
Beitr Algebra Geom
https://doi.org/10.1007/s13366-018-0395-5

ORIGINAL PAPER

Some studies on algebraic integers in Q(i,
√
3) by using

coset diagram

Saima Anis1 · Seok-Zun Song2 ·
Young Bae Jun3 · Florentin Smarandache4

Received: 19 January 2018 / Accepted: 10 April 2018
© The Managing Editors 2018

Abstract In this paper, we studied the action of Picard modular group PSL(2, Z[i])
denoted by� on the biquadratic fieldQ

(
i,

√
3
)
.We found patern of algebraic integers

formed by this action. To prove results we used coset diagrams for the action of � on

Q

(
i,

√
3
)
, proponded by Graham Higman.
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Picard modular group denoted by � is PSL(2, Z[i]) or PSL(2, O1), where O1 is the
ring of Gaussian integers. Specifically, it is the group of linear fractional transforma-
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tions T (z) = az + b

cz + d
with ad − bc = 1 and a, b, c, d ∈ Z[i], for details see Anis and

Hanif (2011), Mushtaq and Anis (2016), Özgür (2003).

A biquadratic field Q

(
i,

√
3
)
has i and

√
3 as roots of an irreducible polynomial

(t2 − 3)(t2 + 1) over Q.

If � acts on projective line overQ
(
i,

√
3
)
, that is, PL

(
Q

(
i,

√
3
))

then the

stabilizer �α of α is the subgroup of � defined by �α = {g ∈ � : g (α) = α} and

the orbit �α of α is the subset of Q

(
i,

√
3
)
defined by �α = {g (α) : g ∈ �}. Any

element of Q

(
i,

√
3
)
which satisfies a monic equation of degree greater than or equal

to 1 with rational integral coefficients is called an algebraic integer of Q

(
i,

√
3
)
.

In this paper, we studied the action of � onQ

(
i,

√
3
)
because it contains stablizers

of
i ± √

3

2
,±1,

−1 ± √
3i

2
and ±i . There is a natural one-to-one correspondence

between the set ���α of cosets and the orbit �α. We studied patern of algebraic
integers formed by this action. To prove results we used coset diagrams for the action

of � on Q

(
i,

√
3
)
(Mushtaq and Anis 2016).

It is shown in Fine (1989) that � has finite presentation

〈
A, B,C, D : A3 = B2 = C3 = D2 = (AC)2 = (AD)2 = (BC)2 = (BD)2 = 1

〉

where A, B,C and D are linear fractional transformations defined by A (z) = 1

z − i
,

B (z) = 1

z
, C (z) = 1 + z

−z
and D (z) = −1

z
.

Fixedpoints of generators of�, namely, A, B,C andD are
i ± √

3

2
,±1,

−1 ± √
3i

2
and ±i respectively. They all lie in Q

(
i,

√
3
)
. The elements of Q

(
i,

√
3
)
are of the

form u + v
√
3 where u, v ∈ Q(i). They can be written as

a + bi + c
√
3 + d

√
3i

e
,

where a, b, c, d, e ∈ Z. Any element of Q

(
i,

√
3
)
which satisfies a monic equation

of degree greater than or equal to 1 with rational integral coefficients is called an

algebraic integer of Q

(
i,

√
3
)
.

1 Coset diagram for Picard group

A diagramatic argument, called coset diagrams for the action of Picard group � on

Q

(
i,

√
3
)
, is used to prove results in this paper. Higman and Mushtaq have defined

coset diagrams for modular group in Higman and Mushtaq (1983). Mushtaq and Anis
defined coset diagrams for the Picard group in Mushtaq and Anis (2016). The coset
diagrams are extensively used by many authors to solve identification problems of
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Fig. 1 Coset diagram for Picard
group

groupsAnis andMushtaq (2008), Ashiq and Imran (2015), Everitt (1997), Torstensson
(2010) as well as in signal processing [9].

