 run("Clear Results");

9 for(i = 0; i < rA.length; i++) {

10 setResult("n", i, i);

11 setResult("intensity", i, rA[i]);

12 }

13 updateResults();

14 }

code/code20_5.ijm

• Line 3: Check if the selection type is a straight line ROI. If not, macro
terminates leaving a message.

selectionType()
Returns the selection type, where 0=rectangle, 1=oval, 2=polygon,
3=freehand, 4=traced, 5=straight line, 6=segmented line, 7=free-
hand line, 8=angle, 9=composite and 10=point. Returns -1 if there
is no selection.

• Line 4: Empty array tempProfile is loaded with the intensity profile
along the line ROI by getProfile().

• getProfile()
Runs [Analyze > Plot Profile] (without displaying the plot)
and returns the intensity values as an array.

58

CMCI ImageJ Macro Course 2.5 Advanced Topics

• Line 5: Passing the array tempProfile to function "output_results",
which prints the content of array in the table shown in the “Results”
window.

• Line 7 to 14: A function for outputting the profile array in the table
shown in the “Results” window. It takes an argument rA, which is
supposed to be an array.

• Line 8: Clears the results table.

• Line 9 to 12: for-loop to go through the array and to print out each
element.

• Line 10: Sets the pixel position along the segment in the column la-
beled "n".

• Line 11: Sets the content of the array (pixel intensity) in the column
labeled "intensity".

setResult("Column", row, value) Adds an entry to the ImageJ re-
sults table or modifies an existing entry. The first argument spec-
ifies a column in the table. If the specified column does not ex-
ist, it is added. The second argument specifies the row, where
0<=row<=nResults. (nResults is a predefined variable.) A row is
added to the table if row=nResults. The third argument is the value
to be added or modified.

• Line 13: Updates the table shown in the “Results” window.

updateResults() Call this function to update the "Results" window
after the results table has been modified by calls to the setResult()
function.

Exercise 2.5.5-1

Modify code 20.5 that the macro calculates the sum of all intensities.

Hint:

•• You do not need the function anymore.

59

CMCI ImageJ Macro Course 2.5 Advanced Topics

• for-loop should be used.

• Use tempProfile.length

2.5.6 Array Functions

Arrays could be directly treated using array functions. These functions are:

Array.concat(array1,array2) Returns a new array created by joining two
or more arrays or values.

Array.copy(array) Returns a copy of array.

Array.fill(array, value) Assigns the specified numeric value to each ele-
ment of array.

Array.findMaxima(array, tolerance) Returns an array holding the peak
positions (sorted with descending strength). Tolerance is the minimum
amplitude difference to needed to separate two peaks. There is an op-
tional ’excludeOnEdges’ argument that defaults to ’true’. Examples. Re-
quires 1.48c.

Array.findMinima(array, tolerance) Returns an array holding the min-
ima positions. Requires 1.48c.

Array.fourier(array, windowType) Calculates and returns the Fourier
amplitudes of array. WindowType can be "none", "Hamming", "Hann",
or "flat-top", or may be omitted (meaning "none"). See the TestArray-
Fourier macro for an example and more documentation. Requires 1.49i.

Array.getStatistics(array, min, max, mean, stdDev) Returns the min,
max, mean, and stdDev of array, which must contain all numbers.

Array.print(array) Prints the array on a single line.

Array.rankPositions(array) Returns, as an array, the rank positions of
array, which must contain all numbers or all strings.

60

CMCI ImageJ Macro Course 2.5 Advanced Topics

Array.resample(array,len) Returns an array which is linearly resampled
to a different length. Requires 1.47j.

Array.reverse(array) Reverses (inverts) the order of the elements in array.

Array.show(array) Displays the contents of array in a window. Requires
1.48d.

Array.show("title", array1, array2, ...) Displays one or more arrays in a
Results window (examples). If title (optional) is "Results", the window
will be the active Results window, otherwise, it will be a dormant Results
window (see also IJ.renameResults). If title ends with "(indexes)", a 0-
based Index column is shown. If title ends with "(row numbers)", the
row number column is shown. Requires 1.48d.

Array.slice(array,start,end) Extracts a part of an array and returns it.

Array.sort(array) Sorts array, which must contain all numbers or all
strings. String sorts are case-insensitive in v1.44i or later.

Array.trim(array, n) Returns an array that contains the first n elements of
array.

For example, array could be sorted and reversed:

EMBL = newArray("Heidelberg","Hamburg","Hixton","Grenoble",

"Monterotondo");

Array.print(EMBL);

Array.sort(EMBL);

Array.print(EMBL);

Array.reverse(EMBL);

Array.print(EMBL);

The output of this code is:

1 Heidelberg,Hamburg,Hixton,Grenoble,Monterotondo

2 Grenoble,Hamburg,Heidelberg,Hixton,Monterotondo

3 Monterotondo,Hixton,Heidelberg,Hamburg,Grenoble

61

CMCI ImageJ Macro Course 2.5 Advanced Topics

The first line is printed in the order when the array was initialized. After
sorting, names are in alphabetical order. Third line shows the reversed
elements.

2.5.7 Application of Array in Image Analysis

Build-in Macro Functions using Array

Many built-in macro functions return an array, to have multiple numerical
values as a singular object. Below is a list of those array-returning func-
tions.

Dialog.addChoice("Label", items)

Dialog.addChoice("Label", items, default)

Fit.doFit(equation, xpoints, ypoints)

Fit.doFit(equation, xpoints, ypoints, initialGuesses)

getFileList(directory)

getHistogram(values, counts, nBins[, histMin, histMax])

getList("window.titles")

getList("java.properties")

getLut(reds, greens, blues)

getProfile()

getRawStatistics(nPixels, mean, min, max, std, histogram)

getSelectionCoordinates(xCoordinates, yCoordinates)

getStatistics(area, mean, min, max, std, histogram)

makeSelection(type, xcoord, ycoord)

newArray(size)

62

CMCI ImageJ Macro Course 2.5 Advanced Topics

newMenu(macroName, stringArray)

Plot.create("Title", "X-axis Label", "Y-axis Label", xValues,

yValues)

Plot.add("circles", xValues, yValues)

Plot.getValues(xpoints, ypoints)

setLut(reds, greens, blues)

split(string, delimiters)

Accessing Intensity Profile

To learn the actual use of Array in Image analysis, we explore several ex-
ample applications. The first is to try using getProfile function to access
intensity profile from macro.

getProfile()
Runs Analyze>Plot Profile (without displaying the plot) and returns the
intensity values as an array. For an example, see the GetProfileExample
macro16. See also: Plot.getValues().

We create a macro that reads the line-profile from a segmented line ROI. Get
an array of pixel values along this segmented ROI using the getProfile

function, and then mean intensity and the standard deviation of the values
will be calculated and printed. Before running the macro code20_3.ijm, an
image (could be anything) with segment ROI selected should be the active
image (fig. 2.24).

1 //code 20.3

2 macro "get segmented line profile and get statistics" {

3 if (selectionType() !=6) exit("selection type must be

segmented line ROI");

4 pA = getProfile();

5 Array.print(pA);

63

CMCI ImageJ Macro Course 2.5 Advanced Topics

6 Array.getStatistics(pA, min, max, mean, stdDev);

7 print("Mean:", mean, " sd:", stdDev);

8 }

code/code20_3.ijm

Figure 2.24: An image with segmented ROI

• line3: Check if the selection type is a straight line ROI using function
selectionType. If not, macro terminates leaving a message.

selectionType()
Returns the selection type, where 0=rectangle, 1=oval,
2=polygon, 3=freehand, 4=traced, 5=straight line, 6=seg-
mented line, 7=freehand line, 8=angle, 9=composite and
10=point. Returns -1 if there is no selection.

• Line 4: Empty array pA is loaded with the intensity profile along the
segment ROI by getProfile().

• Line 5: This line is not necessary, just to print out the array contents
in the log window.

• Line 6: Does the array statistics. min, max, mean, stdDev will be
the variables to be loaded with the results of calculating statistics.

64

CMCI ImageJ Macro Course 2.5 Advanced Topics

• Line 7: Prints out the result of line 6 in the log window.

Exercise 2.5.7-1

Add some codes that the macro also prints out the total intensity
along the segment ROI. Use looping.

Extending Stack Analysis by Direct Measurements

We studied how to use for-loops to measure each frame/slice within a stack
(2.4.1). There we did measurements by firstly setting measurement param-
eters with run("Set Measurements...") and then did measurement by
run("Measure"). Measured values were shown in the table in the “Re-
sults” window. To use those measured values to e.g. calculate statistics or
plot the results, one should access the table in the “Results” window and
parse all the values. This is possible with the macro language, but we will
not try this method as it is indirect. Instead, we try to access directly to the
measured values and compute. There are two ways.

1. getRawStatistics(nPixels, mean, min, max, std, histogram)

2. List.setMeasurement

The function getRawStatistics measures statistical parameters from the
image and returns those values in the variables declared as arguments. In
other words, after having this command, variable mean will have the mean
intensity of the image 17. If a ROI is selected, mean intensity of that ROI will
be the value of mean. We could loop each slice/frame within a stack and
for each loop we could do getRawStatistics and store measured values
in arrays. This is doable, but has a drawback of using this function: the
available parameters to measure is limited.

The second method List.setMeasurement does not have this limitation.
One could measure many more parameters because all the available pa-

17In this example we used a variable named mean, but the name could be anything such
as a or b.

65

CMCI ImageJ Macro Course 2.5 Advanced Topics

rameters in [Analyze > Set Measurements...] are accessible with this
function. The basic usage is shown below.

1 List.setMeasurements;

2 mean = List.getValue("Mean");

3 print(mean)

This code measures the currently active image, extracts specific measure-
ment value (in the above case “Mean” intensity) and then prints out that
value in the log window. We could do this measurement for every loop
for stack slices/frames and store the results in arrays. Here is the code, a
modified version of code 10.

1 //Code 10.1

2 requires("1.42i");

3 macro "Measure Ave Intensity Stack" {

4 frames=nSlices;

5 meanA = newArray(frames)

6 sdA = newArray(frames)

7 for(i=0; i<frames; i++) {

8 currentslice=i+1;

9 setSlice(currentslice);

10 List.setMeasurements;

11 meanA[i] = List.getValue("Mean");

12 sdA[i] = List.getValue("StdDev");

13

14 }

15 Array.print(meanA)

16 Array.print(sdA)

17 }

code/code10_1.ijm

• Line 2: Checks the ImageJ version, since List.setMeasurements

function is only available after version 1.42i.

• Line 5, 6: Create new arrays with their length same as the number of
frames within the stack. These arrays will be used to store measure-
ment results.

66

CMCI ImageJ Macro Course 2.5 Advanced Topics

• Line7: for-loop going through each frames in the stack.

• Line 10: Do measurement. All the parameters will be stored in the
List.

• Line 11, 12: Retrieve the results, mean intensity and standard devia-
tion.

• Line 15, 16: Print out results in the log window.

Acquiring intensity profile from segmented line ROI

In recent version of ImageJ, selection thickness controls the width of seg-
mented line ROI when you do [Analyze > Plot Profile]). We try to
mimick this behavior in macro, and instead of choosing the line ROI thick-
ness using GUI, the macro asks the user to input the thickness.

In the code below, there is only one macro. Two functions are added at the
bottom. One is for profile plotting and the last one is for listing intensity
profile data in the result table. Strategy of this macro is to use straight
line selection for each segment, measure that segment and then profiles are
concatenated to the total profile array.

