
ConPan: A Tool to Analyze Packages in Software
Containers

Ahmed Zerouali1, Valerio Cosentino2, Gregorio Robles3, Jesus M. Gonzalez-Barahona3 and Tom Mens1

University of Mons – Belgium1, Bitergia – Spain2 and Universidad Rey Juan Carlos – Spain3

ahmed.zerouali@umons.ac.be, valcos@bitergia.com, grex@gsyc.es, jgb@gsyc.es, tom.mens@umons.ac.be

Abstract—Deploying software packages and services into con-
tainers is a popular software engineering practice that increases
portability and reusability. Docker, the most popular container-
ization technology, helps DevOps practitioners in their daily
activities. Despite being successfully and increasingly employed,
containers may include buggy and vulnerable packages that put
at risk the environments in which the containers have been
deployed. Existing quality and security monitoring tools provide
only limited support to analyze Docker containers, thus forcing
practitioners to perform additional manual work or develop ad-
hoc scripts when the analysis goes beyond security purposes. This
limitation also affects researchers desiring to empirically study
the evolution dynamics of Docker containers and their contained
packages. To overcome this limitation, we present ConPan, an
automated tool to inspect the characteristics of packages in
Docker containers, such as their outdatedness and other possible
flaws (e.g., bugs and security vulnerabilities). ConPan comes with
a CLI and API, and the analysis results can be presented to the
user in a variety of formats.

Index Terms—Containers, vulnerabilities, bugs, outdated soft-
ware, Docker

I. INTRODUCTION

The software development landscape has changed radically,
with the need to develop, release and deploy software ever
more rapidly. This has given rise to DevOps techniques such as
continuous integration, continuous deployment and continuous
monitoring. It also led to tools for software containeriza-
tion, that improve and facilitate portability, reliability and
deployment [1]. A container is a lightweight, stand-alone
executable piece of software that includes an entire runtime
environment [2]. Thus, a container includes an application plus
all its dependencies, such as system and third-party packages,
libraries, binaries, and configuration files. This promotes mod-
ularity and eases reproducibility of the software environment.
For these reasons, the popularity of containerization technol-
ogy has significantly increased during the last years. A 2019
survey by Red Hat estimates that the reliance on containers is
expected to increase by 89% in the next two years [3].

Docker is one of the most popular containerization tech-
nologies, which provides a schema to allow executing multiple
applications on a single host. Images are at the heart of this
schema. They are essentially file systems designed to be com-
posed of layers, where each layer represents an instruction to
be executed when an instance of the image (i.e., a container) is
executed. This layered structure allows images to be composed
of other images, simplifying their reuse.

Docker images are available in registries such as Docker
Hub, that provide a common place to build, update and share
images for different architectures such as Linux and Windows.
Linux-based images are the most popular on Docker Hub.
They usually include system packages that correspond to
the used Linux distribution (e.g., Debian), plus a collection
of third-party packages that come from popular package
managers like pip or npm (the default package managers
for JavaScript and Python). Despite being largely employed,
Linux-based images often contain buggy or vulnerable pack-
ages which may have been fixed in more recent package
releases, thus exposing the production environment where they
have been deployed to potential risks [4], [5].

Docker users can rely on a limited number of tools to scan
and monitor their images, primarily for security vulnerabilities.
For instance, Anchore.com [6] inspects container security using
CVE-based security vulnerability reports, while Dagda [7]
relies on the OWASP [8], Red Hat Oval [9] and the Offensive
Security exploit database [10]. Finally, Snyk [11], an Open
Source security platform, does not only scan and monitor, it
also suggests fixes for detected vulnerabilities. Docker Hub
provides its own tool, Docker Trusted Registry which scans
each layer and checks the results against a periodically updated
vulnerability database. If practitioners wish to evaluate other
aspects than security vulnerabilities, such as evaluating the
outdatedness or quality issues of a container (e.g., in terms
of the bugs [12] and available releases [13] of its system
and third-party packages), they are forced to develop ad-hoc
scripts which may be time-consuming and error-prone. This
limitation also affects empirical research in software container
mining [14], [15], [16], [17], [18], requiring scholars to re-
invent the wheel because of the need to retrieve and analyse
the data by themselves.

