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Preface

The target readership are (1) students with an interest in methodology of science and the
foundations of mathematics – for example students in physics, engineering, economics,
psychology, thus a broad group that uses mathematics and not only those majoring in
mathematics – and (2) fellow teachers of mathematics who are sympathetic to the idea of
bringing set theory and number theory into general mathematics education – while avoiding
the New Math disaster in the 1960s in highschool. 1

Readers would be interested in:

(A) Constructivism with Abstraction, as a scientific methodology
(B) Particulars about infinity and number theory, within foundations and set theory
(C) Correction of errors within mathematics on (B) caused by neglect of (A).

Other readers are (3) research mathematicians, but while they would benefit from the last
correction in (C), they must mend for that they are not in the prime target groups. They
would start with pages 61-72 below (Colignatus (2015g)) and then restart here again.

Set theory and number theory would be crucial for a better educational programme:

(i) They greatly enhance competence and confidence
(ii) They open up the mind to logical structure and calculation also in other subjects
(iii) They are fundamental for learning and teaching themselves.

The world can be amazed that (A) and (B) are not taught systematically in current school
and first year higher education. There are two explanations. One is the mentioned New
Math disaster in the 1960s. Another more hidden cause are the transfinites created by
Georg Cantor (1845-1918). When a mathematics teacher starts on the topics of numbers
and set theory, and then infinity, then he or she feels obliged to discuss these transfinites.
However, her or she also feels doubt whether these should be taught. For highschool and
first year students they might be too complex and paradoxical. People in real life have no
application for these transfinites and it makes little sense to have transfinites in the
highschool diploma. They are relevant purely for mathematicians – and for a particular
branch of mathematics as well. Thus, mathematics teaching is stuck. A mathematical curl
causes so much complexity and irrelevance that the wonderful basics are not taught. This
book proposes to cut the knot. It adds the bitter irony that Cantor's analysis appears to be
misguided. Neglect of (A) made generations of mathematicians blind to some crucial errors.

�

As a student in 1980 I greatly benefitted from the admirable book by Howard DeLong
(1971) A profile of mathematical logic. His book provides the mixture of history, philosophy
and mathematics that I still find the best approach. I did not agree with some deductions
though, and my response was A Logic of Exceptions (ALOE) (1981 unpublished, 2007,
2011). Originally I focused on the Liar paradox and accepted the transfinites. In 2007 I
however saw how Cantor's proof on the power set linked up to Russell's paradox. In 2009 I
collected my observations on mathematics education in Elegance with Substance (EWS).
Combining both issues caused two longer papers – in the next paragraph – that comprise
this book. An advice to readers is to indeed look at ALOE, EWS and DeLong (1971) too.

�

This book contains some original mathematics. This only serves the main purpose of this
book. The original papers have abbreviations CCPO-PCWA and PV-RP-CDA-ZFC. Their
arguments have been polished up so that this book replaces them. Discussions have been
cut up, re-edited and dispersed over chapters, so that they actually create this book. The
papers have a Contra Cantor (CC) flavour but the book is constructively Pro Occam (PO).

                                                          
1 https://en.wikipedia.org/wiki/New_Math
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Abstract

Contra Cantor Pro Occam - Proper Constructivism with Abstraction

> Context • In the philosophy of mathematics there is the distinction between platonism
(realism), formalism, and constructivism. There seems to be no distinguishing or decisive
experiment to determine which approach is best according to non-trivial and self-evident
criteria. As an alternative approach it is suggested here that philosophy finds a sounding
board in the didactics of mathematics rather than mathematics itself. Philosophers can go
astray when they don’t realise the distinction between mathematics (possibly pure
modeling) and the didactics of mathematics (an empirical science). The approach also
requires that the didactics of mathematics is cleansed of its current errors. Mathematicians
are trained for abstract thought but in class they meet with real world students. Traditional
mathematicians resolve their cognitive dissonance by relying on tradition. That tradition
however is not targetted at didactic clarity and empirical relevance with respect to
psychology. The mathematical curriculum is a mess. Mathematical education requires a
(constructivist) re-engineering. Better mathematical concepts will also be crucial in other
areas, such as e.g. brain research. > Problem • Aristotle distinguished between potential
and actual infinite, Cantor proposed the transfinites, and Occam would want to reject those
transfinites if they aren’t really necessary. My book “A Logic of Exceptions” already refuted
‘the’ general proof of Cantor's Conjecture on the power set, so that the latter holds only for
finite sets but not for ‘any’ set. There still remains Cantor’s diagonal argument on the real
numbers. > Results • There is a bijection by abstraction between � and �. Potential and
actual infinity are two faces of the same coin. Potential infinity associates with counting,
actual infinity with the continuum, but they would be ‘equally large’. The notion of a limit in
� cannot be defined independently from the construction of � itself. Occam’s razor
eliminates Cantor’s transfinites. > Constructivist content • Constructive steps S1, ..., S5
are identified while S6 gives non-constructivism (possibly the transfinites). Here S3 gives
potential infinity and S4 actual infinity. The latter is taken as ‘proper constructivism with
abstraction'. The confusions about S6 derive rather from logic than from infinity.