1 //code 20.75 Array application

2 macro "get segmented line profile wide" {

3 if (selectionType() !=6) exit("selection type must be

segmented line ROI");

4 getSelectionCoordinates(xCA, yCA);

5 width = getNumber("ROI Width?", 9);

6 op = "line=" + width;

7 run("Line Width...", op);

8 totalprofile = newArray(0);

9 for (i = 0; i < xCA.length-1; i++) {

10 makeLine(xCA[i], yCA[i], xCA[i+1], yCA[i+1]);

11 thisprofile = getProfile();

12 totalprofile = Array.concat(totalprofile, thisprofile);

13 }

14 K_createThickProfilePlot(totalprofile);

15 output_results(totalprofile);

16 }

17

67

CMCI ImageJ Macro Course 2.5 Advanced Topics

18 //*********Graph Plotting *******
19

20 function K_createThickProfilePlot(pA) {

21 Array.getStatistics(pA, min, max, mean, sdev);

22 Plot.create("Intensity profile", "pixels", "intensity");

23 Plot.setLimits(0, pA.length, min * 0.95, max * 1.05);

24 Plot.setColor("black");

25 Plot.add("line", pA);

26 Plot.show();

27 }

28

29 //results output to a table

30 function output_results(rA) {

31 run("Clear Results");

32 for(i = 0; i < rA.length; i++) {

33 setResult("n", i, i);

34 setResult("intensity", i, rA[i]);

35 }

36 updateResults();

37 }

code/code20_76.ijm

• Lines 2 - 16: Main part, macro for the segmented line ROI measure-
ment.

• Line 3: Check if the selection type is a segmented line ROI. If not,
macro terminates leaving a message.

• Line 4: Reads the x and y coordinates of the segmented line and store
them in two arrays xCA and yCA.

getSelectionCoordinates(xCoordinates, yCoordinates)
Returns two arrays containing the X and Y coordinates of the points
that define the current selection.

• Line 5 - 7: Asks the user to input width of the segmented ROI. The
ROI line width is set to that value.

• Line 8: A new array totalprofile is created, initialized without any
element. This new array will store the profile data of full ROI.

68

CMCI ImageJ Macro Course 2.5 Advanced Topics

• Line 9 - 13: Profile measurement by placing straight line ROI, for
wach segment of the original ROI. makeLine function is used for this
purpose, and getProfile returns intensity profile of the correspond-
ing line ROI. Profile data in thisprofile array are concatenated to
totalprofile array using Array.concat.

makeLine(x1, y1, x2, y2)
Creates a new straight line selection. The origin (0,0) is assumed
to be the upper left corner of the image. Coordinates are in pixels.
With ImageJ 1.35b and letter, you can create segmented line selec-
tions by specifying more than two coordinate, for example make-
Line(25,34,44,19,69,30,71,56).

• Line 14: Call graph plotting function (Line 20 - 27), passing totalprofile
array as an argument.

• Line 15: call function to printout the profile array in the results win-
dow (Lines 32 - 39).

• Line 20 - 27: Function for plotting the intensity profile.

• Line 21 : Use Array.getStatistics function to know the minimum
and the maximum value of the array that was given as argument.

• Line 22: Creates the window and axes of the plot.

• Line 23: Set the range for x and y axis using the results of line 21 min

and max. 5% of offset is added to both values for some margins below
and above.

• Line 24: Sets the color of the plot.

• Line 25: Plot the profile.

• Line 26: Show the plot on the screen (lot is hidden until this show()
function).

• Line 30 - 37: Function for outputting the profile array in the result
table. This function is exactly the same function you already used in
the previous chapter (code 20.5).

69

CMCI ImageJ Macro Course 2.6 File I/O

2.6 File I/O

Analysis of images requires both input and out put: input is to load images,
and output is to save either processed images or numerical data. If num-
ber of image files or quantity data is manageable by manual loading and
saving, we do not have to automate. But in some cases you need to process
a huge number of files. This often happens especially after you establish a
protocol and you want to get statistically sufficient amount of data. Then
you need to automate file input and output using macro. Once you learn
how to write File I/O program, you can process as much files as you want,
as long as your memory space allows.

2.6.1 Saving the Measurement Results Automatically

When you have a time series sequence and you want to measure multiple
signals with multiple parameters in each frame, measurement results in
each frame needs to be somehow saved. Here, we learn how to export
measurement results in your hard disk automatically using macro.

Open the sample image Nucseq001.tif. Cell nucleus shows that they di-
vide and increase their number over time. We want to count the number of
nucleus in each frame to know the dynamics of increase. At the same time,
we may also want to see changes in the signal intensity and shape. For this
measurement Particle Analysis function works best. Do the following:

1. [Image -> Adjust -> Threshold]. Threshold the image and check
the threshold lower and upper value that segments the nucleus optimally.

2. Set the measurement parameters. [Analysis -> set measurements...]

(a) Check Area, Mean intensity, centroid, Circularity and Slice number.

(b) Check "limit to threshold"

(c) Digits after decimal point: 2

3. [Analyze -> Analyze Particles...]

(a) Size: 10 - Infinity

(b) Circularity = 0.5 - 1.0

70

CMCI ImageJ Macro Course 2.6 File I/O

(c) Show: Outline

(d) Check Display Results

(e) Check Exclude on Edges

(f) Check Clear Results

4. Then click "OK".

After these steps, you will find outline image showing detected cells and a
result table.

(a) (b)

Figure 2.25: (a) Thresholded cell image and (b) Particle Analysis parameter input dialog.

Using macro recorder, its easy to write a macro set as following.

1 // Code 21

2 var G_Ddir = "D:_Kota\\CMCI\\course_macro\\"; //Windows

path

3 //var G_Ddir = "/Users/Kota/CMCI/course_macro/"; //OSX path

4

5 macro "Set Directory to save Results" {

6 G_Ddir = getDirectory("Choose Destination Directory");

7 print(G_Ddir);

8 }

9

10 macro "auto save results" {

11 getThreshold(lower, upper);

71

CMCI ImageJ Macro Course 2.6 File I/O

(a) (b)

Figure 2.26: After particle analysis is done, (a) outlined cell image and (b) results table
listing measurement results.

12 if ((lower == -1) && (upper == -1)) {

13 exit("Image must be thresholded");

14 }

15 setThreshold(lower, 255);

16 img_title = getTitle();

17 run("Set Measurements...", "area mean centroid shape

circularity slice limit redirect=None decimal=2");

18 run("Analyze Particles...", "size=10-Infinity circularity

=0.50-1.00 show=Outlines display exclude clear stack")

;

19 dest_filename = img_title+"_measure.xls";

20 fullpath = G_Ddir + dest_filename;

21 saveAs("Measurements", fullpath);

22 }

code/code21.ijm

Two macros and a global variable consists this macro set. Global variable is
a string variable that stores the path to the location where file will be saved.
(note: path is differently written in MacOS. It uses slash instead of back-
slash). The first macro Set Directory to save Results is for setting
the path to the folder (or directory) where the file will be saved. We use a
macro function getDirectory(title) to get user choice of a destination
folder.

72

CMCI ImageJ Macro Course 2.6 File I/O

getDirectory(title)
Returns the path to a specified directory. If title is "startup", returns the
path to the directory that ImageJ was launched from (usually the ImageJ
directory). If it is "plugins" or "macros", returns the path to the plugins
or macros folder. If it is "image", returns the path to the directory that the
active image was loaded from. If it is "home", returns the path to users
home directory. If it is "temp", returns the path to the /tmp directory.
Otherwise, displays a dialog (with title as the title), and returns the path
to the directory selected by the user. Note that the path returned by get-
Directory() ends with a file separator, either "(̈Windows) or "/". Returns
an empty string if the specified directory is not found or aborts the macro
if the user cancels the dialog box.

When you run this first macro, global string variable G_Ddir will be set to
a folder where user will select, and line 6 prints out the path to a folder (or
directory). It might be convenient for you to change the default directory
path in the code above (line 2), by copying the results in the log window
and pasting it in the macro.

The measurement macro starts from the Line 9.

• Line 10 to 13: Checks if the image is thresholded.

• Line 14: Sets the threshold level.

• Line 15: Gets the title of the image window for later use. We use this
for generating name of the results file.

• Line 16: to 17: Sets the measurement parameter and does the actual
particle analysis. Macro functions are direct copies from the recorder.

After the analysis, we want to save the results.

• Line 18: Generates the file name using the image file name stored in
the line 15 by concatenating concatenate image title with _measure.xls.

• Line 19: The full path file name is constructed by adding the result
filename generated in line 18 with path stored in the global variable.

73

CMCI ImageJ Macro Course 2.6 File I/O

• Line 20: Saving the result table as an excel-readable file uses a new
macro function saveAs:

saveAs(format, path) Saves the active image, lookup table, selec-
tion, measurement results, selection XY coordinates or text win-
dow to the specified file path. The format argument must be "tiff",
"jpeg", "gif", "zip", "raw", "avi", "bmp", "fits", "png", "pgm", "text im-
age", "lut", "selection", "measurements", "xy Coordinates" or "text".
Use saveAs(format) to have a "Save As" dialog displayed.

Path in line 20 is a full path constructed in the previous line 19.

Exercise 2.6.1-1

Create a new macro file and write the code 21. If it works, save the
macro as "macro_fileIO.ijm". We use it in the next section (.ijm is the
extension for imageJ macro). Then modify the code so that user can
change the size-range for the particle analysis. Save the file sepa-
rately.

2.6.2 Batch Processing of Files

What should we do if we have more stacks that should be analyzed? Should
we open each of the stack and execute the macro? A better idea is to au-
tomate the loading process also. For this, we modify and extend the code
written in the previous section. The tasks are:

• task a: List files in a folder.

• task b: Open a file, do analysis, save results and close the file.

• task c: Do this until all files are analyzed.

A very useful function for task a is getFileList(path).

getFileList(directory)
Returns an array containing the names of the files in the specified direc-
tory path. The names of subdirectories have a "/" appended.

74

CMCI ImageJ Macro Course 2.6 File I/O

You need to set the path to the source image containing folder (directory).
We learn this macro function in the following short macro.

1 // Code 22

2 macro "List files in a folder" {

3 dir = getDirectory("Choose a Directory ");

4 list = getFileList(dir);

5 for(i = 0; i < list.length; i++) {

6 print(list[i]);

7 }

8 }

code/code22.ijm

Run this macro and if you choose a folder in the sample image folder con-
taining four stacks, macro prints out texts in Log window. It should then
look like figure 2.27.

Figure 2.27: Output of code 22

• Line 2: Asks the user to select a folder. Variable dir is then stored
with the full path to the folder.

• Line3 uses the getFileList function, and reads out the file names as
a string array and stored in List (array).

• Line 4 to 6 is a loop. list.length returns the length of the list. In
this way, all the contents are printed out in the window. We use this
getFileList function to process multiple files automatically.

75

CMCI ImageJ Macro Course 2.6 File I/O

Let’s modify code 22 so we can measure multiple stacks automatically.
Code 23 (see below) works like this: You must first set two things:

1. Full path to the destination folder where the results will be saved.
Macro Set Directory to save Results

2. Threshold level for the particle analysis. Macro set the threshold

lower level

The first setting task is the same as you did in code 22. The second setting
is done by manually opening a stack (may be the first one in the files) and
manually setting the threshold as you like, then execute the second macro
below. In both these settings, parameters will be saved in global variables
and will be used in the main program.