The coset diagram for the action of Picard group � on Q

(
i,

√
3
)
is defined in

detail in Mushtaq and Anis (2016). The group � consists of four generators, two of
order 3 and two of order 2 so it is possible to avoid using colours. The generators A
and C both have orders 3, so the 3-cycles of A and C are represented by triangles.
But to distinguish generator A from generator C we have denoted the 3-cycles of the
generator C by three unbroken edges of a triangle permuted anti-clockwise by C . The
3-cycles of the generator A are denoted by three broken edges of a triangle permuted
anti-clockwise by A.

As generators B and D are involutions so we have represented them by edges
without orientation. To distinguish generator B from generator D, the 2-cycles of
generator B is represented as a bold edge and two vertices which are interchanged by
D are joined by an hairline edge. Fixed points of A, B,C and D, if they exist, are
denoted by heavy dots.

This fragment of coset diagram explains beautifully and clearly the amalgam
structure of � that is � = (A4 ∗

Z3
S3) ∗

M
(S3 ∗

Z2
D2), here M is modular group whose

finite presentation is
〈
D,C : D2 = C3 = 1

〉
. The coset diagram of� will be as follows

Mushtaq and Anis (2016) (Fig. 1).
This diagram is 3-dimensional. The generators A and C together form a diagram

of alternating group A4 = 〈
A,C : A3 = C3 = (AC)2 = 1

〉
as shown in the Fig. 2

Mushtaq and Anis (2016).
If m and n are two distinct square-free rational integers, then the field formed by

adjoining
√
m and

√
n to Q is denoted by Q

(√
m,

√
n
)
and is called a biquadratic

field overQ, where
√
m and

√
n are zeros of an irreducible quartic polynomial overQ.

The elements of Q
(√

m,
√
n
)
are of the form a0 + a1

√
m + a2

√
n + a3

√
mn, where

a0, a1, a2, a3 ∈ Q. Any element of Q
(√

m,
√
n
)
which satisfies a monic equation

of degree ≥ 1 with rational integral coefficients is called an algebraic integer of
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Fig. 2 Diagram of A4

Q
(√

m,
√
n
)
. InWilliams (1970), the explicit formof the algebraic integers, an integral

basis and the discriminant of Q
(√

m,
√
n
)
is given. These fields have degree 4 over

Q. Some of the subfields of Q
(√

m,
√
n
)
are Q

(√
m

)
, Q

(√
n
)
and Q

(√
mn

)
. The

author supposed that l is the greatest common divisor of m and n, that is, l = (m, n),
so that m = lm1, n = ln1 and (m1, n1) = 1.

Theorem 1 [Williams (1970), Theorem 1] Letting a, b, c, d denote rational integers,
the algebraic integers of Q

(√
m,

√
n
)
are given as follows:

(i) if (m, n) ≡ (m1, n1) ≡ (1, 1) (mod 4), then the algebraic integers are
1

4

(
a + b

√
m + c

√
n + d

√
m1n1

)
, where a ≡ b ≡ c ≡ d (mod 2), a − b + c −

d ≡ 0 (mod 4);
(ii) if (m, n) ≡ (1, 1), (m1, n1) ≡ (3, 3) (mod 4), then the algebraic integers are

1

4

(
a + b

√
m + c

√
n + d

√
m1n1

)
, where a ≡ b ≡ c ≡ d (mod 2), a − b − c −

d ≡ 0 (mod 4);
(iii) if (m, n) ≡ (1, 2) (mod 4), then the algebraic integers are

1

2

(
a + b

√
m + c

√
n + d

√
m1n1

)
, where a ≡ b, c ≡ d (mod 2);

(iv) if (m, n) ≡ (2, 3) (mod 4), then the algebraic integers are
1

2

(
a + b

√
m + c

√
n + d

√
m1n1

)
, where a ≡ c ≡ 0, b ≡ d (mod 2);

(v) if (m, n) ≡ (3, 3) (mod 4), then the algebraic integers are
1

2

(
a + b

√
m + c

√
n + d

√
m1n1

)
, where a ≡ d, b ≡ c (mod 2).