ZFC is inconsistent. A condition by Paul of Venice (1369-1429) solves Russell's
paradox, blocks Cantor's diagonal argument, and provides a challenge to ZFC

Paul of Venice (1369-1429) provides a consistency condition that resolves Russell's
Paradox in naive set theory without using a Theory of Types. It allows a set of all sets. It
also blocks the (diagonal) general proof of Cantor's Conjecture (in Russell's form, for the
power set). The Zermelo-Fraenkel-Axiom-of-Choice (ZFC) axioms for set theory appear to
be inconsistent. They are still too lax on the notion of a well-defined set. The transfinites of
ZFC may be a mirage, and a consequence of still imperfect axiomatics in ZFC for the
foundations of set theory. For amendment of ZFC two alternatives are mentioned: ZFC-PV
(amendment of de Axiom of Separation) or BST (Basic Set Theory).
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A neoclassical approach in mathematics

Two key rules for paradoxical self-reference

Our subject originally is set theory and number theory. Immediately relevant are Cantor's
conjectures on the infinite. Subsequently, infinity becomes our main topic, and the earlier
subjects are subsidiary. Cantor's conjectures rely on self-reference, which is a logical rather
than a mathematical issue. Cases of self-reference that cause a contradiction are
notoriously confusing. Two rules appear to be key in tackling such cases:

(1) We can maintain clarity by holding on to the notion of freedom of definition. When a
restriction on this freedom generates a consistent framework, while release of the restriction
generates confusion, then the restriction is to be preferred.

(2) There is a remarkable distinction between not-well-defined and non-existent. We can
meaningfully discuss the existence or non-existence of something when we know what we
are speaking about. When a rhinoceros exists, we can say whether it is in the room or not.
For well-defined topics we can accept p ∨ Ÿ p, known as Tertium non datur (TND). (The
term Law of the Excluded Middle (LEM) needlessly imposes order.) But it may be that we
are dealing with nonsense, †p, so that in general only p ∨ Ÿp ∨ †p. For nonsense we may
say that it doesn't exist but we actually mean to say that the notion isn’t well-defined. Thus:

In a dilemma p ∨ Ÿ p the non-existence of the one horn implies the other, but when
there is nonsense or p ∨ Ÿp ∨ †p then the non-existence of one horn cannot be turned
into positive evidence for the other horn.

Constructivism

Hodges (1998) discusses submissions to the Bulletin of Symbolic Logic that claimed to
refute Cantor but that failed on basic academic standards. This is indeed an area where
intuition meets hard proof. Hodges sent me an email (August 10 2012) that he allows me to
quote from:

“You are coming at Cantor’s proof from a constructivist point of view. That’s
something that I didn’t consider in my paper, because all of the critics that I was
reviewing there seemed to be attacking Cantor from the point of view of classical
mathematics; I don’t think they knew about constructivist approaches. Since then some
other people have written to me with constructivist criticisms of Cantor. There is not
much I can say in general about this kind of approach, because constructivist
mathematicians don’t always agree with each other about what is constructivist and
what isn’t.”

The core of this book is the new definition of bijection by abstraction. 
2
 This new definition

should appeal to all those who have had intuitive misgivings about Cantor’s proof. The
definition includes an aspect of completion that some readers may consider rather classical
and non-constructivist. This book also discusses where Cantor’s proof goes wrong. I
suppose that there will be discussion about this but consider this of secondary value. It is
more important to improve the didactics in highschool and matricola.

What is a neoclassical approach in mathematics ?

This book distinguishes:

• classical mathematics, from perhaps Pythagoras to Georg Cantor (1845-1918)
• traditional mathematics, from Cantor to hopefully soon to end

• neoclassical mathematics, as explained in this book.

                                                          
2 The notion of a bijection or a one-to-one relationship is defined on page 32.
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The neoclassical approach in mathematics claims to maintain a better balance between
abstraction and empirics – even though Cantor used the notion of abstraction himself. See
Table 1 on page 28 for an overview of the differences. Below we will define abstraction,
while we will assume that empirics are considered in the empirical sciences.

The core business of mathematics is abstraction, but abstraction by itself can lead people
astray. Empirical researchers like engineers have more balance in their results by testing
their ideas on nature. Mathematics lacks this counterveiling force of nature. The suggestion
is to take the education in mathematics as the empirical area of relevance for mathematics.
This suggestion also holds for philosophy in general, that also is in danger of getting lost in
abstraction.

This book has a constructive and destructive component:

• It is constructive in two ways. It intends to help build up a better balance in doing and
teaching mathematics. It also follows the philosophies of nominalism and
constructivism as opposed to realism and platonism – see page 31. A key point is the
combination of constructivism with abstraction. Abstraction might cause methods that
some people may not regard as constructivist.

• The book is somewhat destructive is exposing the errors of traditional mathematics.
It is a good question whether this destructive component is really so useful. Why not
present the new approach and simply forget about old ways ? The main reason is
that we are still too close to tradition, so that it is hard to let go. This book spends a
major part of its attention to the errors of the traditional ways, to explain that these
are errors, that there is a need for change, in particular w.r.t. the fundamental attitude
that causes those errors.

While this book proposes a change in the way of doing mathematics, this is actually
rather presumptuous since the author has little or any experience in research mathematics
(RM). Appendix D contains a background. As an econometrician and teacher of
mathematics – trying to reform school mathematics (SM) and matricola – my experience is
that I meet with too many errors coming from research mathematicians: hence there must
be something wrong at that source.