When you run the main macro (Multiple measurement) after these two
settings, the program asks you where the files are. As soon as you select a
folder where files are contained, then processing and saving just proceeds
automatically.

1 // Code 23

2

3 var G_Sdir = "D:_Kota\\CMCI\\";

4 var G_Ddir = "D:_Kota\\CMCI\\";

5 var G_threshold_lower = 20;

6 var G_threshold_upper = 255;

7

8

9 macro "Set Directory to save Results" {

10 G_Ddir = getDirectory("Choose Destination Directory");

11 print(G_Ddir);

12 }

13

14 macro "set the threshold lower level" {

15 getThreshold(lower, upper);

16 if ((lower == -1) && (upper == -1)) {

17 exit("Image must be thresholded");

18 }

19 G_threshold_lower = lower;

20 }

76

CMCI ImageJ Macro Course 2.6 File I/O

21

22 macro "Multiple measurement" {

23 G_Sdir = getDirectory("Choose the Directory where the

file is");

24 list = getFileList(G_Sdir);

25 for(i = 0; i<list.length; i++) {

26 NucAnalysis(list[i]);

27 }

28 }

29

30 function NucAnalysis(img_filename) {

31 fullpath_image = G_Sdir + img_filename;

32 open(fullpath_image);

33 sourceID = getImageID();

34 setThreshold(G_threshold_lower, G_threshold_upper);

35 img_title = getTitle();

36

37 run("Set Measurements...", "area mean centroid

circularity slice limit redirect=None decimal=2");

38 run("Analyze Particles...", "size=10-Infinity circularity

=0.50-1.00 show=Outlines display exclude clear stack")

;

39 selectImage(sourceID);

40 close();

41

42 dest_outlinename = img_title + "_outline.tif";

43 fullpath = G_Ddir + dest_outlinename;

44 saveAs("tiff", fullpath);

45 close();

46

47 dest_filename = img_title+"_measure.xls";

48 fullpath = G_Ddir + dest_filename;

49 print(fullpath);

50 saveAs("Measurements", fullpath);

51 }

code/code23_FileIO_02.ijm

Now we have three macros and four global variables.

• Line 3: global string variable for storing path to the source folder.

77

CMCI ImageJ Macro Course 2.6 File I/O

• Line 4: global string variable for storing path to the destination folder,
where results will be saved.

• Line5 and 6: Global numerical variables for storing threshold upper
and lower values.

• Macro Set Directory to save Results: Line 9 to 12: First macro.
This is used to set the path to the destination folder. The function is
same as code 22.

• Macro set the threshold lower level: Line 14 to 20: This macro
is for storing the lower value of the threshold in global variables, the
values of which will be used in the main macro. You might have seen
a similar code already: code 17, function for checking if the image is
thresholded. Only difference is that in this code 23, lower threshold
value is stored in the global variable defined in line 5. Upper value is
not touched, kept to 255.

• Macro Multiple measurement: Line 22 to 28: This is the main macro
(third one in this macro set). Line 23 asks the user where the files are.
This path to the source file is stored in the global variable defined in
line 3. Then in line 24, a list of files contained in source folder is gen-
erated and stored in the array list. From line 25 to 27 is a small for-
loop, the number of loop is same as the length of the list. In this loop,
name of file is passed one by one to the function NucAnalysis() that
does the actual analysis. . .

• function NucAnalysis(img_filename): Line 30 to 51 is the core of
analysis. img_filename is string variable for file names in the list
array, given as argument.

– Line 31: Using img_filename, the full path name is constructed
by combining two strings.

– Line 32: A file is opened by open(path) function.

open(path)
Opens and displays a tiff, dicom, fits, pgm, jpeg, bmp, gif,
lut, roi, or text file. Displays an error message and aborts the
macro if the specified file is not in one of the supported for-
mats, or if the file is not found. Displays a file open dialog box

78

CMCI ImageJ Macro Course 2.6 File I/O

if path is an empty string or if there is no argument. Use the
File>Open command with the command recorder running to
generate calls to this function. With 1.41k or later, opens im-
ages specified by a URL.

– Line 33: After opening image, its ImageID is stored in the vari-
able sourceID.

– Line 34, the image is thresholded according to the global vari-
ables for the lower and the upper values.

– Line 35: Title of the image, which actually is the file name, is
retrieved and stored in the variable img_title.

– Line 38: The particle analysis is then applied to the image (Lines
34 to 37 are same as lines 14 to 17 in code 21).

– Line 38: Source image you opened from the hard disk is acti-
vated and then closed in line 39. Activation of the image by
selectImage() is required, because there is already a new stack
(outline stack!), so that original stack is already behind. There-
fore to close the original, one must activate the image by using
selectImage() function.

– After all these processing and measurement, results will be saved.
Lines 42 to 45 saves the outline stack. Outline stack is also closed
after saved (line 45). Line 47 to 50 is exactly same as the Result
table saving you did in code 21 (lines 18 to 20). Line 49 is added,
just for an additional information printout in Log window.

2.6.3 Working with Strings

With some advanced macro programming, you might need to manipulate
Strings (texts) from your code. For example, let’s think about a title of an
image “exp13_C0_Z10_T3.tif”. Such naming occurs often to indicate that
this image is from the third time point (T3), at the 11th slice (Z10, imagine
that the Z slice numbering starts from 0) and its the first channel (C0).

We might be lucky enough to read out its dimensional information from
header, but quite often such information is only available in the file name
(the title of the image). To extract dimensional information from file name,

79

CMCI ImageJ Macro Course 2.6 File I/O

we need to know how to deal with strings in macro to decompose those
strings and extract information that we need. Build-in macro functions
which are related to such tasks with strings are the following.

lengthOf(str)

substring(string, index1, index2)

indexOf(string, substring)

indexOf(string, substring, fromIndex)

lastIndexOf(string, substring)

startsWith(string, prefix)

endsWith(string, suffix)

matches(string, regex)

replace(string, old, new)

Let’s go back to the example file name “exp13_C0_Z10_T3.tif” again. If
we need to get the file name without file extension, what should we do?
Several ways are there, but lets start with the simplest way.

We already know that all the file names are in the TIFF format, so all file
names end with “.tif”. We could remove this suffix by replacing the “.tif”
with a string with length 0. We could do this by using replace.

1 name = "exp13_C0_Z10_T3.tif";

2 newname = replace(name, ".tif", "");

3 print(newname);

This will print out "exp13_C0_Z10_T3" in the log window. In the second
line, the function replace is used. The old string ".tif" is replaced by a new
0 length string "". So it works!

80

CMCI ImageJ Macro Course 2.6 File I/O

But what if our lucky assumption that all files end with ".tif" is not true
and it could be anything? To work with this, we now need to use different
strategy to know the file extension.

By definition, file extension and the file name is separated by a dot. Length
of the extension could be different, as some extension such as a python file
is ".py" and a C code is ".c". Thus, we cannot assume that the length of the
file extension is constant, but we know that there is a dot.

For such cases with variable length of file extension being expected, we first
need to know about the index of the dot within file name. Each character
within file name is positioned at certain index from the beginning of the
name. In the example we are now dealing with, the index 0 is “e”. The
index 1 is “x”. Since the index starts from 0, the last index will be total
length of the file name minus one. You could modify the code above like
below to try getting the length of the file name.

1 name = "exp13_C0_Z10_T3.tif";

2 tlength = lengthOf(name);

3 print(tlength);

You should see “19” in the log window. That is the length of this file name.
So in this example string, index starts from 0 and the last index is 18.

Next, we use the function substring(string, index1, index2). With
this function, you could extract part of the string by giving the start index
(index1) and the end index (index2) as arguments. We could just try this by
again modifying the code above.

1 name = "exp13_C0_Z10_T3.tif";

2 subname = substring(name, 0, 3);

3 print(subname);

The output after running this code is “exp” printed in the log window. The
second argument of the function substring is 0, and the third is 3. This
tells the function substring to extract characters from the index 0 to the
index 2 (so the third argument will be the index just after the last index that
would be included in the substring).

81

CMCI ImageJ Macro Course 2.6 File I/O

Exercise 2.6.3-1

Test changing the second and the third argument so that different part
of the file name is extracted.

How could we know the index of the dot? For this we use the indexOf(string,
substring). Try the following code.

1 name = "exp13_C0_Z10_T3.tif";

2 dotindex = indexOf(name, ".");

3 print(dotindex);

Now you know that the index of dot is “15”. We could then combine the
knowledge we have now to compose a single macro that extracts the file-
name without file extension.

1 name = "exp13_C0_Z10_T3.tif";

2 dotindex = indexOf(name, ".");

3 filename = substring(name, 0, dotindex);

4 print(filename);

Let’s make the problem a bit more complicated. If the file name contains
multiple dots, what should we do? In the example below, I added two more
dots.

1 name = "exp13._C0._Z10_T3.tif";

2 dotindex = indexOf(name, ".");

3 filename = substring(name, 0, dotindex);

4 print(filename);

Output is now “exp13”. Far from what we need. To treat such case, we use
lastIndexOf, which returns the index of the last appearance of the given
character. Let’s slightly modify the code.

1 name = "exp13._C0._Z10_T3.tif";

2 dotindex = lastIndexOf(name, ".");

3 filename = substring(name, 0, dotindex);

4 print(filename);

82

CMCI ImageJ Macro Course 2.6 File I/O

It should then working again as we want.

Let’s change our task: We now want to know the time point that this image
was taken. How should we do that? Examining the file name again, we
realize that the time point number appears after “T”. The number could be
any length of digits, but currently is 0. Then the dot comes right after the
number. We then just need to know the index of “T” . . . but wait, we might
have “T” anywhere, as this is a single character alphabet that could easily
be a file name. Therefore we find the index of “_T” that looks like more
specific.

1 name = "exp13._C0._Z10_T3.tif";

2 timeindex = indexOf(name, "_T");

3 print(timeindex);

Now we know that “_T” is at index 14, so the number should start from the
index 16 (because index 15 will be “T”). Taken this into account, we could
extract the time point.

1 name = "exp13._C0._Z10_T3.tif";

2 timeindex = indexOf(name, "_T");

3 dotindex = lastIndexOf(name, ".");

4 timepoint = substring(name, timeindex + 2, dotindex);

5 print(timepoint);

The time point that you have just now captured is a string. You can not
pass this to mathematical assignments. To do so, you need to convert this
to a number. For doing so, you could use parseInt(string).

1 name = "exp13._C0._Z10_T3.tif";

2 timeindex = indexOf(name, "_T");

3 dotindex = lastIndexOf(name, ".");

4 timepoint = substring(name, timeindex + 2, dotindex);

5 timepoint = parseInt(timepoint);

6 print(timepoint * 2);

An example case where conversion of string to number (in this case an
integer) required would be when you need to compare such file names and

83

CMCI ImageJ Macro Course 2.7 Secondary Measurement

get the maximum time point from all the file names. Usage is diverse, but
at some point you need to use this. If you need a Float number (numbers
with decimal point), use parseFloat(string).

2.7 Secondary Measurement

In this section we learn a macro usage which you may often encounter
in actual situations: We do certain measurement first. We then use results
from this first measurement for setting parameters of second measurement.