To overcome this limitation, we developed ConPan, a tool
that simplifies the analysis of Docker Hub images and their
installed packages. ConPan gathers and processed information
about security vulnerabilities, bugs and freshness of installed
packages, leveraging on different publicly available databases.
ConPan is an easy-to-use open source tool that: (i) allows
to track and retrieve data about packages in containers from
multiple sources in an easy and consistent way; (ii) has been
designed to be extensible to cover new data sources; and (iii)
provides the possibility to output its results to external analysis
and/or visualization tools thanks to its flexible output formats
(e.g., pandas dataframes [19]).

Pull and run Identify Track Search Output

Fig. 1. Overview of ConPan. The user interacts with the tool via either
the command line or through its API. Once the tool is initialized, the target
Docker image is pulled, the contained packages are extracted and tracked back
to the corresponding package managers, and vulnerabilities and other bugs
are identified and returned as output (as pandas dataframes, JSON documents
and/or charts).

The remainder of the paper is organized as follows: Section
II briefly describes the approach underlying ConPan. Section
III presents ConPan in action, while Sections IV and V con-
clude the paper and report on how the tool can be extended.

II. OVERVIEW OF ConPan

ConPan aims to support both practitioners and researchers
desiring to analyse Docker containers. Its goal is to collect
and fetch data about software packages that are installed in
Docker containers, leaving the tasks of storing and analysing
the data to other tools. It can be used either as a command-line
tool or as a Python library. Release 1.0.0 of ConPan supports
the analysis of Debian packages included in Docker images
based on the the corresponding Linux distribution.

The overall structure of ConPan is summarized in Figure 1.
Its core is composed by five tasks, which consists of: (i) pulling
and running Docker images; (ii) identifying the installed
packages; (iii) tracking them back to their package managers;
(iv) searching for their known vulnerability reports or other
reported bugs and quality issues; (v) reporting the results
in a specific output format. ConPan also provides general
information about the analysed Docker Hub image, fetched
from the Docker Hub registry using its API 1.

To be able to trace back installed packages to their package
managers, ConPan relies on datasets containing historical
information about where and when packages were released.
For example, the dataset corresponding to Debian packages
is obtained via the Debian archive [20], which contains daily
snapshots of all Debian packages from the official and security
Debian Snapshot repositories. ConPan can easily include other
datasets of popular package repositories (e.g., npm2 and PyPI3)
by relying on freely available services. ConPan downloads
the latest Debian dataset and, using regular Debian tools
(dpkg -l) in the container, identifies the installed packages
and compares them to the latest releases to assess how
outdated they are.

To search for known package vulnerabilities, ConPan relies
on available datasets from security trackers. In the case of
Debian, ConPan uses its official security tracker [21]. For each
reported vulnerability of a package present in the analyzed
image, ConPan marks the corresponding package release as

1https://docs.docker.com/registry/spec/api/
2https://www.npmjs.com/
3https://pypistats.org/api/

vulnerable if the vulnerability is still open, or if the vulner-
ability has been fixed in a more recent version than the one
installed in the image.

To search for bugs in packages contained in the image,
ConPan uses available bug trackers. In the case of Debian,
ConPan relies on the Ultimate Debian Database [22], which
includes data about various aspects of Debian distributions,
including package bug reports. For each reported bug of a
package present in the analyzed image, ConPan identifies the
corresponding package release affected by a given bug, if the
specific package version is higher or equal to the version where
the bug has been first found. In case the bug report is resolved,
ConPan verifies if the package version is lower than the one
fixing the bug.

III. ConPan IN ACTION

This section describes how to install and use ConPan,
highlighting its main features.

A. Installation

ConPan has been developed and tested mainly on
GNU/Linux platforms. It is very likely to work out of the
box on any Linux-like (or Unix-like) platform, upon providing
the right version of Python available (i.e., 3.x). ConPan can
be installed using Python’s pip package manager. Listing 1
shows how to install ConPan from its source code. Further
installation instructions can be found on the GitHub repository
https://github.com/neglectos/ConPan.

Listing 1. How to download and install ConPan
Installation from source code using pip
$ git clone https://github.com/neglectos/ConPan
$ python3 setup.py build
$ python3 setup.py install
To uninstall
$ pip3 uninstall conpan

B. Use

Once installed, ConPan can be used through a command-
line interface (CLI) or through the API of a Python library.
We showcase these two types of executions below.