This introduction perhaps should also provide a definition of infinity, but we will do so later
on. Before we proceed, it is useful to consider some paradoxes that can arise when you
lose your sense of reality. Such paradoxes have led traditional mathematicians seriously
astray on their notion of infinity.

Some paradoxes

(1) Consider the logic: I fit in my coat. My coat fits in my bag. Thus I fit in my bag.
 A mathematician may be perfectly happy with this since the propositions are abstract and

need not concern a real world and might only concern some topology. For an engineer,
interested in an application to reality, the reasoning gives a problem. The assumptions
seem true, the reasoning is sound, the conclusion is false, hence something is amiss.

The correction is straightforward: If I wear it, I fit in my coat. If nobody wears it, the coat
fits in my bag. Conclusion: If I want to put the coat into the bag then I have to take it off.

(2) Axiomatics may create (seemingly) consistent systems that don’t fit an intended
interpretation. Van Bendegem (2012:143) gives the example that (a) 1 is small, (b) for each
n, if n is small then n+1 is small, (c) hence all n are small. The quick fix is to hold that
“small” can be nonsensical when taken absolutely, and that (a’) 1 is less than 100, (b’) for
each n, if n is less than 100 n, then n+1 is less than 100 (n+1), (c’) hence for all n, n is less
than 100 n. The conclusion is that not all concepts or axiomatic developments are sensical
in terms of the intended interpretation even though they may seem so.
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(3) A reductio ad absurdum format of proof is as follows: one assumes hypotheses,
deduces a contradiction, and concludes to the falsity of at least one of the hypotheses.

This format of proof seems to be a convenient way for the human mind to reason. This
convenience may derive from cultural convention: there further doesn’t seem to be anything
special about it. The use of a contradiction may enhance confusion by nonsense though.

For example, define a squircle as a shape in Euclidean space that is both square and
circular. A theorem is that it cannot exist. If it is square then the distance to the center will
differ for corners and other points, and this contradicts the property of being circular. If it is
circular, then it cannot have right angles, and this contradicts the property of being square.
Hence a squircle does not exist in Euclidean space. QED. This is a fine proof.

Now suppose that this proof is not known. Consider the theorem that squares cannot
exist in Euclidean space. We use the definition of squircles. There is a lemma that any
square associates with a squircle, e.g. the squircle with a circle with the same area as the
square. The proof then is: Take a square, find its associated squircle, and deduce a
contradiction as done above. Square implies falsehood. Ergo, squares don’t exist. QED.

We know that squares exist in Euclidean space, so something must be wrong. To
pinpoint where it goes wrong may be less clear. After careful study we may conclude that
the proof uses the existence of squircles as a hidden assumption. The lemma is false. Once
this is spelled out, it is rather clear for this example.

We will see that it appears to be a bit more complex for Cantor's conjectures.
The difference between two-valued and three-valued logic is relevant here.
Consider the proof that squares don’t exist. Let p = “Squares exist” and q = “Squircles

exist.” We had the lemma that p ⇒ q. Subsequently we find p ⇒ Ÿ p. Trivially Ÿ p ⇒ Ÿ p. The
TND is that p ∨ Ÿ p. Hence in all cases Ÿ p, or that squares do not exist.

With three-valued logic we must allow that there can be nonsense. Thus p ∨ Ÿp ∨ †p.
What about the path †p ⇒ Ÿp ? If we want squares to truly exist, the implication †p ⇒ Ÿp
must be false, and then we couldn't use p ∨ Ÿp ∨ †p to conclude that Ÿp. According to the
truth-table (ALOE:183) an implication from nonsense is only true if the consequence is true
or again nonsense. It is false when the consequence is false. Thus the path †p ⇒ Ÿp is
blocked when Ÿp is false. However, since an implication is false if the antecedens is true
and the consequence is false, we must allow that †p is true, or that squares are a
nonsensical idea. When we compare †p and †q, which makes most sense to us ? A
problem is: the definition of squircles and the lemma p ⇒ q start to make the notion of a
square nonsensical itself too. This however indicates that it is more likely that †q than †p. In
this simple case it is clear that the lemma p ⇒ q is false. We rather look for a proof that q ⇒
Ÿq. While three-valued logic is more complex than two-valued logic, it has the advantage
stated in the rule on page 15, that the rejection of one horn is no proof for the other horn.

Structure of this book

This book has two main papers as its core. Some other short papers have been included
that give relevant support. The development of the idea of some neoclassical approach in
mathematics has been gradual. At some point there was the need to take stock, and to
wonder what it all amounted to. Thus, this author did not sit down and decide to develop a
new paradigm by deliberation. By consequence, the structure of this book may be
somewhat less organised than one might expect from design. The book uses the material
that is available, and reorganises it. The short papers could be included as they are, with a
bit editing. The two main papers had such a complex argument that they were cut up and
dispersed over the various parts and chapters, i.e. Colignatus (2012, 2013) (CCPO-PCWA)
and (2014b, 2015) (PV-RP-CDA-ZFC).

The book has been divided into parts. Parts 1 and 2 are within naive set theory. Parts 3
and 4 are within formal ZFC (see below). Parts 5 and 6 contain discussions and more
observations on constructivism. Some readers might prefer to look first at Part 6 on the
philosophical aspects. For most readers it will be useful to begin by defining abstraction.
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An explanation for Wigner's "Unreasonable effectiveness of
mathematics in the natural sciences"

A definition of abstraction.