We take following example of secondary measurement:

1. We first measure XY coordinates of moving particles by particle track-
ing.

2. Using these XY data, we measure changes in pixel intensity of the
particle.

There could be two cases of how you get the data out and load it into cur-
rently running macro. First is to do so directly from data table within Im-
ageJ, and the other is to access data file saved in hard disk. We learn both.

2.7.1 Using Values in Results Window

ParticleTracker is an excellent plugin for automated tracking of spherical
particles18. We use this plugin first to get tracked data.

Exercise 2.7.1-1

Open sample image stack TransportOfEndosomalVirus.tif. Then do
[Plugins > Particle Detector & Tracker> Particle Tracker].

18As of Nov. 2010, we have a largely updated version of ParticleTracker plugin available
at the ETH site. This 2D/3D implemented version could be downloaded from ETH site
http://www.mosaic.ethz.ch/Downloads/ParticleTracker.This plugin is added
with many new features but there is some bugs still. With some measurement conditions,
the new plugin returns error and crashes. For this reason, please download the plugin
from CMCI site for the exercise in this textbook. http://cmci.embl.de/downloads/
particletracker2d.

84

 http://www.mosaic.ethz.ch/Downloads/ParticleTracker
http://cmci.embl.de/downloads/particletracker2d
http://cmci.embl.de/downloads/particletracker2d

CMCI ImageJ Macro Course 2.7 Secondary Measurement

A parameter input dialog window appears. Fill in parameters as fol-
lows:

• radius: 3

• cutoff: 0

• percentile: 0.3

• link range: 1

• distance: 20

Now, you should see a results window that looks like figure 2.28. In there,

Figure 2.28: ParticleTracking Results

it should be reported that over 100 trajectories were detected. You could
see how they look like by clicking "Visualize All Trajectories". Another
window overlaid with colorful tracks appears (Fig. 2.29a). Click "Filter
Options" and input 10, so that short trajectories become invisible in the
window. Use your mouse and select one of trajectory by clicking. Rectangle
ROI is created in the surrounding of the selected track. Go back to the

85

CMCI ImageJ Macro Course 2.7 Secondary Measurement

Results window (Fig. 2.28) and click "Focus on Selected Trajectory". Then
you will see another window is created with only the track you chose (Fig.
2.29). Check carefully if the tracking was done properly. If you are satisfied,
go back to the result window (Fig. 2.28) again then click "selected trajectory
to Table". You will then find the trajectory data is transferred to the Results
table of ImageJ (Fig. 2.30).

(a) (b)

Figure 2.29: (a) ParticleTracking Trajectories, all, and (b) Focus on Single Track.

So now, what we have to do is access results table, get XY coordinates from
there and do intensity measurements at corresponding positions. To get
data out of results table, we use the following macro function:

getResult("Column", row)
Returns a measurement from the ImageJ results table or NaN if the speci-
fied column is not found. The first argument specifies a column in the ta-
ble. It must be a "Results" window column label, such as "Area", "Mean"
or "Circ.". The second argument specifies the row, where 0<=row<nResults.

86

CMCI ImageJ Macro Course 2.7 Secondary Measurement

Figure 2.30: ParticleTracking Results transferred to ImageJ Results Table

nResults is a predefined variable that contains the current measurement
count. (Actually, it’s a built-in function with the "()" optional.) Omit the
second argument and the row defaults to nResults-1 (the last row in the
results table). See also: nResults, setResult, isNaN, getResultLabel.

Let’s first test with a short macro that reads data from Results table and
print out XY coordinates in the Log window.

1 for (i = 0; i < nResults; i++){

2 frame = getResult("Frame", i) + 1;

3 ypos = getResult("x", i);

4 xpos = getResult("y", i);

5 print(frame + ", " + xpos + ", " + ypos);

6 }

code/code24.ijm

At line 1, nResults is a function that returns the number of rows in the
Results table. Frame number is added with 1 in the line 2 because frame
number in ParticleTracker plugin starts from 0, while it starts from 1 in
ImageJ. In line 3 and 4, xpos and ypos is inverted, because ParticleTracker
program was originally wrote in Matlab and for that convention (in Matlab,

87

CMCI ImageJ Macro Course 2.7 Secondary Measurement

vertical diretion is called "X" and horizontal direction is called "Y", and this
is common to matrix calculation software since row = X and column = Y),
XY data should be inverted for use in in ImageJ.

If you check the log window and if you are confident with data read out
from Results window, we could now add the code with lines to measure
intensity by placing circular ROI at XY coordinates of trajectory. Here we
go.

1 stacktitle = "TransportOfEndosomalVirus.tif";

2 diam = 9;

3 offset = floor(diam/2);

4

5 for (i = 0; i < nResults; i++){

6 frame = getResult("Frame", i) + 1;

7 ypos = getResult("x", i);

8 xpos = getResult("y", i);

9 print(frame + ", " + xpos + ", " + ypos);

10 selectWindow(stacktitle);

11 setSlice(frame);

12 makeOval(xpos-offset, ypos-offset, diam, diam);

13 getRawStatistics(nPixels, mean, min, max, std);

14 setResult("RoiInt", i, mean);

15

16 }

code/code24_5.ijm

Running this macro, you should see a new column in Results window with
header title "RoiInt", where measured intensity is listed (Fig. 2.31).

Explanation of the code: In the first line, we set the name of the image stack
so that we are sure with which window to be measured with intensity. Line
2 and 3 are for setting the size of oval ROI.

The way oval ROI is created is what you have learned already in detail
in the section 2.4.3. getRawStatistics() returns basic parameters of the
selected ROI, and is more convenient than using run("Measure").

getRawStatistics(nPixels, mean, min, max, std, histogram)
This function is similar to getStatistics except that the values returned

88

CMCI ImageJ Macro Course 2.7 Secondary Measurement

Figure 2.31: Results Table with Intensity Measurement
Column "RoiInt"

89

CMCI ImageJ Macro Course 2.7 Secondary Measurement

are uncalibrated and the histogram of 16-bit images has a bin width of
one and is returned as a max+1 element array. For examples, refer to the
ShowStatistics macro set. See also: calibrate and List.setMeasurements

2.7.2 Using values in non-Results table

Next, we study a case when data are shown in non-Results Table. Man-
ual Tracking plugin is another way of measuring particle movement, and
utilizes non-Results table.

Exercise 2.7.2-1

Open sample image stack TransportOfEndosomalVirus.tif and track
at least two virus manually19. In ImageJ, you should install this plu-
gin by yourself. In Fiji, Manual Tracking plugin could be found at
[Plugins > tracking >].

After the tracking, we have a results table that looks like figure 2.32.

To extract these data and use it for the secondary measurement, you might
immediately think of using getResult(column header, row) as we did
in the previous subsection.

That should then be pretty straight forward. . . But if you try this, you would
see that this function returns error and does not work in case of Manual
Tracking plugin. This is because result table created by Manual Tracking
plugin is not the genuine ImageJ Results window. For such non-genuine
results window, we retrieve data using the following function.

getInfo("window.contents")
If the front window is a text window, returns the contents of that window.
If the front window is an image, returns a string containing the text that
would be displayed by Image>Show Info. Note that getImageInfo() is
a more reliable way to retrieve information about an image. Use
split(getInfo(),"\n")

19For detailed instruction on how to use Manual tracker, see corresponding section in
CMCI Image Processing and Analysis Course I Basic.

90

CMCI ImageJ Macro Course 2.7 Secondary Measurement

Figure 2.32: Manual Tracking Results

91

CMCI ImageJ Macro Course 2.7 Secondary Measurement

to break the string returned by this function into separate lines. Replaces
the getInfo() function.

This function returns a string with the content of the table. Try the follow-
ing two lines to see how it works.

str = getInfo("window.contents");

print(str);

If you run these two lines, you will see data printed out in the Log window
(Fig. 2.33).

Figure 2.33: Manual Tracking Results in Log window

So far so good, we succeeded in getting data out of the results table. Then
what we need to do now is to play around with the str variable, where all
the data is now contained as a chunk. Since this chunk of data is not usable
directly, we first split the str to single lines of a string array. For this we
use the split function, the definition of which is

split(string, delimiters)
Breaks a string into an array of substrings. Delimiters is a string contain-
ing one or more delimiter characters. The default delimiter set " \t\n\r"
(space, tab, newline, return) is used if delimiters is an empty string or

92

CMCI ImageJ Macro Course 2.7 Secondary Measurement

split is called with only one argument. Returns a one element array if no
delimiter is found.

Using this function to convert the string to a string array and adding two
more lines to check the content of the array, the code now looks like this:

str = getInfo("window.contents");

//print(str);

strA = split(str, "\n");

print(strA[0]);

print(strA[1]);

We use the delimiter \n which means "new line", a hidden character in str

that feeds a new line to form a table. When we run the above code we will
see two lines of data shown in the log window (Fig. 2.34).

Figure 2.34: Two Lines from data in the Log window

We then still need to split each single line to individual data for each col-
umn. We modify the code as follows:

str = getInfo("window.contents");

strA = split(str, "\n");

lineA = split(strA[1], "\t");

print(lineA[3]);

93

CMCI ImageJ Macro Course 2.7 Secondary Measurement

We use the delimiter \t, which means "tab", to convert a single line to an
array of individual pieces of data (one element for each column).

Figure 2.35: Elementary data in the Log window

The value shown in the Log window (Fig. 2.35) should be the same as the
X value in the first row of the original table (Fig. 2.32).

We now know how to access individual data values within str, by first
splitting it with delimiter \n and then by \t. We can print all XY coordi-
nates in the Log window with the following code.

1 //code 25

2 str = getInfo("window.contents");

3 strA = split(str, "\n");

4 trackA = newArray(strA.length);

5 frameA = newArray(strA.length);

6 xA = newArray(strA.length);

7 yA = newArray(strA.length);

8 for (i = 0; i < strA.length; i++){

9 lineA = split(strA[i], "\t");

10 trackA[i] = lineA[1];

11 frameA[i] = lineA[2];

12 xA[i] = lineA[3];

13 yA[i] = lineA[4];

14 }

15 // checking

16 for (i = 0; i < trackA.length; i++)

17 print(xA[i] + ", " + yA[i]);

code/code25.ijm

94

CMCI ImageJ Macro Course 2.7 Secondary Measurement

If you encounter an error message with lineA[] such as shown in fig.2.36,
this is just because there is another text widow open and the getInfo()

function worked on that window rather than the results table of the Manual
Tracking. To avoid such error, close the extra text windows and then try
running the macro again.

Figure 2.36: Possible Error Message with Code25 and Code25.5

From line 4 to 7, new arrays are generated to store data from four columns
in the for-loop from line 8 to 14.

Figure 2.37: Elementary data in the Log window

95

CMCI ImageJ Macro Course 2.7 Secondary Measurement

Check the log window (Fig. 2.37), compare the output with the manual
tracker results table, and if you are confident that you are accessing the
right data in the table, you could then use the XY coordinates to place a
circular ROI, measure the average intensity in that area and list them in the
ImageJ Results window.