Remark 1 The algebraic integers ofQ

(
i,

√
3
)
are of the form

1

2

(
a + b

√
m + c

√
n+

d
√
m1n1

)
, where a ≡ d, b ≡ c (mod 2).

Proposition 1 The fixed points of a linear fractional transformation T (z) = az + b

cz + d

where a, b, c, d ∈ Z [i], are algebraic integers when
d − a

c
and

b

c
∈ Z.

Proof Let k ∈ C be a fixed point of a linear fractional transformation T ∈ �, that is,

T (k) = k, where T (z) = az + b

cz + d
, a, b, c, d ∈ Z [i]. This implies that ck2 + (d −
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Fig. 3 Diagram having fixed
points of generators A and C

3-2+i-

3-1+
2

3-1+2i- i
2

3i+
2

-i2

3-1+2i+
2

i

3 -1-
2

i

3-2+i+ i
2

i

a)k − b = 0, or k2 + (
d − a

c
)k − b

c
= 0. If

d − a

c
and

b

c
∈ Z, then the roots are

algebraic integers. ��
The fixed points of the generators A, B,C and D of � are algebraic integers. If α

and ᾱ are conjugates, then T (α) and T (ᾱ) are also conjugates, where T is a linear
fractional transformation. This means the diagram formed by applying elements of �

on α is same as the diagram formed by applying the same elements of � on ᾱ. We
denote the latter diagram as “conjugate diagram”. If an edge joins two vertices of a
triangle, then we denote this edge by a “cap”.

Proposition 2 The fragment of the coset diagram containing the fixed points of gen-
erators A and C have four vertices and all of them are algebraic integers.

Proof The fixed points of generators A andC are
i ± √

3

2
and

−1 ± √
3i

2
respectively,

which are of course the algebraic integers of Q(i,
√
3) (Fig. 3).

First, consider a fragment of the coset diagramwhich contains
i + √

3

2
. By applying

generatorC on
i + √

3

2
, we get

−2 + i − √
3

2
andC2

(
i + √

3

2

)
= −1 + 2i − √

3i

2
.

Also, by applying generator A on above values, that is,

A

(
−2 + i − √

3

2

)
= −1 + 2i − √

3i

2
and A2

(
−2 + i − √

3

2

)
= −1 + √

3i

2
,

which is the fixed point of C . Further applications of A and C on these values give
the same elements. This means that we get only four elements of Q(i,

√
3) in the

diagram containing the fixed points of A and C , namely,
i + √

3

2
and

−1 + √
3i

2
. So

the Cayley’s diagram of A4 is reduced to a diagram having four vertices because of

the fixed points of A and C . As D

(
i + √

3

2

)
= i − √

3

2
is conjugate of

i + √
3

2
, so

the diagram formed by applying generators A andC on
i − √

3

2
is conjugate diagram.

It is same to the diagram formed by applying generators A and C on
i + √

3

2
because

if α and ᾱ are conjugates, then T (α) and T (ᾱ) are also conjugates, where T is a
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Fig. 4 Diagram of S3

linear fractional transformation. Similarly, it can be proved that the conjugate diagram

containing
i − √

3

2
and

−1 − √
3i

2
also contains four elements as shown in Fig. 4. ��

Proposition 3 The triangles in diagram of S3, generated by A and D, in the coset
diagram for the action of � on Q(i,

√
3), have the same number of algebraic integers.