1) CLI: Using ConPan as a CLI does not require much
effort. Listing 2 shows how easy is to call ConPan on a
Docker Hub image. Three parameters are required: i) the type
of packages (Debian packages in this case); ii) the Docker
image to be analyzed; and iii) the path to the historical package
dataset extracted from Debian archive. The latter dataset is
provided with the tool. In other cases where ConPan relies
on online APIs such as the npm registry, the data path is not
needed.

Listing 2. How to use the ConPan CLI
Call ConPan from command line
$ conpan -p debian

-c <Docker image>:<tag>
-d path/to/data

The output of the execution of Listing 2 would be the
general information about the analyzed Docker image, plus

the number of installed packages, vulnerabilities and bugs. The
output also includes three figures showing the proportions of
the outdated packages, plus the proportion of vulnerabilities
and bugs grouped by their severity.
A concrete example of the output of ConPan will be shown
in subsection III-C.

2) API: The API of ConPan can be accessed from within
any Python script with minimal effort, assuming the user
knows how to program in Python. Listing 3 shows how to
use the ConPan API. The ConPan module is imported at the
beginning of the file, then the package kind, Docker image
and path to the historical data (if needed) parameters are
set and used in order to call ConPan. The generated output
consists of one JSON file and four pandas dataframes, which
are summarized below.

• general info: a JSON containing general information
about the analyzed Docker image, such as size, archi-
tecture, number of pulls, among others.

• installed packages: a dataframe containing the set of all
installed packages.

• tracked packages: a dataframe containing the set of
installed packages that are coming from the package
manager and were not installed from external sources.

• vulnerabilities: a dataframe containing the set of all
vulnerabilities with their severity, status, corresponding
packages, etc.

• bugs: a dataframe containing the set of all bugs with their
severity, status, corresponding packages, etc.

Listing 3. How to use ConPan as a python library
#! /usr/bin/env python3
from conpan.conpan import ConPan
Parameters
kind = ’debian’
image = <Docker image name>
dir_data = ’path/to/data/’
Call ConPan
cp = ConPan(packages=kind,

image=image,
dir_data=dir_data)

Results
(general_info, installed_packages,
tracked_packages,
vulnerabilities, bugs) = cp.analyze()

C. Reporting

The output generated by ConPan can be exploited directly
using pandas dataframes, one of the most commonly Python
libraries for data analytics [19]. The reported data can be visu-
alized by means of matplotlib [23] or seaborn [24] libraries, or
by converting the dataframes to JSON files and storing them
to a persistent NoSQL document-based storage, such as an
ElasticSearch database [25], or as raw data in a CSV format.
Jupyter notebooks [26] can be used for data analysis and early
prototyping of data visualization in a transparent way4.

4Python notebooks allow to store the results and the code needed to produce
them

The ConPan library can be very useful for researchers
desiring to analyze container packages. The tool can be used
to extract data about a large number of Docker containers and
to create datasets to be used in empirical research. The dataset
contains different information related to software packages
installed in containers, thus providing a powerful basis to
perform empirical studies. As an example, we have used
ConPan in previous work [27], where we empirically analyzed
installed system packages in a large dataset of Docker Hub
images that are based on the Debian Linux distribution.

For deployers desiring to monitor their Docker containers,
they can use the tool’s CLI or integrate its functionalities in
the automation of their Docker image builds. For instance,
Listing 4 shows the output of ConPan executed on the
community Docker Hub image google/mysql5, which is an
image of MySQL server for Google Compute Engine. The
listing includes general information such as the description,
the number of pulls and stars, and the last time the image was
updated. As can be seen the image was not updated for more
than three years,

Listing 4. General information about the Docker image google/mysql
Results:
General information about the Docker image: google/

mysql
- description: MySQL server for Google

Compute Engine
- star_count: 18
- pull_count: 46692
- full_size: 96687899
- last_updated: 2015-11-13T01:19:18.235940

Results about installed packages in: google/mysql
installed packages: 144
tracked packages: 81
vulnerabilities: 240
bugs: 474

Figure 2 shows the pie charts generated by ConPan to
highlight the percentage of outdated packages, vulnerabilities
and bugs. We observe that the image has a high proportion of
outdated packages (93.8%), and a high number of vulnerabili-
ties (240) and bugs (474). We also observe from the breakdown
in severity that most vulnerabilities are medium and high.