1 //code 25.5

2 stacktitle = "TransportOfEndosomalVirus.tif";

3 str = getInfo("window.contents");

4 strA = split(str, "\n");

5 trackA = newArray(strA.length);

6 frameA = newArray(strA.length);

7 xA = newArray(strA.length);

8 yA = newArray(strA.length);

9 for (i = 0; i < strA.length; i++){

10 lineA = split(strA[i], "\t");

11 trackA[i] = lineA[1];

12 frameA[i] = lineA[2];

13 xA[i] = lineA[3];

14 yA[i] = lineA[4];

15 }

16 diam = 9;

17 offset = floor(diam/2);

18 intA = newArray(xA.length);

19 for (i = 1; i< xA.length; i++){

20 selectWindow(stacktitle);

21 setSlice(frameA[i]);

22 makeOval(xA[i]-offset, yA[i]-offset, diam, diam);

23 getRawStatistics(nPixels, mean, min, max, std);

24 intA[i] = mean;

25 print(xA[i] + " , " + yA[i] + ": mean int="+ intA[i]);

26 setResult("track num", i-1, trackA[i]);

27 setResult("Slicenum", i-1, frameA[i]);

28 setResult("X", i-1, xA[i]);

29 setResult("Y", i-1, yA[i]);

30 setResult("RoiInt", i-1, intA[i]);

31 }

code/code25_5.ijm

Running this code, you should see a Results window that looks like figure

96

CMCI ImageJ Macro Course 2.7 Secondary Measurement

2.38, tracking data plus measured intensity is shown in the column titled
"RoiInt". The way the oval ROI is used to measure the mean intensity is
similar to what we have coded in the previous subsection. A difference is
that this time, we use arrays that store data extracted by splitting the chunk
of string data.

Figure 2.38: Manual Tracker Results in IJ Results table
now with measured intensity column RoiInt

We then successfully measured the intensity dynamics of moving object
again.

97

CMCI ImageJ Macro Course 2.7 Secondary Measurement

2.7.3 Accessing Data File: Simple Case

In this section and in the next section, we study how to access data in saved
file for secondary measurements.

Two cases we studied so far were both accessing data listed in a table that is
already loaded in ImageJ (data is already an instance of ImageJ). What if we
want to use data that is saved as a file? For example, we want to use results
of Manual Tracking (previous section) that was saved as an .xls file and
you want to use its data for secondary measurement. More generally, you
did particle tracking using different software such as Imaris Track, and you
want to use coordinate data from that analysis for intensity measurement
to be done in ImageJ. In such cases, we should access tabulated data in file
accessing from ImageJ.

In this section, we try accessing data saved by Manual Tracking. Loading
data file could be done by a small modification of the code we studied in the
previous section. Instead of the function getInfo("window.content")

in line 3 of code 25.5, we use FileOpenAsString(path) to retrieve file
content into a string variable. By leaving the argument path blank (""), user
will be asked for choosing a file. Since this is a simple one-line replacement
of line 3 of code 25.5, below is the new code but only showing its first 10
lines.

1 //code 26

2 stacktitle = "TransportOfEndosomalVirus.tif";

3 str = File.openAsString("");

4 strA = split(str, "\n");

5 trackA = newArray(strA.length);

6 frameA = newArray(strA.length);

7 xA = newArray(strA.length);

8 yA = newArray(strA.length);

9 for (i = 0; i < strA.length; i++){

10 lineA = split(strA[i], "\t");

code/code26.ijm

To run this macro, be sure that you have your stack already opened, as it is
required for measuring intensity.

98

CMCI ImageJ Macro Course 2.7 Secondary Measurement

2.7.4 Accessing Data File: Complex Case

We now try making use of data file with more complex format. In the case
we studied with Manual Tracking plugin in the previous section, data for-
mat was pretty straight forward so we did not have to do much work for
dealing with the data format. In general, things are not so simple and one
must figure out some way to decode the format for using it in secondary
measurement.

Automatic tracking plugin "ParticelTracker" allows you to save trajectory
data by "Save Full Report" button in the results interface (see Fig. 2.28). We
try to access this data. 20

First, you must prepare the data file.

Exercise 2.7.4-1

Open sample image stack TransportOfEndosomalVirus.tif. Then do
[Plugins > Particle Detextor & Tracker> Particle Tracker].
An interface appears, so fill in the parameters as follows:

• radius: 3

• cutoff: 0

• percentile: 0.3

• link range: 1

• distance: 20

Click "Save Full Report" and save the data file in the folder where
sample image stack "TransportOfEndosomalVirus.tif" is. Saving dia-
log will come up with a proposal of file name to be "Traj_<filename>.txt"
so do not change that and simply click Save (this file name will be
important). Close the Results interface. Do not close the image stack
TransportOfEndosomalVirus.tif, as we will use it still in the follow-
ing.

20This technique is especially important if you want to do automated particle tracking
of many data. A new feature in ParticleTracker plugin released in Nov. 2010 is that when
ParticleTracker is called from macro, it automatically saves data in folder where the image
file is located. We then are able to process many files using macro, even recursively, and get
tracking data automatically. For this reason technique for accessing ParticleTracker data file
is valuable.

99

CMCI ImageJ Macro Course 2.7 Secondary Measurement

Now you are ready with data, so we try loading data into ImageJ/Fiji. Run
the following code.

1 //code27

2 path = getDirectory("image");

3 filename = getTitle();

4 txtfile = "Traj_" + substring(filename, 0, lengthOf(

filename)-4) + ".txt";

5 fullpath = path+txtfile;

6 print(fullpath);

7

8 if (!File.exists(fullpath))

9 exit("data file not found");

10

11 str = File.openAsString(fullpath);

12 print(str);

code/code27_PTfileaccess.ijm

You now have all the values in the log window, that should look like fig.
2.39.

Figure 2.39: ParticleTracker data loaded to Log Window

100

CMCI ImageJ Macro Course 2.7 Secondary Measurement

Before getting into data file structure, let’s look at what we have done in the
code above. You might then study about how to deal with string, extracting
parts of it.

• Line 2: getDirectory function with option ("image") will return
a path of the last-opened image location. This will be where the file
"TransportOfEndosomalVirus.tif", inside the sample image folder.

• Line 3: Filename of the image "TransportOfEndosomalVirus.tif" is
acquired.

• Line 4: Generating the file name of the data file. "Traj_" is the pre-
fix that was automatically added to the data file name. Function
substring extracts part of the string variable, and in our case, we
try to get the image file name without ".tif". Definition of substring
function is as follows.

substring(string, index1, index2)
Returns a new string that is a substring of string. The substring
begins at index1 and extends to the character at index2 - 1. See
also: indexOf, startsWith, endsWith, replace.

index1 should be 0, as we want from the beginning of the file name,
and index2 should be 4 strings before the last string so we need the
total length of the string. For this we use lengthOf function.

lengthOf(str)
Returns the length of a string or array.

In this way, we construct the file name we want to access (the name
of which originally is automatically generated when saving the data
in Particle Tracker interface) the file further setting the full path to the
file in line 5.

• Line 8: This line checks if the file full path generated above is valid.
File.exists(full-path-to-file) returns false if there is no such
file. In that case, we should not proceed more so macro terminates at
line 8.

101

CMCI ImageJ Macro Course 2.7 Secondary Measurement

• Line 11: If everything is ok, then the file is opened as a string, and the
string will be printed in Log window by line 12.

ParticleTracker data file consists of three parts.

1. Header: contains information on the condition of tracking.

2. Detected Particles: Detected particles in each frame is listed.

3. Trajectories: Trajectories are listed, one by one.

Since we need to access trajectory information, we need to go through the
data string to reach the third part of the data structure. To do so we split
the file by lines (\n), then loop through the array to find the position where
the trajectory information is contained.

We examine the data file in detail, to see what could be the marker for the
starting and end point of each trajectory. Here is a part of data, that is a
directly copy and pasted below.

24 154.894485 137.063614 7.338140 3.316167 15.683273

25 154.217377 138.368927 7.087145 3.417947 0.188002

%% Trajectory 37

15 22.111439 204.511826 9.726052 3.180977 28.252821

16 8.837964 209.618210 13.082743 3.273177 29.163294

17 0.432002 208.377045 3.574241 1.552869 0.000000

18 2.150804 209.609573 11.131773 2.939974 13.455443

19 10.542578 206.151169 14.173851 3.202391 14.258223

20 9.727753 206.960999 14.360144 3.250930 6.493425

21 15.708366 207.058640 14.943080 3.121640 0.053831

22 26.715679 208.680145 14.648912 3.091611 1.570746

23 29.143650 208.706314 13.616717 2.975144 21.279413

24 28.148304 202.200867 12.116886 2.862307 6.292521

%% Trajectory 38

15 142.326370 81.088326 5.813046 2.967546 13.995440

Single trajectory data start with a line with "%%Trajectory " plus number-
ing, and ends with a blank space. We use these information as markers

102

CMCI ImageJ Macro Course 2.7 Secondary Measurement

for determining the location of trajectory data within file. Each line of data
consists of 6 numbers:

1. Frame number

2. Y coordinate

3. X coordinate

4. image moment m0

5. image moment m2

6. Non-Particle Discrimination Criteria

These values are separated by space. So splitting single line to an array of
elementary data needs to be done by split(line, " ").

Here is a macro, that uses File.openAsString("") to load the file and
then loads the trajectory information into Results table with the strategy
explained above.

1 //code 28

2 macro "Load Track File to Results (trackwise)"{

3 print("\\Clear");

4 run("Clear Results");

5 tempstr = File.openAsString("");

6 openedFile = File.name();

7 print(openedFile);

8 openedDirectory = File.directory;

9 Load2ResultsV3(openedDirectory, openedFile);

10 }

11

12 function Load2ResultsV3(openpath,openedFile) {

13 fullpathname = openpath + openedFile;

14 print(fullpathname);

15 tempstr = File.openAsString(fullpathname);

16 linesA = split(tempstr,"\n");

17 trajectoryCount = 1;

18 rowcounter = 0;

19 for (i = 0; i < linesA.length; i++) {

20 tempstr = linesA[i];

103

CMCI ImageJ Macro Course 2.7 Secondary Measurement

21 comparestr = "%% Trajectory " + trajectoryCount;

22 if (tempstr == comparestr) {

23 traj_startline = i;

24 do {

25 i++;

26 paramA = split(linesA[i], " ");

27 tempstr2="";

28 for (j = 0; j<paramA.length; j++) {

29 tempstr2 = tempstr2 + paramA[j] + "\t";

30 }

31 tempstr = "" + trajectoryCount + "\t" + tempstr2;

32 finalstr = CommaEliminator(tempstr);

33 linecontentA = split(finalstr, "\t");

34 if (linecontentA.length>1) {

35 setResult("TrackNo", rowcounter , linecontentA

[0]);

36 setResult("Frame", rowcounter , linecontentA[1]);

37 setResult("x", rowcounter , parseFloat(

linecontentA[3]));

38 setResult("y", rowcounter , parseFloat(

linecontentA[2]));

39 rowcounter++;

40 }

41 } while (linesA[i]!= "")

42 trajectoryCount++;

43 }

44 }

45 updateResults();

46 }

47

48 function CommaEliminator(strval) {

49 while (indexOf(strval, ",")>0) {

50 delindex = indexOf(strval, ",");

51 returnstr = substring(strval, 0, delindex) +

substring(strval, delindex+1, lengthOf(strval));

52 strval = returnstr ;

53 }

54 return strval;

55 }

code/code28.ijm

104

CMCI ImageJ Macro Course 2.7 Secondary Measurement

In the code 28, core of the processing resides within the function Load2ResultsV3.
It takes path to the data file and file name as arguments, and first opens the
file as string at line 15. The chunk of string is then split by lines and for-loop
starts to go through the array of lines (line 19).