Proof Let α be an algebraic integer of Q(i,
√
3). By Theorem 1, α = 1

2
((a + bi) +

(c + di)
√
3)wherea ≡ d (mod 2),b ≡ c(mod 2). By applying transformation DA on

α, we get DA(α) = −α+i = 1

2
{−a−(b−2)i−(c+di)

√
3}, where b−2 ≡ c(mod 2)

since b ≡ c(mod 2). This means that DA(α) is again an algebraic integer. So if α is a
vertex of a triangle having broken edges, then the application of transformation DA
on α yields an algebraic integer β in another triangle having broken edges such that
DA(α) = β (Fig. 4).

These two triangles are joined by three edges which represent generator D. Hence,
if all the three vertices of a triangle with broken edges are labelled by algebraic
integers, then the triangle joinedwith this triangle by edges also contain three algebraic
integers. ��
Proposition 4 The triangles in diagram of S3, generated by B and C, in the coset
diagram for the action of � on Q(i,

√
3), have the same number of algebraic integers.

Proof Let α ∈ Q(i,
√
3) be an algebraic integer. By Theorem 1, α = 1

2
((a + bi) +

(c + di)
√
3), where a ≡ d(mod 2), b ≡ c(mod 2). Now CB (α) = C (B (α)) =

−1 − α = 1

2
{(−(2 + a) − bi) − (c + di)

√
3}. Then a + 2 ≡ d(mod 2) since

a ≡ d(mod 2). This implies that CB(α) is also an algebraic integer. Similarly, for
other vertices of the triangle with unbroken edges, that is, if all the three vertices of
a triangle with unbroken edges are labelled by algebraic integers, then the triangle
with unbroken edges joined with this triangle by bold edges, also labelled by three
algebraic integers. ��
Proposition 5 There are exactly four diagrams of A4, which contains six algebraic
integers in each diagram, in the orbit containing fixed points of A and C.

Proof It is clear from Proposition 2 and Fig. 5 that one portion of the diagram con-
taining the fixed points of generators A and C contains four vertices or two triangles,
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Fig. 5 Fragment of coset
diagram

one having broken edges and the other having unbroken edges. Each of the triangles
is labelled by three algebraic integers. By Proposition 3, the three algebraic integers
of the triangle having broken edges are mapped to the triangle having broken edges
of another diagram of A4 by edges, whose vertices are also labelled by algebraic inte-
gers. By Proposition 4, the three algebraic integers of the triangle having unbroken
edges are mapped to the triangle having unbroken edges of another diagram of A4
by bold edges, whose vertices are also labelled by algebraic integers. Since CA maps
an algebraic integer to an algebraic integer, so there are six algebraic integers in a
diagram of A4. Consider the same argument for another fragment having the fixed
points of A and C . So this fragment is connected to two other diagrams of A4 having
six algebraic integers. So, in total there are four diagrams of A4 which contain six
algebraic integers. ��
Remark 2 The fragment of a coset diagram for the action of � on Q(i,

√
3) whose all

vertices are labelled by algebraic integers.

Proposition 6 If a triangle in a diagram of S3 does not have any algebraic integers,
then the other triangle joined with it by edges does not have any algebraic integers.

Proof Let α, β and γ be vertices of a triangle having broken edges representing three
cycles of generator A and they be not algebraic integers, where α, β, γ ∈ Q(i,

√
3).

Let α = 1

e
{(a + bi) + (c + di)

√
3}, where a 	≡ d (mod 2) or b 	≡ c (mod 2).

Let a 	≡ d (mod 2), b ≡ c (mod 2) and e = 2. Then DA (α) = 1

2
{(−a − (b − 2) i)

−(c + di)
√
3}. Since a 	≡ d (mod 2), so DA (α) is not an algebraic integer. Let a ≡ d

(mod 2), b 	≡ c (mod 2) and e = 2. Then (b − 2) 	≡ c (mod 2). So DA (α) is not an
algebraic integer. Similarly, β2 and γ2 are not algebraic integers. ��
Theorem 2 The algebraic integers in the orbit containing the fixed points of A and

C are of the form

{
(±k ± li) ± √

3i

2
: k is odd integer, l is even integer

}
and

{ (±k ± li) ± √
3

2
: k is even and l is odd integer}.