IV. CONCLUSION

Deploying applications and services using containerization
technologies is becoming a popular practice in software en-
gineering, thanks also to the increasing popularity of Docker
containers. They offer isolation, portability and reusability by
providing all needed artifacts and dependencies shipped in one
package. However, as shown in previous research [4], [27],
[18], Docker containers may contain vulnerable and outdated
packages that may put at risk the environments where the
containers are deployed. Nevertheless, little support is given
to practitioners and researchers desiring to assess the status of
their containers, thus forcing them to resort to the tedious task
of writing error-prone ad-hoc scripts.

5https://hub.docker.com/r/google/mysql

Out of date 93.8%

Up to date6.2%

Installed Packages

high**

25.0%

low

8.3%

low**

3.8%

medium**

46.3%

not yet assigned

1.3% unimportant
15.4%

Vulnerabilities

critical0.8%
grave2.1%

important

17.7%

minor

11.2%

normal
43.5%

serious

2.5%
wishlist

22.2%

Bugs

Fig. 2. Statistics about Debian packages in the community Docker Hub image google/mysql

For this reason, we presented ConPan, a tool that simplifies
the monitoring and analysis of software packages installed in
Docker containers, by reporting how outdated, vulnerable and
buggy they are. ConPan can be used stand-alone as a CLI or
integrated through its Python API with other processes (e.g.,
empirical studies or automation of Docker image builds). The
output of ConPan has been conceived to cover a wide spectrum
of technologies such as Python libraries for data processing
and visualization (e.g., pandas, matplotlib), NoSQL document-
based databases, JSON and CSV formats.

V. FUTURE WORK

Besides the software packages of the host operating system,
a container may include third-party packages that are needed at
runtime or for the development of other included applications.
Two of the most popular third-party packages are JavaScript
and Python packages that are hosted in the npm and PyPI
package repositories, respectively. For this reason, we aim to
extend ConPan to support this kind of packages. This should
be easy to achieve, given ConPan’s extensible architecture.
We have already started to support npm packages by relying
on basic npm commands6. After extracting the list of all npm
installed package versions we can assess how outdated they
are with respect to their latest available releases by leveraging
on the npm registry API7. As an example, Figure 3 shows
the number of package updates, grouped by type (i.e., major,
minor or patch), that npm package versions installed in the
Docker image node:stretch are missing.

For third-party Python packages, we will collect all names
and versions of the installed Python packages in the target
Docker container. Then, we will use the PyPI registry API to
see how outdated they are by comparing them with their latest
available releases. To search for any known vulnerabilities of
the installed packages, for both npm and PyPI packages, we
will rely on available open source vulnerability databases like
npm Security advisories8.

We also plan to improve the visualization part of the ConPan
CLI by providing a variety of charts to show the distribution

6https://docs.npmjs.com/cli/ls.html
7http://registry.npmjs.org/
8https://www.npmjs.com/advisories

Fig. 3. A Pandas dataframe showing the name and version of three npm
packages installed in the node:stretch Docker image at the date of 5 March
2019, and how outdated they are (in terms of missed major, minor and patch
versions).

of the number of vulnerabilities, bugs and missed updates for
each installed package.

APPENDIX

Release 1.0.0 of ConPan is available on GitHub9 under the
GPL license. For now, when the data is not available online
(e.g., in the case of Debian Archive), we provide the needed
data within the tool repository after extracting it using an ad-
hoc script. Thus, after finishing the extension of the tool to
third party packages, we will implement the ad-hoc script that
we use to extract the historical data of Debian packages into
the tool.

ConPan relies on third-party Python libraries such as re-
quests and psycopg2 to connect to the PostgreSQL Ultimate
Debian Database. It also requires Docker to be installed. To
facilitate its use, we plan to release ConPan as a Docker image,
thereby avoiding the need to install libraries or to modify data
links.