In every line in the array, if the line is a starting marker "%% Trajectory
<number>" is tested (line 22) . If that is the case, then do-while loop is
started, that loops until all the trajectory points are read out (line 24 to 41).
While this trajectory read out is done, counter for the for-loop i is also
incremented that when the do-while loop ends (line 25), the for-loop starts
again from the line after the data of that trajectory. Exit from do-loop occurs
when blank line is found (line 42).

Inside the do-while loop, space character is replaced with tab delimiter (line
26 to 32). This is required, since ImageJ results importing only recognized
tab-delimited file as a table.

There is a small adjustment by another function CommaEliminator at line
32. This is required for removing comma character in some cases (this hap-
pens when the data file was opened and saved in excel or so). You probably
do not need this line and function as we are using the data file directly after
saving them. I left it in the code for your future usage.

Just to be sure with data content, line 33 and 34 double-check that the line
indeed contains several data. Line 35 to 38 writes trajectory ID, Frame num-
ber and XY coordinates into Results window by setResult function.

Exercise 2.7.4-2

Finally, we can combine several macros and functions we studied so
far to make a new macro that loads the ParticleTracker data file to Re-
sults table, and read out intensity. This could be done by combining
following codes, with a bit of modifications with each.

• code 27 (check the current image stack name and loads its track
data file as string)

• code 28 (data in string format is converted to Result table)

• code 24.5 (measure intensity according to coordinates in Results
table)

105

CMCI ImageJ Macro Course 2.8 Using Javascript

Bits and pieces are already there. Please try completing a macro that
loads track data file according to the title of the image stack that is
already opened, place them in Results table, and then measure the
intensity in corresponding frame and position in the image stack.

2.8 Using Javascript

As you become experienced with coding in ImageJ macros, you might start
to find out that for whatever you want to do with ImageJ, corresponding
macro function does not exist in the Build-in Macro Functions page 21. One
way to supplement the missing function is to create your own user func-
tion. Another way is to find a function directly from ImageJ Java code and
use that function in macro. Javascript is a convenient way to access ImageJ
API (Application Programming Interface), and since Javascript could be
called from within ImageJ macro, you could use ImageJ API in your macro
code. This is done by the macro function shown below:

eval("script", javascript)
Evaluates the JavaScript code contained in the string javascript.

This would be the simplest way to use Javascript if you are already com-
fortable with ImageJ macro language.

But there is more to it. You could also run Javascript as it is in ImageJ and
Fiji. Syntax of Javascript is not same as ImageJ macro, but if you are used
to write ImageJ macro, it should not be too difficult to learn Javascript.

. . . then how could we code Javascript?

In this section, we learn basic know-how of Javascript with ImageJ 22. Ex-

21see http://rsb.info.nih.gov/ij/developer/macro/functions.html
22If you want to learn in more detail, you could also visit http://pacific.mpi-cbg.

de/wiki/index.php/Javascript_Scripting for learning more about Javascript.

106

http://rsb.info.nih.gov/ij/developer/macro/functions.html
http://pacific.mpi-cbg.de/wiki/index.php/Javascript_Scripting
http://pacific.mpi-cbg.de/wiki/index.php/Javascript_Scripting

CMCI ImageJ Macro Course 2.8 Using Javascript

perience with Java programming is largely helpful but if not, there is also
some way around to learn quickly.

When we are programming ImageJ macro, we often refer to the web site
listing ImageJ macro language functions to look for a macro function. In
similar way, we access so called API (Application Programming Interface)
for coding with Javascript. ImageJ API is in the following page:

http://rsb.info.nih.gov/ij/developer/api/index.html

At this moment, you might be puzzled with these pages, but don’t worry.
Major aim of this section is to learn how to use this resource to code your
Javascript.

OK, let’s start.

2.8.1 A trial with Javascript

Let us first try using Javascript (JS).

From menu, do [Plugins > Scripting > Javascript Interpreter].
You will then see a new interface that looks like Fig 2.40. This interface
provides Javascripting in an interactive mode and is useful for a quick test-
ing of codes. There is a input field at the bottom, where you could type in
JS code. Then by pressing return key, the code is executed.

Figure 2.40: Javascript interpreter on start up.

Type the following command and execute by return key.

107

http://rsb.info.nih.gov/ij/developer/api/index.html

CMCI ImageJ Macro Course 2.8 Using Javascript

IJ.log("Hello JS")

This JS command will print "Hello JS" in the Log window of ImageJ.

Same command could be written in the Script editor. To start up the editor,
do [File > New > Script] (then select [Language > Javascript]).

IJ.log("Hello JS");

This should do the same thing, but be careful! Do not forget adding semi-
colon (;) at the end of the line. In case you write your code in Script Editor,
you need to explicitly mark the end of line, just like you do when you write
a macro.

To run the code, [Run > Run] will execute the command (you could also
use ctrl-r or cmd-r).

What this JS code does is the same as the Macro code below.

print();

In the following, you could use either Javascript interpreter or Script editor.
Just choose the one you like. If code become multiple lines, I recommend
you to use the Script Editor. . . and in this case, this is a redundant warning,
place a semi-colon “;” at the end of each line.

Now, we could try some commands that is not present in ImageJ macro.

For example, what would you do if you want to convert angle in degrees
to radian? In macro, you could do calculation by first dividing the value by
360, then multiply by 2π. But a function actually is already there in Java,
so you could simply use that as well.

IJ.log(java.lang.Math.toDegrees(3.1415))

Running this line should print a number close to 180. You could also do the
other way around:

108

CMCI ImageJ Macro Course 2.8 Using Javascript

IJ.log(java.lang.Math.toRadians(180))

should print out 3.1415. . . .

Next, we try to retrieve a column of data from table in Results window. In
macro, you could do this by getResult function, with which by specifying
the column label and row number you could retrieve a value in that cell.

But what should we do if we want to retrieve all data in a row at once,
not a single value in a specific column at specific row? If you want to do
this in macro, we could write a user defined function that loops for all the
columns and get data one-by-one.

With Javascript, this could be done in just a single step, one command.

Exercise 2.8.1-1

Preparation of Results table

Open image by [File > Open Sample > blobs (25k)].

Check measurement parameters by

[Analyze > Set Measurements...]

that some measurement parameters are checked. Be sure that "Limit
to Threshold" is checked.

Then Threshold the blob image by

[Image > Adjust > Threshold].

Since the background of this image is bright, Dark Background’ should
be unchecked. If you see the thresholded image like fig. 2.41, do

[Analyze > Analyze Particles...].

In the Analyze Particles dialog, just be sure that Display Results is
checked. Then click OK button. When the analysis is done, you will
see 64 or so particles detected and listed in the Results window.

Testing Javascript Code

We now use the following command to extract data from single Row.
In Javascript interpreter, type the following command .

109

CMCI ImageJ Macro Course 2.8 Using Javascript

Figure 2.41: Thresholded image of "blob"

IJ.log(ResultsTable.getResultsTable().getRowAsString

(10));

If you execute this, you will see that all data that is in row 11 in Results
table is now printed in the log window.

. . . that’s the end of this exercise but don’t close the Results window
yet.

Above is a single line pure JS code. We can use this code within macro
by using eval function mentioned already. Here is an exercise to test the
function eval.

Exercise 2.8.1-2

Test running the following code, and check that any row in the table
could be extracted and printed in Log window.

1 rownum = getNumber("Row?", 0);

2 jscom = "IJ.log(ResultsTable.getResultsTable().

getRowAsString("+rownum+"));";

3 eval("script", jscom);

In the second line, JS code is constructed as a single string jscom using the
variable rownum from line 1. Line 3 executes this JS code using eval.

110

CMCI ImageJ Macro Course 2.8 Using Javascript

So far, I have not yet explained where these commands came from. I will
give more detailed explanation in later sections.

Exercise 2.8.1-2

This exercise is optional:

Try the following Javascript commands using eval, from within an
ImageJ macro.

. . . lists all ImageIDs. There should be at least one image opened.

a = WindowManager.getIDList();

for(i in a) IJ.log(a[i]);

. . . zooms current image centered at top-left corner.

IJ.getImage().getCanvas().zoomIn(0, 0);

. . . print souts statistics of current image in log window.

eval("script", "IJ.log(IJ.getImage().getStatistics().

toString());");

. . . print outs used memory in log window.

eval("script", "print(IJ.currentMemory())");

. . . moves current image window to top-left corner of the monitor
with offset of 10 by to, and resizes the window.

eval("script", "IJ.log(IJ.getImage().getWindow().

setLocationAndSize(10, 10, 100, 100))");

In all the example codes, we placed Javascript commands in the second ar-
gument for the function eval. You could also write a full path to a Javascript
file. Here is the syntax.

111

CMCI ImageJ Macro Course 2.8 Using Javascript

eval(’script’, File.openAsString("<pathpath>/name.js")) ;

2.8.2 Using Macro Recorder and ImageJ API

Javascript is a scripting language, so it has its own build-in functions. I
will not explain about this since you could find many Javascript tutorials
on the web. For example, following site is a place where I go and look for
Javascript commands and usages:

Javascript Reference @ w3chools.com

How do we find Javascript commands to interact and control ImageJ? The
easiest way is to use the macro recorder. We have already learned and used
macro recorder in previous chapters. We could used the same interface for
recording JS codes. Recorded lines of JS codes could be copy & pasted into
Script Editor and can be directly executed.

Exercise 2.8.2-1

First, we should start the recorder. [Plugins > Macros > Record...].
Then in the recorder window at the top-left corner, choose Javascript
as the code to be recorded (Fig. 2.42).

Figure 2.42: Setting Up Macro Recorder ready for Javascript

Then do the following sequence of commands.

[File > Open Sample > Blobs]

•• Select rectangular ROI tool and set a ROI to select about 1/4th

112

http://www.w3schools.com/jsref/default.asp

CMCI ImageJ Macro Course 2.8 Using Javascript

of the image (can be any place within the image. This is just a
test.).

• [File > Transform > Flip Horizontally]

• [Process > Filters > Gaussian Blurr...]

After all these operations, there should be JS codes printed in the
Recorder window. Copy them all, and paste it to Script Editor ([File
> New > Scripts] and then paste, Fig. 2.43) . After pasting, set
language to JS by ([Language > Javascript] from the menu bar of
script editor.

Figure 2.43: Javascript by recorder commands.

Then do [Run > Run] from the menu of script editor, the script is
executed. You should then see a new window of "blob" with some
part of image processed.

If you are successful in running the code, let’s see the code. Here is how
the code should look like.

1 imp = IJ.openImage("http://imagej.nih.gov/ij/images/blobs.

gif");

2 imp.setRoi(0, 0, 149, 116);

3 IJ.run(imp, "Flip Horizontally", "");

4 IJ.run(imp, "Gaussian Blur...", "sigma=2");

5 imp.show();

code/code29.js

113

CMCI ImageJ Macro Course 2.8 Using Javascript

We first examine line 3 and line 4, focusing on the method IJ.run (in the
follwoing, we use word "method" instead of "command", as this is more
conventional way of calling it in Java). This method has three arguments
for it.

IJ.run(argument1, argument2, argument3)

Just by looking at each of them you could realize that the second argument
is a descriptive explanation of what the method does. This is because these
strings are exactly the phrase of the menu item you see when you choose
that function from ImageJ menu.