Proof The Fixed points of A and C are
i ± √

3

2
and

−1 ± √
3i

2
respectively. By

applying CD and DC2 repeatedly on
i ± √

3

2
, we get the series

±k + i ± √
3

2
such
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that k is even. By applying A2B or BA on
i ± √

3

2
, we get

li ± √
3

2
such that l is

odd. So we get the series
±k ± li ± √

3

2
, where k is even and l is odd integer. By

applying CD and DC2 repeatedly on
−1 ± √

3i

2
, we get

±k ∓ √
3i

2
where k is odd.

By applying A2B or BA on
−1 ± √

3i

2
, we get

−1 ± li ± √
3i

2
such that l is even.

By combining above two forms we get the series
±k ± li ± √

3i

2
, where k is odd and

l is even integer. ��
Proposition 7 In a diagram of A4, algebraic integers are present in pairs.

Proof If α = (a + bi) + (c + di)
√
3

2
is an algebraic integer, where a ≡ d(mod 2),

b ≡ c(mod 2), then CA(α) = −1+ i − α = {−(2 + a) + (2 − b)i} − (c + di)
√
3

2
.

Since d ≡ a + 2(mod 2) and c ≡ 2− b(mod 2), therefore CA(α) is also an algebraic
integer. ��
Proposition 8 If there is one diagram of A4 having two algebraic integers, then there
are infinite diagrams of A4 having two algebraic integers in an orbit.

Proof Suppose α, β exist in a diagram of A4, where α, β are algebraic integers. Then
CA(α) = β or CA(β) = α, where α is a vertex of a triangle representing three
cycles of A as well as a vertex of a triangle representing three cycles of C . Thus,
by Propositions 3 and 4, we get two different diagrams of A4 each containing one
algebraic integer. Application of transformation CA gives another algebraic integer
in the same diagram of A4. By applying DA and BC on β we get two more diagrams
of A4 each containing one algebraic integer and by the transformation CA, we get
another algebraic integer in the same diagram of A4. In the same way by applying
transformations DA, BC and CA on other diagrams of A4 which contain algebraic
integers, we get infinite diagrams of A4 which have two algebraic integers in them. ��
Proposition 9 The fragment of the coset diagram for the action of � on Q(i,

√
3),

containing fixed points of the generators B and D has six vertices and four of them
are algebraic integers.

Proof The fixed points of generators B and D are ±1 and ±i respectively which
lie in the orbit Q(i) of Q(i,

√
3). The diagram containing the fixed points of both

generators B and D, that is, −1 and i , have six vertices in total. Starting from −1 and
applying transformations C and C2, that is, C (−1) = 0 and C2 (−1) = ∞. Now by

considering i , C (i) = (−1 + i) and C2 (i) = −1 + i

2
. Also A (−1 + i) = −1 and

A2 (−1 + i) = −1 + i

2
. We have A (0) = i and A2 (0) = ∞.

So we get six vertices in total and 0,−1,−1 + i and i are algebraic integers. ��
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Fig. 6 Diagram having fixed
points of generators B and D oo0

-1+i

-1

i

-1+i
2

Proposition 10 There are three diagrams of A4, in the orbit containing fixed points
of generators B and D, which contain four algebraic integers.

Proof By Proposition 9, the fragment containing fixed points of both generators B
and D have four algebraic integers, namely 0,−1,−1 + i and i . Each triangle with
unbroken edges contains two algebraic integers as shown in Fig. 6. These two triangles
are joined with two more diagrams of A4 by bold edges, so in total we have three
diagrams of A4. By Proposition 4, each triangles of other diagrams of A4 which are
joined by bold edges, also have two algebraic integers. Since the transformation CA
maps an algebraic integer to an algebraic integer, so both of the diagrams of A4 contain
four algebraic integers. ��
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