ACKNOWLEDGMENT

This work was partially supported by the Excellence of
Science Project SECO-Assist (O015718F, FWO - Vlaanderen
and F.R.S.-FNRS) and by the Spanish Government (TIN2014-
59400-R, SobreVision).

9https://github.com/neglectos/ConPan.

REFERENCES

[1] J. Turnbull, The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.

[2] Docker Inc, “Docker - build, ship, and run any app, anywhere,”
https://www.docker.com/, accessed: 01/11/2018.

[3] Red Hat, “Red hat global customer tech outlook 2019:
Automation, cloud, and security lead funding priorities,”
https://www.redhat.com/en/blog/red-hat-global-customer-tech-outlook-
2019-automation-cloud-security-lead-funding-priorities, accessed:
25/01/2019.

[4] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on
Docker Hub,” in 7th ACM Conf on Data and Application Security and
Privacy. ACM, 2017, pp. 269–280.

[5] J. Gummaraju, T. Desikan, and Y. Turner, “Over 30% of official
images in docker hub contain high priority security vulnerabilities,”
https://banyanops.com/blog/analyzing-docker-hub/, 2015.

[6] Anchore. (2019, jan) Anchore.io. [Online]. Available: https://anchore.
com/

[7] E. Grande. (2019, jan) Dagda. [Online]. Available: https://github.com/
eliasgranderubio/dagda

[8] OWASP. (2019, jan) Owasp. [Online]. Available: https://www.owasp.org
[9] M. Wojcik, D. Proulx, J. Baker, and R. Roberge, “Introduction to oval,”

The MITRE Corporation, 2005.
[10] ExploitDB. (2019, jan) Offensive security exploit database. [Online].

Available: https://www.exploit-db.com/
[11] Snyk.io, “Synk.io,” https://snyk.io/features/container-vulnerability-

management/, March 2019, accessed: 10/03/2019.
[12] K. Crowston, H. Annabi, and J. Howison, “Defining open source

software project success,” ICIS 2003 Proceedings, p. 28, 2003.
[13] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring

dependency freshness in software systems,” in Int’l Conf. Software
Engineering. IEEE Press, 2015, pp. 109–118.

[14] T. Bui, “Analysis of docker security,” arXiv preprint arXiv:1501.02967,
2015.

[15] A. Martin, S. Raponi, T. Combe, and R. Di Pietro, “Docker ecosystem–
vulnerability analysis,” Computer Communications, vol. 122, pp. 30–43,
2018.

[16] T. Xu and D. Marinov, “Mining container image repositories for software
configuration and beyond,” in Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results,
2018, pp. 49–52.

[17] A. Zerouali, T. Mens, G. Robles, and J. Gonzalez-Barahona, “On the
relation between outdated docker containers, severity vulnerabilities and
bugs,” arXiv preprint arXiv:1811.12874, 2018.

[18] A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-
Barahona, “On the impact of outdated and vulnerable javascript pack-
ages in docker images,” in International Conference on Software Anal-
ysis, Evolution and Reengineering, 2019.

[19] W. McKinney et al., “Data structures for statistical computing in
python,” in Proceedings of the 9th Python in Science Conference, vol.
445. Austin, TX, 2010, pp. 51–56.

[20] Debian, “snapshot.debian.org,” https://snapshot.debian.org/, accessed:
25/01/2019.

[21] Debian, “Security bug tracker,” https://security-
tracker.debian.org/tracker/, accessed: 25/01/2019.

[22] L. Nussbaum and S. Zacchiroli, “The ultimate Debian database: Con-
solidating bazaar metadata for quality assurance and data mining,” in
Working Conf. Mining Software Repositories (MSR), 2010, pp. 52–61.

[23] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
science & engineering, vol. 9, no. 3, pp. 90–95, 2007.

[24] Michael Waskom, “seaborn: statistical data visualization,”
https://seaborn.pydata.org, accessed: 25/01/2019.

[25] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A
Distributed Real-Time Search and Analytics Engine. ” O’Reilly Media,
Inc.”, 2015.

[26] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows.” in ELPUB, 2016, pp. 87–90.

[27] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On the
relation between outdated package containers, security vulnerabilities,
and bugs,” in International Conference on Software Analysis, Evolution
and Reengineering, 2019.