IJ.run is a method that uses second argument as a keyword to search for
all the ImageJ menu items to find which of them is the one that the method
intends to invoke 23. Third argument of IJ.run in line 3 is an empty string,
but in line 4, the third argument is sigma=2. This is a value that you nor-
mally input when you select Gaussian blur from the menu bar for the size
of blurring kernel.

Then what is the first argument in IJ.run? In both line 3 and 4, we have a
variable imp. To see what this is, we go back to line 1. imp appears for the
first time in the code at line 1, and imp is the returned value of a method
IJ.openImage. If we think back what we were actually doing for this first
line when recording, we accessed an item in the menu tree [File > Open

Sample > blobs]. By choosing this item from menu, ImageJ downloads
blobs.gif file from NIH web site and then shows it on your desktop. Sin-
gle method that does the download action is the method IJ.openImage.
Argument for this command is the URL of the image.

To know the definition of the method IJ.openImage, we look up a refer-
ence called ImageJ API 24. In this web page, there is side bar in left side,
with upper part for a list of "All Packages" (These packages are same as
those listed in the table shown in the top page) and the bottom part for "All
Classes".

Each package contains several classes. We currently do not know which
package does IJ.openImage belong to, so we look for it in the bottom part

23In ImageJ macro, a function similar to IJ.run method is run(arg1, arg2).
24ImageJ API: http://rsb.info.nih.gov/ij/developer/api/index.html

114

http://rsb.info.nih.gov/ij/developer/api/index.html

CMCI ImageJ Macro Course 2.8 Using Javascript

Figure 2.44: ImageJ API

"All Classes". There, you will find "IJ"25. Click the link, and in the right side
of the page, a page titled "Class IJ" appears (Fig. 2.45).

The page might look cryptic to you, if you scroll down the page, there is a
table titled "Method Summary", listing all the methods that class IJ contains
in alphabetical order. Within this list, you will find (Fig. 2.46)

openImage(java.lang.String path)

There are three openImage methods, with difference in number and types
of arguments. The first one is without any argument, the second one has
only one argument, the third having two arguments. When openImage
method is called, one of these three are called depending on the number
and types of the argument in the call.

More Explanation: So what are "Classes?" A class consists of two major
components. One is Field and the other is Method. The former is like
variable and the latter is similar to function in ImageJ macro (this is not
a precise analogy, but for now let’s think like that). Fields are values. Meth-
ods are actions. Class is a group of various field values and methods. By

25Unlike ImageJ macro, Java and Javascript are case sensitive

115

CMCI ImageJ Macro Course 2.8 Using Javascript

Figure 2.45: ImageJ API Class IJ

Figure 2.46: ImageJ API Class IJ, openImage method

116

CMCI ImageJ Macro Course 2.8 Using Javascript

utilizing Class, we can have a single unit of assembled functions, which
would be an advantage for letting an application to have high modularity.
You could access (or use) fields and methods by appending them behind
the name of the class. For example. <class name>.<field name> or <class
name>.<method name>(<arguments>) e.g. IJ.openImage(pathname).

A bit more on API page At the top of the Class IJ page (Fig.2.45), "ij" is
written above the class name "Class IJ". This is the name of package that is
containing this class. You could see all classes within the package ij (note:
case sensitive), click "ij" in the left top panel listing "all packages". You
then will see all the classes within the package ij, such as compositeImage,
Executor, IJ, ImageJ. . . and so on. Package is used to organize classes in
hierarchical tree. For example, there are packages ij.plugin, ij.plugin.filter
and ij.plugin.frame. Likewise, package is a tree-like structure (remember
how folders are organized in your laptop) that organizes many classes in
a structure. In Java, such tree-like structure is organized separated by dots
(“.”). For example, see Package ij.plugin.filter. The package filter is under
the plugin package, that is under the ij package.

Go back to the API description, in the left side of the table column where

openImage(java.lang.String path)

is listed (Fig. 2.46), there is a phrase

static ImagePlus

This tells you that if you invoke method openImage(java.lang.String

path) of class IJ, a object called ImagePlus is returned (forget about the
notion "static" for now). ImagePlus is another class, which you could also
look up using the list of "All Classes".

The class ImagePlus consists of image data and metadata fields, and meth-
ods to access these values. In ImagePlus API page, you could see that many
fields and methods are associated with this class. Note that many of field
values are "protected".

For example, nChannels is one of the filed values of class ImagePlus but
having a notion "protected" means that you cannot simply access from out-
side the class itself. Instead, there is a method named getNChannels() for

117

http://rsb.info.nih.gov/ij/developer/api/ij/plugin/filter/package-summary.html
http://rsb.info.nih.gov/ij/developer/api/ij/ImagePlus.html

CMCI ImageJ Macro Course 2.8 Using Javascript

accessing the value from outside which by invoking it "Returns the number
of channels" of ImagePlus object. getNChannels() returns a value indi-
cated as "int". This tells you that the type of returned object is "int", which
means that returned value is a number, and specifically an integer, not a
number with decimal points. Unlike ImageJ macro object with any type of
class could be returned, not limited to number, string and array. This flex-
ibility affords higher potential in modularity with Javascript compared to
ImageJ macro and hence we call returned values as "object" not "variables".

A draw back is that Javascript coding becomes a bit more complicated then
macro coding. One should always be careful about which class or type
is returned, and one way to do so is to check ImageJ API every time you
wonder what is the returned value of certain method.

Let’s go back to the code again. The method IJ.openImage returns an ob-
ject "ImagePlus", so in line 1 of the recorded Javascript code, an instance of
ImagePlus object (which actually is "blob.png" downloaded from the NIH
website) is stored in the variable "imp". Then after line 1, imp behaves as
an ImagePlus object. imp is repeatedly used from line 2 to 5. In line 2, an
method of class ImagePlus is invoked in the form <class>.<method>(arguments).
Since method name is setROI we look for it in the ImaegJ API ImagePlus
page, and you will find the following description:

void | setRoi(int x, int y, int width, int height)
Creates a rectangular selection.

"void" means that this method does not return any value. There are four
arguments and all of them are "int", integer. Description tells you that this
methods creates an ROI in the image with position and size defined by
arguments.

In line 3 and 4, the first argument of run method is imp, telling the com-
mand IJ.run to do the operation specified by the second argument on
imp.

Note that in case of ImageJ macro, target image could only be specified by
activating the window using selectImage(imageID). In Javascript, selec-
tion of image could be more explicit by the direct use of ImagePlus object.

118

http://rsb.info.nih.gov/ij/developer/api/ij/ImagePlus.html
http://rsb.info.nih.gov/ij/developer/api/ij/ImagePlus.html

CMCI ImageJ Macro Course 2.8 Using Javascript

Down to line 4, blob image actually is not shown on the desktop. ImagePlus
object of "blobs.tif" is in the memory, but still is not displayed. To show it
on the desktop, we do line 5.

imp.show();

show() is a method of ImagePlus class to show the actual image of Image-
Plus object.

Grabbing Image What if you want to capture already opened Image as a
ImagePlus object? This could be done by using a method in Class IJ called
getImage(). You could replace the first line in the code we just studied
with IJ.getImage() to grab currently active image rather than download-
ing and opening an image file.

Exercise 2.8.2-1

Modify code 29 so that this JS code grabs currently active image and
do the same processing.

Exercise 2.8.2-2

We study the nature of ImagePlus object in this exercise. We start
with a simple code to open an image, then add more lines to see how
ImagePlus instance behaves. Type in the code below to start up.

1 imp = IJ.openImage("http://imagej.nih.gov/ij/images/

blobs.gif");

2 imp.show();

code/code30_1.js

As we have done already, this will show a blobs.gif image on your
desktop. We can have another window with blobs.gif by adding two
more lines.

1 imp = IJ.openImage("http://imagej.nih.gov/ij/images/

blobs.gif");

2 imp.show();

3 imp2 = IJ.openImage("http://imagej.nih.gov/ij/images/

blobs.gif");

119

CMCI ImageJ Macro Course 2.8 Using Javascript

4 imp2.show();

code/code30_2.js

We now have two instances of ImagePlus object. These are indepen-
dent. Whatever you do to imp, that does not affect imp2. We could
do a small trick that two windows could share the the same image,
that the same image appearing in two windows. Close two windows
of blobs, and then modify the code as shown below.

1 imp = IJ.openImage("http://imagej.nih.gov/ij/images/

blobs.gif");

2 imp.show();

3 ip = imp.getProcessor();

4 imp2 = new ImagePlus("SecondWindow with same IP", ip);

5 imp2.show();

code/code30_3.js

Run this code, and you would see two windows with same image,
which seemingly are same as before.

Take one image and try to select some region using a ROI tool, and
from Fiji menu do [Edit > delete]. Then the selected region blacks out
or whites out. Click another blobs window. Then you would see
that the second window, which you did not process anything, also is
processed.

This is because both windows are sharing the same image, shown in
two windows. In other way of saying, there is a single instance of
image with two ImagePlus instances. In the modified code, an extra
line is added in line 3, and line 4 is changed. Line 3 is generating a
pointer (ip) to the image that is contained in the ImagePlus instance
imp. In the 4th line, a new instance of ImagePlus is created using what
we call “constructor” (see ImagePlus API for a list of constructor),
using the ip that is actually associated with the preexisting ImagePlus
imp. Finally, the 5th line shows the second window imp2, the image
content of which is shared with imp.

Summary

• Object should be either created (initialized, of "Constructed") or Grabbed.

120

CMCI ImageJ Macro Course 2.8 Using Javascript

– IJ.openImage(path) creates and image object from file.

– IJ.getImage() grabs already existing object.

• Object is constructed taking a class as template. A class has field val-
ues and methods. Hence, object has those values and classes.

– Field values are in most cases accessed via methods.

– Once an object is constructed, its public method could be used

• Exception: So called "static" methods could be accessed any time.

– Most of methods in Class IJ are static, so you do not need to
construct it.

2.8.3 Example Codes

In this section, I will just show Javascript example using ImageJ API26.

Curve Fitting example.

1 //Curve fitting example

2 // see class CurveFitter

3 // http://rsb.info.nih.gov/ij/developer/api/ij/measure/

CurveFitter.html

4

5 //creat example data arrays

6 var xa = [1, 2, 3, 4];

7 var ya = [3, 3.5, 4, 4.5];

8

9 //construct a CurveFitter instance

10 cf = CurveFitter(xa, ya);

11

12 //actual fitting

13 //fit models: see http://rsb.info.nih.gov/ij/developer/api/

constant-values.html#ij.measure.CurveFitter.

STRAIGHT_LINE

14 cf.doFit(0);

15

26Javascript cookbook is also available in the CMCI website for various cod-
ing examples. Visit http://cmci.embl.de/documents/110822jsip_cooking/
javascript_imagej_cookbook

121

http://cmci.embl.de/documents/110822jsip_cooking/javascript_imagej_cookbook
http://cmci.embl.de/documents/110822jsip_cooking/javascript_imagej_cookbook

CMCI ImageJ Macro Course 2.8 Using Javascript

16 //print out fitted parameters.

17 IJ.log(cf.getParams()[0]+ " : " + cf.getParams()[1]);

code/codeCurveFitting.js

2.8.4 Using none-ImageJ libraries in Fiji

Besides access to ImageJ API, power of Javascript is in importing external
packages written in Java to use their functions.

In Fiji, many java libraries (packages) are included besides ImageJ itself.
You could see them listed in Fiji API. Here are some picks among them,
which might be interesting to use for math and statistics in Javascript27. In
the next section, we will study several examples to know how to import
these libraries in Javascript.