January 9 2015 3

Scientists can be fans of magic but they would decline it within their professional work.
Yet there is this curious proposition by Eugene Wigner (1902-1995) of some "Unreasonable
effectiveness of mathematics in the natural sciences" that resorts to such magic – and
which proposition finds mention without outright rejection by other writers, notably by Davis
& Hersh (1983) on the mathematical experience, and recently in the book review by
Burgess (2014) on a book by Hacking. The latter triggers this response.

Wigner (1960) states: "The first point is that the enormous usefulness of mathematics in
the natural sciences is something bordering on the mysterious and that there is no rational
explanation for it." I disagree. The world is a wonder since we know so little about it but that
is no reason to call it irrational. Yes, be amazed, but please do not turn this into magic.
There is a very good explanation for the phenomenon indicated by Wigner.

My suggestion is that there is nothing "unreasonable" about the effectiveness of
mathematics. When we regard mathematics as abstracting from the world, then the root lies
in the world, and then it should not be surprising that the result may apply to the world.
There is neither need for some Platonic view in which concepts 'exist' as ideas in some
magical realm outside of physics, for we are merely speaking about abstraction.

Just to be sure: abstraction is defined as leaving out other aspects. Abstraction is nothing
special but the mere ability of the brain to select some aspects of some mental model and
drop (most) other aspects of it. That mental model will relate to empirical phenomena or
sensations that the brain experiences.

I am neither mathematician nor physicist, but as econometrician I have some experience
in the empirical sciences since 1982 and I got another degree in Leiden 2008 as teacher of
mathematics. Let me point to the theory by Pierre van Hiele (1986) about the levels of
insight in understanding mathematics. It appears to be commonly thought that Van Hiele
would see those levels only applicable to geometry but he presented them as a general
theory of knowledge, see page 100 and Colignatus (2014c). The Van Hiele theory explains
that students operating at one level cannot imagine how things are at the other level.
Students at the highest level can no longer imagine what they were struggling with in the
past. This theory also partly explains why teaching math is rather incomprehensible to
research mathematicians. The Van Hiele theory appears to be very relevant for the re-
engineering of mathematics education, see COTP. 4

While insight is relevant for education, for the present discussion it is more enlightening to
regard those levels of insight as levels of abstraction. Application to Wigner's view
generates "levels of unreasonableness" (in reversed order): which conveys the message
that one should look at the issue in the proper perspective (bottom-up rather than top-
down). When Wigner states "The complex numbers provide a particularly striking example
for the foregoing. Certainly, nothing in our experience suggests the introduction of these
quantities." then he presumes a paradise of simplicity of only one level, and he neglects the
process in teaching, starting from the perception of a two dimensional plane and only
concluding with the formal development.

                                                          
3 http://thomascool.eu/Papers/Math/2015-01-09-Explanation-Wigner.pdf
4 Colignatus (2011c)
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I also suppose that the evaluation of the relation between mathematics and physics
should not be confused by interference by other topics of discussion. A supporter of Wigner
might hold that this merely shifts the frontier of the "miracle", but my suggestion is that the
answer has been given by abstraction, and that the following are really different topics.

(1) W.r.t. empirical modeling also involving human agents, we have different approaches:
determinism, chance, volition. There is no experiment that will allow us to determine what is
the right approach. We are forced to be pragmatic from the perspective of the objectives of
the research, see ALOE:179. 5

Human views may be confused by chance events with potentially hidden determinism.
That someone wins the lottery twice might seem absurd but given the number of lotteries
held around the world it becomes more understandable. Wigner's description of physicists
struggling with their subject and mathematics leaves out all failures and potentially hidden
determinism.

(2) We are in need for a biological theory of the mind - with good definitions for the mind
in relation to the empirical brain. Generally mathematics is seen as mental activity, with the
formula's on the blackboard only as a record for communication. A suggestion is that the
mind may be defined as working with abstractions in general, created by processes in the
brain, see page 109 (Colignatus (2011e)). Mathematical abstractions (deserving that name)
are merely those perfected by tradition and professional development. A re-engineering of
mathematics may be required if we want that studies on the brain are to be useful for math
education. For example 2½ is supposed to be two-and-a-half but reads as two-times-a-half
and thus better be coded as 2 + ½. See COTP again. An even better notation is 2 + 2H, with
x

H
 = 1 / x, see Appendix E on fractions.

I am no physicist and thus cannot experience the wonder that Wigner apparently
experiences in his examples. I only have a highschool understanding of E = mc

2, and e.g.
when the abstract notion of space is already defined as Euclidean space then I cannot
phantom why physicists think that they are free to redefine space (or what this would mean)
merely to get rid of measurement errors, see COTP. Yet I presume that some aspects are
the same in all empirical sciences and naturally in mathematics. Supporters of Wigner will
agree anyhow that "unreasonable" likely isn't a physical concept. Thus there should be
scope for agreement.

PM 1. Wigner (1960) refers to Galileo (1564-1642) doing an experiment on gravity with
two objects dropped from the tower of Pisa. Viviani locates this event in 1589. The
experiment was done before by Simon Stevin (1548-1620) on a tower in Delft around 1586.
But is seems not to be in doubt that Galileo developed his gravity laws (De Motu), see
Lendering (2014).

