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We know in a right-angled triangle Euclid’s theorem a? = ¢p and b? = ¢q

and the altitude theorem h? = pq.
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Now we view a general triangle:

Ttr2=7

q+p=c

The question is whether there are relations of the kind a? = f(c,p,7), b* =
fle,q,7) and h* = fi(p,q,7) in the general triangle? f and f, are determined
functions.

It is valid at the general triangle:
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We use the addition theorem of tangent:
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Insertion for tan+; and tan 2 leads to:
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We solve this equation to h:
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Thus we have a quadratic equation. With the solution formula for quadratic
equations we get:
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Equation (2) is an extension of the altitude theorem. For v = 90° we yield
h = \/pq thus the known altitude theorem.

We use the equations h? = o — p* and ¢ = p+ ¢, to replace h and q through a

and c:
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cyclic permutation:
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Both of the last equations are extensions of Euclid’s theorem. For v = 90° it
follows in fact a® = ¢p and b? = ¢q.

Now we transform the equation (1) to p and ¢:

h* tany — pgtany = hp + hq



It follows: .
~_h*tany —hg _ h-(htany —q)

h+qtany  qtany-+h

o h*tany —hp _ h-(htany —p)
LR ptany ~ ptany +h

These last equations are transformations of the extended altitude theorem to p
and q.
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