Java Matrix Package (JAMA)

JAMA is comprised of six Java classes: Matrix, CholeskyDe-
composition, LUDecomposition, QRDecomposition, Singular-
ValueDecomposition and EigenvalueDecomposition.

The Matrix class provides the fundamental operations of nu-
merical linear algebra. Various constructors create Matrices
from two dimensional arrays of double precision floating point
numbers. Various gets and sets provide access to submatri-
ces and matrix elements. The basic arithmetic operations in-
clude matrix addition and multiplication, matrix norms and se-
lected element-by-element array operations. A convenient ma-
trix print method is also included.

Five fundamental matrix decompositions, which consist of
pairs or triples of matrices, permutation vectors, and the like,
produce results in five decomposition classes. These decompo-
sitions are accessed by the Matrix class to compute solutions

27If you want to use these packages in ImageJ, you could download the package from its
website and configure ImageJ to include that package on start up.

122

http://fiji.sc/javadoc/
http://math.nist.gov/javanumerics/jama/

CMCI ImageJ Macro Course 2.8 Using Javascript

of simultaneous linear equations, determinants, inverses and
other matrix functions. The five decompositions are

• Cholesky Decomposition of symmetric, positive definite
matrices

• LU Decomposition (Gaussian elimination) of rectangular
matrices

• QR Decomposition of rectangular matrices

• Eigenvalue Decomposition of both symmetric and non-
symmetric square matrices

• Singular Value Decomposition of rectangular matrices

Apache Commons Math Package

Commons Math is divided into fourteen subpackages, based on
functionality provided.

• org.apache.commons.math.stat - statistics, statistical tests

• org.apache.commons.math.analysis - root finding, integra-
tion, interpolation, polynomials

• org.apache.commons.math.random - random numbers,
strings and data generation

• org.apache.commons.math.special - special functions
(Gamma, Beta)

• org.apache.commons.math.linear - matrices, solving linear
systems

• org.apache.commons.math.util - common math/stat func-
tions extending java.lang.Math

• org.apache.commons.math.complex - complex numbers

• org.apache.commons.math.distribution - probability dis-
tributions

123

http://commons.apache.org/math/

CMCI ImageJ Macro Course 2.8 Using Javascript

• org.apache.commons.math.fraction - rational numbers

• org.apache.commons.math.transform - transform meth-
ods (Fast Fourier)

• org.apache.commons.math.geometry - 3D geometry (vec-
tors and rotations)

• org.apache.commons.math.optimization - function maxi-
mization or minimization

• org.apache.commons.math.ode - Ordinary Differential
Equations integration

• org.apache.commons.math.genetics - Genetic Algorithms

Batic SVG Tool kit

Batik is a Java-based toolkit for applications or applets that
want to use images in the Scalable Vector Graphics (SVG) for-
mat for various purposes, such as display, generation or manip-
ulation.

The project’s ambition is to give developers a set of core mod-
ules that can be used together or individually to support spe-
cific SVG solutions. Examples of modules are the SVG Parser,
the SVG Generator and the SVG DOM. Another ambition for
the Batik project is to make it highly extensibleÃćâĆňâĂİfor ex-
ample, Batik allows the developer to handle custom SVG ele-
ments. Even though the goal of the project is to provide a set
of core modules, one of the deliverables is a full fledged SVG
browser implementation which validates the various modules
and their inter-operability.

Mantissa (Mathematical Algorithms for Numerical Tasks In Space System
Applications)

124

http://xmlgraphics.apache.org/batik/
http://spaceroots.org/software/mantissa/index.html
http://spaceroots.org/software/mantissa/index.html

CMCI ImageJ Macro Course 2.8 Using Javascript

Mantissa is a collection of various mathematical tools aimed to-
wards for simulation. It is not a complete mathematical library
like GSL, NAG or IMSL, but it contains various algorithms use-
ful for dynamics simulation and 3D geometry computation.

Weka

Weka is a collection of machine learning algorithms for data
mining tasks. The algorithms can either be applied directly to
a dataset or called from your own Java code. Weka contains
tools for data pre-processing, classification, regression, cluster-
ing, association rules, and visualization. It is also well-suited
for developing new machine learning schemes.

Some other packages. . .

• ImageScience - Implemented as plugins for filtering but valuable for
use as a library.

• ImageJ3D - JRenderer3D -3D renderer.

• kfschmidt.* - Numerical analysis tools: Simplex, GLM analyzer, Ma-
trix calculations

• math3D -Matrix calculation, 3D tools.

2.8.5 Example Use of Library

Following will be some examples of using Apache Commons Math library.

125

http://www.cs.waikato.ac.nz/ml/weka/
http://www.imagescience.org/meijering/software/
http://www.f4.htw-berlin.de/~barthel/ImageJ/ImageJ3D/ImageJ3D.html

CMCI ImageJ Macro Course 2.8 Using Javascript

Descriptive statistics

1 importPackage(Packages.org.apache.commons.math.stat.

descriptive);

2

3 //prparation of data

4 stats = new DescriptiveStatistics();

5 var exA = [0, 1, 2, 3, 8, 9, 10];

6 for (i in exA) stats.addValue(exA[i]);

7

8 // Compute some statistics

9 mean = stats.getMean();

10 std = stats.getStandardDeviation();

11 npnts = stats.getN();

12 IJ.log("mean: "+ mean + "\nsd: " + std + "\npnts:" + npnts)

;

code/code32.js

When you use a package, you should first import it. The first line is doing
this by using a method importPackage. One could also import a single
class, using importClass method. In line 4, a new object of Class Descrip-
tiveStatistics is created. Line 5 and 6 stores data in this object, and calculates
statistics in line 9, 10 and 11.

Solving Linear System

We could solve linear equation system below, in the form AX = B, by LU
decomposition.

2x + 3y − 2z = 1

−x + 7y + 6x = −2

4x − 3y − 5z = 1

1 importPackage(Packages.org.apache.commons.math.linear);

2 //preparing matrix and data

3 matA = [[2, 3, -2], [-1, 7, 6], [4, -3, -5]];

4 vecB = [1, -2, 1]

5 //LU decomposition

6 coefficients = new Array2DRowRealMatrix(matA, false);

7 solver = new LUDecompositionImpl(coefficients).getSolver();

126

CMCI ImageJ Macro Course 2.8 Using Javascript

8 ans = solver.solve(vecB);

9 for (i in ans) IJ.log(ans[i]);

code/code33.js

127

CMCI ImageJ Macro Course 2.9 Actual Macro programming

2.9 Actual Macro programming

The biggest tip for Macro coding: Don’t try to code everything from scratch.
Refer to the downloadable macros linked in the ImageJ web site 28, and
there should be something you could copy some parts to full fill the task
you want to achieve.

Exercise 2.9.0-1

Think about your daily work with image processing / analysis, and
design a macro that helps your task.

1. Present your idea. Similar macro might already exists, which could
be modified for your task.

2. Write the macro after discussion with your instructor.

3. Debug the macro. If you could not finish, do it as homework. Turn
it in, regardless of whether its working or not.

2.10 Homework

2.10.1 Homework for basics

Assignment 1

Change code 12.75 so that

• Does not use "&&"(AND)

• Instead, uses "||" (OR).

Comment: This is also a test if you can think things logically. . . Thanks to
Prof. Boole.

28see http://rsb.info.nih.gov/ij/macros/

128

http://rsb.info.nih.gov/ij/macros/

CMCI ImageJ Macro Course 2.10 Homework

Assignment 2

Write a macro that draws gird (lattice) in a image (see example, attached).
If you have time, modify the macro so that the macro plots diagonal lattice.
Steps should be something like:

1. creat a new image

2. loop in x direction and draw vertical line . . . for this, use command
drawLine(x1, y1, x2, y2) . . . see http://rsb.info.nih.gov/
ij/developer/macro/functions.html#drawLine

3. loop in y direction and draw horizontal line

Hints: if you want to draw white lines on black image

• you need to select black background when you make a new image

• you need to set the drawing color using setColor()

• see http://rsb.info.nih.gov/ij/developer/macro/functions.
html#setColor

Assignment 3

Write a macro that deletes every second frame (even-numbered frames) in
a stack.

Hint: use run("Delete Slice"); to delete a single slice.

Comment: it might be tricky.

Assignment 4

Write a time stamping macro for t-stacks. You should implement following
functions.

129

http://rsb.info.nih.gov/ij/developer/macro/functions.html#drawLine
http://rsb.info.nih.gov/ij/developer/macro/functions.html#drawLine
http://rsb.info.nih.gov/ij/developer/macro/functions.html#setColor
http://rsb.info.nih.gov/ij/developer/macro/functions.html#setColor

CMCI ImageJ Macro Course 2.10 Homework

Figure 2.47: Composing grid image

Figure 2.48: Composing grid image

130

CMCI ImageJ Macro Course 2.10 Homework

• User inputs the time resolution of the recording (how many seconds
per frame).

• The time point of each frame appears at the top-left corner of each
frame.

• If possible, time should be in the following format:
mm:ss
(two-digits minutes and two digits seconds)

Hint: Use following: for-statement, nSlices, setSlice, getNumber,

setForegroundcolor, setBackgroundColor, drawString, IJ.pad. (re-
fer to the Build-in Macro Function page in ImageJ web site!)

Assignment 5

Modify code 14 so that the macro does not use "while" loop. For example
with the following way.

• Macro measures the integrated density of all area in the first frame (
= ref_int).

• In the next frame, full integrated intensity is measured again (temp_int).

• Decrease the lower for the thresholding by temp_int/ref_int.

2.10.2 Homework for a bit advanced

Assignment 6

Write an elementary calculator macro with single dialog box that does:

• user input two numbers

• user selects either one of addition, subtraction, multiplication or divi-
sion.

• answer appears in the Log window.

Hint: use Dialog.addChoice Dialog.getChoice command.

131

CMCI ImageJ Macro Course 2.10 Homework

Assignment 7

Write a macro that does pseudo high-pass filtering by Gaussian blurred im-
age (duplicate an image, do Gaussian blurring with a large kernel to create
background and subtract it from the original). If you could successfully
write a macro, then convert it to a function and use it from a macro. Hint:
use getImageID(), selectImage(id) command.

132

	Aim: Why do we write ImageJ macro?
	Introduction
	ImageJ macro makes your life easier
	Other ways to Customize ImageJ
	Comparison with Other scripting languages
	How to learn Macro programming
	Summary

	Basics
	``Hello World!''
	Variables and Strings
	Parameter Input by User
	Recording ImageJ macro functions
	Batch Processing using "batch macro" function

	Conditions and Loops
	Loop: for-looping
	Loop: while-looping
	Conditions: if-else statements

	Advanced Topics
	User-defined Functions
	Multi-parameter dialogue
	Global Variables
	String Arrays
	Numerical Array
	Array Functions
	Application of Array in Image Analysis

	File I/O
	Saving the Measurement Results Automatically
	Batch Processing of Files
	Working with Strings

	Secondary Measurement
	Using Values in Results Window
	Using values in non-Results table
	Accessing Data File: Simple Case
	Accessing Data File: Complex Case

	Using Javascript
	A trial with Javascript
	Using Macro Recorder and ImageJ API
	Example Codes
	Using none-ImageJ libraries in Fiji
	Example Use of Library

	Actual Macro programming
	Homework
	Homework for basics
	Homework for a bit advanced