PM 2. It so happens that FQXi had an essay contest on Wigner's topic in Spring 2015. I
did not know about it until the winner Sylvia Wenmackers was announced and made some
headlines. I recommend Lee Smolin (2015) who presents an important new angle on the
abused distinction between discovery and invention. 6

                                                          
5 Colignatus (1981, 2007, 2011)
6 http://fqxi.org/community/forum/category/31424: "Trick or Truth: the Mysterious Connection Between
Physics and Mathematics"
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Abstraction vs Eugene Wigner & Edward Frenkel

May 23 2015 7

Thinking depends upon abstraction. Let Isaac Newton observe an apple falling from a
tree. The apple and the tree are concrete objects. The observation consists of processes in
Newton’s mind. The processes differ from the concrete objects and leave out a wide range
of aspects. This is the definition of abstraction: to leave out aspects. Perhaps nature “thinks”
by means of the concrete objects, but a mind necessarily must omit details and can only
deal with such abstractions. For example, when Newton suddenly is hit by the idea of the
universal law of gravity, then this still is an idea in his mind, and not the real gravity that the
apple – and he himself – are subjected to.

Edward Frenkel’s reference to Eugene Wigner

There is this quote by Edward Frenkel, “Love & Math”, 2013, p 202, my emphasis:

“The concepts that Yang and Mills used to describe forces of nature appeared in
mathematics earlier because they were natural also within the paradigm of geometry
that mathematicians were developing following the inner logic of the subject. This is
a great example of what another Nobel Prize-winner, physicist Eugene Wigner,
called the “unreasonable effectiveness of mathematics in the natural sciences.” [ref]
Though scientists have been exploiting this “effectiveness” for centuries, its roots are
still poorly understood. Mathematical truths seem to exist objectively and
independently of both the physical world and the human brain. There is no
doubt that the links between the world of mathematical ideas, physical reality, and
consciousness are profound and need to be further explored. (We will talk more
about this in Chapter 18.)”

Hopefully you spot the confusion. Frenkel is an abstract thinking mathematician with
some experience in science – e.g. with a patent – but apparently without having understood
the philosophy of science. My weblog has already discussed some of his views, 8 especially
his confusion about mathematics education while he hasn’t studied the empirical science of
didactics. It is a chilling horror to hear him lecture about how math should be taught and
then see the audience listening in rapture because they think that his mathematical
brilliance will certainly also generate truth in this domain.

Eugene Wigner’s error is to forget that abstraction still is based upon reality. When reality
consists of {A, B, C, 8, Z} and you abstract from this reality by looking only at A and leaving
out {B, C, 8., Z} then it should not surprise you that A still applies to reality since it has
been taken from there.

Mathematical ideas have a perfection that doesn’t seem to exist in concrete form in
reality. A circle is perfectly round in a manner that a machine likely cannot reproduce – and
how would we check ? If the universe has limited size then it cannot contain a line, which is
infinite in both directions. Both examples however are, or depend upon, abstractions from
reality.

Since mathematics consists of abstractions, we should not be surprised when its
concepts don’t fully apply to reality, and neither should we be surprised when some
applications do. That is, there is no surprise in terms of philosophy. In practice we can be

                                                          
7 https://boycottholland.wordpress.com/2015/05/23/abstraction-vs-eugene-wigner-edward-frenkel/
8 https://boycottholland.wordpress.com/?s=Frenkel
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surprised, but this is only because we are merely human. (Being merely human explains a
lot.)

Note on abstraction

This issue on the definition and role of abstraction is developed with a bit more
specification in this note, also in its relevance for mathematics education and our study of
mind and brain: An explanation for Wigner’s “Unreasonable effectiveness of mathematics in
the natural sciences”, January 9 2015. 9 (See page 18 above.)

A reader commented:

“It seems to me that the question that Wigner is asking is “Why is mathematics so
much more effective in physics (which is what he means by ‘natural sciences’) than
in most other studies?” Physics textbooks are full of formulas; these comprise a
large fraction of what the field is, and have great predictive power. Textbooks on
invertebrate biology have few mathematical formulas, and they comprise only a
small part of the field. Textbooks on comparative literature mostly have no formulas.
So an answer to Wigner’s question would have to say something about what it is
about physics specifically that lends itself to mathematimization; merely appealing to
the human desire for abstraction doesn’t explain why physics is different from these
other fields.
I have no idea what an answer to Wigner’s question could possibly look like. My
feeling is that it is better viewed as an expression of wonderment than as an actual
question that expects an answer.” (Comment made anonymous, January 9 2015)

I don’t agree with this comment. In my reading, Wigner really poses the fundamental
philosophical question, and not a question about a difference in degree between physics
and literature. The philosophical question is about the relation between abstraction and
reality. And that question is answered by reminding about the definition of abstraction.

I can agree that physics seems to be more mathematical in degree than literature, i.e.
when we adopt the common notions about mathematics. This obviously has to do with
measurement. Use a lower arm’s length, call this an “ell“, 10 and proceed from there.
Physics only has taken the lead – and thus has also the drawbacks of having a lead (Jan
Romein’s law 11). Literature however also exists in the mind, and thus also depends upon
abstractions. Over time these abstractions might be used for a new area of mathematics.
Mathematics is the study of patterns. Patterns in literature would only be more complex
than those in physics – and still so inaccessible that we call them ‘subjective’.

PM. The above assumes that A, ..., Z exist without problem. The true invention might be
to create those, in order to subsequently abstract from those to A. But this might also be a
play with words, when the mind does not know what reality really is, and only creates a
model anyhow – see page 109.

                                                          
9 http://thomascool.eu/Papers/Math/2015-01-09-Explanation-Wigner.pdf
10 http://en.wikipedia.org/wiki/Ell
11 http://en.wikipedia.org/wiki/Law_of_the_handicap_of_a_head_start
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Abstraction & numerical succession versus ‘mathematical
induction’

May 26 2015 12

Abstraction has been defined in the preceding discussion. A convenient sequel concerns
what is commonly called ‘mathematical induction’. This is an instance of abstraction.

Mathematical induction has a wrong name

Mathematical induction has a wrong name. It is a boy called Sue. It is czar Putin called
president. There is no induction in ‘mathematical induction’. The term is used to indicate
that each natural number n has a next one, n+1. Thus for number 665 the mathematician
induces 666: big surprise. And then 667 again, even a bigger surprise after 666 should be
the end of the world. The second confusion is that the full name of ‘proof by mathematical
induction’ is often shortened to only ‘mathematical induction': which obscures the distinction
between definition and method of proof.

This method applies to the natural numbers. It actually is a deduction based upon the
definition of the natural numbers. Since the natural numbers are created by numerical
succession, a proper name for the method is proof by numerical succession.

Let us define the natural numbers and then establish this particular method of proof. It is
assumed that you are familiar with the decimal system so that we don’t have to develop
such definitions. It is also assumed that zero is a cardinal number. 13 (This book page 33.)

Definition of the natural numbers

A finite sequence of natural numbers is �[5] = {0, 1, 2, 3, 4, 5}. Since we can imagine
such sequences for any number, there arises the following distinction given by Aristotle. He
called it the difference between potential and actual infinity. 

(1) Potential infinity: �[n] = {0, 1, 2, 3, h., n}. This reflects the human ability to count.

(1a) It uses the successor function (“+1″): s[n] = n + 1. For each n there is a n+1. The
successor function is a primitive notion that cannot be defined. You get it or you don’t get it.
As a formula we can ‘define’ it by writing ‘For each n there is a n+1′, but this is not really a
definition but rather the establishment of a convention how to denote it.

(1b) Numerical succession might actually be limited to a finite number, say for a window
of a small calculator that allows for 6 digits: 0 ≤ n ≤ 999,999. The crux of �[n] however is
that n can be chosen and re-chosen at will. For each �[n] we can choose a �[n+1].

(2) Actual infinity: � = {0, 1, 2, 3, h}. This reflects the human ability to give a name to
some totality. Here the name is ‘the natural numbers’.

Another formulation uses recursion: � = {n | n = 0, or (n – 1) ∈ �}. Thus 1 ∈ � because
0 is; 2 ∈ � because 1 is; and so on. Thus, we now have defined the natural numbers.

The potential infinite deals with finite lists. Each list has a finite length. The distinctive
property of these lists is that for each such number one can find a longer list. But they are
all finite. It is an entirely different situation to shift to the actual infinite, in which there is a
single list that contains all natural numbers.

There need be no doubt about the ‘existence’ of the natural numbers. The notion in our
minds suffices. However, our mental image may also be a model for reality. If the universe

                                                          
12 https://boycottholland.wordpress.com/2015/05/26/abstraction-numerical-succession-versus-
mathematical-induction/
13 https://boycottholland.wordpress.com/2014/08/01/is-zero-an-ordinal-or-cardinal-number-q/
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is finite, then it will not contain an infinite line, and there cannot be a calculator with a
window of infinite length. But, on every yardstick in the range [0, 1] we have all 1H, 2H, 3H, ...

PM. We denote nH = 1 / n, pronounced as per-n, see Appendix E, page 132. 14

The relation between potential and actual infinity

The shift from �[n] to � is an instance of abstraction. �[n] is a completed whole but with
a need to build it, with a process of repetition. � ‘leaves out’ that one is caught in some
process of repetition, while there still is a completed whole. Let us use a separate symbol
'@' for the particular kind or instance of abstraction that occurs in the shift from (1) to (2).

(3) Relation between potential and actual infinity: �[n] @ �. This records that (1) and (2)
are related in their concepts and notations. In the potential form for each n there is a n+1. In
the actual form there is a conceptual switch to some totality, caught in the label �.

Since we already defined (1) and (2) to our satisfaction, (3) is entirely inferential and does
not require an additional definition. It merely puts (1) and (2) next to each other, while the
symbol ‘@’ indicates the change in perspective from the potential to the actual infinite.

(There might be a link to the notion of ‘taking a limit’ but it is better to leave the word ‘limit’
to its well-defined uses and take ‘@’ as capturing above instance of abstraction.)

Proof by numerical succession

The proof by numerical succession follows the definition of the natural numbers.

Definition: Let there be a property P[n] that depends upon natural number n. The
property can be established – or become a theorem – for all natural numbers n ≥ m, by the
following method of proof, called the method by numerical succession:

(i) show that P[m] holds,
(ii) show that P[n–1] ⇒ P[n].
(The proof is only valid when these two steps have been taken well of course.)

When m = 0 then the property holds for all natural numbers (if proven). The second step
copies the definition of �: If n–1 ∈ � then n ∈ �. If P[n–1] then it must be shown that P[n],
if it is to hold that P[n] for all n ∈ �.

An example below (under PM 1) uses the conventional step of going from n to n+1.

The definition of the method of proof doesn’t state this explictly: In the background there
always is (�[n] @ �) w.r.t. the fundamental distinction between the finite �[n] and the
infinite �. Conceivably we could formulate a method for �[n] separately which emphasizes
the finitary view but there is no need for this here.

Aristotle

Judith V. Grabiner states: “Aristotle, arguing for the potentially infinite divisibility of the
continuum, had explicitly ruled out both indivisibles and the actual infinite.” 15

I doubt this. Aristotle, Physics III, Part 6 gives: 16

"Further, a thing is infinite either by addition or by division. Now, as we have seen,
magnitude is not actually infinite. But by division it is infinite. (There is no difficulty in

                                                          
14 https://boycottholland.wordpress.com/2014/09/04/with-your-undivided-attention/
15 http://www.ww.amc8.org/publications/maa-reviews/infinitesimal-how-a-dangerous-mathematical-
theory-shaped-the-modern-world
16 http://classics.mit.edu/Aristotle/physics.3.iii.html
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refuting the theory of indivisible lines.) The alternative then remains that the infinite has a
potential existence." and "Our definition then is as follows: A quantity is infinite if it is such
that we can always take a part outside what has been already taken. On the other hand,
what has nothing outside it is complete and whole."

The latter definition chooses the potential infinite, and this fits Grabiner's observation.
However we can also observe the idea that the continuum is an actual infinite, as [0, 1] is a
whole. My view is that Aristotle gave the distinction between potential and actual infinity.

Conclusions

(1) A prime instance of abstraction is the relation �[n] @ �, i.e. the shift from the potential
to the actual infinity of natural numbers.

(2) The method of ‘proof by numerical succession’ is a deductive method based upon the
definition of the natural numbers.

(3) ‘Proof by numerical succession’ is a proper name, for what confusingly is called ‘proof
by mathematical induction’.

(4) Without further discussion: There is no ‘unreasonable effectiveness’ in the creation of
the infinity of the natural numbers and the method of proof by numerical succession,
and thus neither in the application to the natural sciences, even when the natural
sciences would only know about a finite number (say number of atoms in the universe).

PM 1. An example of a proof by numerical succession

We denote nH = 1 / n, see the discussion on nH in Appendix E.

Theorem: For all n ∈ �:  1 + 2 + 3 + h + n = n (n  + 1) 2H

Proof. By numerical succession:
(i) It is trivially true for n = 0. For n = 1: 1 = 1 * (1 + 1) 2H . Use that 2 2H = 1.
(ii) Assume that it is true for n. In this case the expression above holds, and we must

prove that it holds for n+1. Substitution gives what must be proven:

1 + 2 + 3 + h + n + (n + 1)  =  (n  + 1)(n + 2) 2H

On the LHS we use the assumption that the theorem holds for n and we substitute:

n (n  + 1) 2H + (n + 1)  =  (n  + 1)(n + 2) 2H

Multiply by 2:
 n (n  + 1) + 2 (n + 1)  =  (n  + 1)(n + 2)

The latter equality can be established by either doing all multiplications or by collecting
(n+1) on the left. Q.E.D.

PM 2. Background theory

Below we will say more about @.

PM 3. Rejection of alternative names

The name ‘mathematical succession’ can be rejected since we are dealing with numbers
while mathematics is wider. The name ‘natural succession’ can be rejected since it doesn’t
refer to mathematics – consider for example the natural succession to Putin. The name
‘succession for the natural numbers’ might also be considered but ‘numerical succession’ is
shorter and on the mark too.

?

?

?
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Neoclassical mathematics for the schools

Abstract, September 6 & December 20 2011 
17

 - edited 2015

National Parliaments around the world are advised to each have their own national
parliamentary enquiry into the education in mathematics and into what is called
'mathematics'. Current mathematics education namely fails and causes extreme social
costs. The failure can be traced to a deep rooted tradition and culture in mathematics itself.
Mathematicians are trained for abstract theory but when they teach then they meet with real
life pupils and students. Didactics requires a mindset that is sensitive to empirical
observation which is not what mathematicians are basically trained for. The recent call by
professor Wu to research mathematicians to start participating actively in the education
enterprise (see the AMS Notices March 2011) calls for the wrong cavalry. We need
engineers with an empirical set of mind rather than abstract academics. The mathematics
required for schools likely can best be called Neoclassical Mathematics and is based upon
the books A Logic of Exceptions, Elegance with Substance and Conquest of the Plane and
now also this present book on the foundations of mathematics.

Introduction

If we want to improve the education in mathematics then we must consider the content,
the education of teachers and the tools. Below gives an outline redefinition of the content
into Neoclassical mathematics (NM). For the (re-) education of teachers we need the
involvement not quite of research mathematicians but rather of the empirical sciences,
since education is an empirical issue. The tools follow from these.

This point of view differs from the distinction by Hung-Hsi Wu (2011ab) into Research
mathematics (RM), School mathematics (SM) and Textbook SM (TSM). Wu estimates
roughly that TSM may contain an error every two pages. Teachers get TSM as basic
education and RM at higher education, and never really arrive at some ideal SM. Wu
(2011a) is a call for action directed at research mathematicians to co-operate with the
teaching community to actually create that SM and its (re-) education of teachers. Wu's call
does not mean that only research mathematicians can help out, since also the education
community has a stake. However, it is not a call to empirical science.

The distinction between these two views concerns empirics. The education community is
insufficiently empirical and research mathematicians may help but might also do damage.
Mathematicians are trained for abstract thought but pupils happen to occur in real life.
Teachers try to resolve their cognitive dissonance by relying on tradition, but traditional
mathematical content is a nightmare. The ideal SM that Wu paints still suffers from the very
same blindness to reality. Creating more consistency into a nightmare does not remove the
very nightmare itself. This will be illustrated below with a discussion on fractions. A longer
exposition and many more cases can be found in Elegance with Substance (EWS) and
Conquest of the Plane (COTP). I admire professor Wu for his insights in and contribution to
the education of mathematics. That even professor Wu falls into the trap of underestimating
empirical science shows how difficult the subject is.

We can only hope that the issue gets the best of our possible attention and therefor I
advise each nation to have an enquiry by its national parliament. Mathematicians should be
the first in line to ask Parliaments to help them to carry the burden assigned to them of
caring for the education in mathematics. Parliaments can be motivated by the properties of
mathematics education: the costly investments in manpower and computer programs and
equipment, as well as the level of education itself and the economic consequences.

The name "neoclassical mathematics" derives from the foundations of mathematics. We
are familiar with the distinction between logicism, formalism and constructivism as those
arose around 1900. Classical mathematics (CM) came into two major problems:

                                                          
17 http://thomascool.eu/Papers/Math/2011-09-06-NeoclassicalMathematics.pdf or EWS (2015)
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(1) The 'division by zero' of the derivative created historically the approaches of (a)
exhaustion by Antiphon and Eudoxos, (b) infinitesimals by Archimede, Newton and Leibniz,
(c) algebra by Euler and Lagrange, (d) limits by Cauchy and Weierstraß.

(2) With the Liar paradox of the ancient world there came the paradox by Russell and the
theorems by Gödel.

These issues (1) and (2) however are resolved by A Logic of Exceptions (ALOE), and see
the review in the Dutch journal of mathematics NAW, written by professor Gill (2008) of the
Dutch Royal Academy of Sciences. Hence it is possible to teach mathematics again in quite
classical perspective, using 2000 years of didactic advance as well of course. Research
mathematics might continue with the neglect of ALOE but keeping this neglect in research
only would not put a burden on education (though possibly on financial markets and such).

An offspring of ALOE is Conquest of the Plane (COTP) with a favourable review by
Gamboa (2011), at the website of the European Mathematical Society. The book Elegance
with Substance (EWS) lies in time and purposes between ALOE and COTP, and got a
mixed review by Limpens (2010), who is critical of some aspects but in sum appreciates the
critical look at mathematics itself. A favourable review of EWS and COTP is again by Gill
(2012). 18

My suggestion is that the reform could be for K-12 but also the first year of college or
university, but when the discussion takes place in the context of professor Wu's paper then
it suffices to use the term "schools".

We first consider the fractions and then give an outline of the neoclassical approach.

Fractions, but also division in general

(a) First consider 2½ for "two and a half", where the position next to each other means
addition. Secondly consider 2a for "two times a" or 2√2 for "two times the square root of
two", where the position next to each other means multiplication. Comparing these, the
adjoining positions thus are interpreted differently, and pupils must be trained to see the
difference. This also causes that we must make sure that there is a space inbetween 2 ½
when we want it to reduce to 1. This tradition of different interpretations of positions is
curious, but it might be acceptable when we use typesetting with fixed places. The tradition
however is asking for problems in handwriting when a pupil may write 2½ as 2 ½ or
conversely, and thus slip into error. The solution is abolish the notation 2½ and to keep 2 +
½ so that the "+" nicely reflects the "and" in "two and a half" and so that the "+" may also be
an end-station. This is similar to the case that √2 can be an end-station and need not be
expanded into decimals 1.414... It takes a huge amount of time to train pupils now to write 2
+ ½ as 2½ (and not reduce this to 1), and later again to unlearn this positional approach for
2a. The only reason for this waste of time is tradition for tradition's sake.

Updating on 2011: see Appendix E with the suggestion how fractions as we know them
can be abolished. Observe that the pronunciation of fractions also abuses rank order
names: traditionally 1 / 5 is pronounced "a fifth", which means that fractions borrow from a
different concept (ranking: 1st, 2nd, 3rd, ...) and that it is better to pronounce 1 / 5 = 5H as "per
5".) 19

(b) EWS and COTP both present a proportion space and defend the point of view of
Pierre van Hiele that kids at elementary school would be able to work with vectors and thus
a vector space. Proportion and vector spaces need an integrated discussion otherwise
there arises confusion.

(c) Another point is that division essentially links up with the algebraic approach to the
derivative. Since Cauchy and Weierstraß we have been trained to focus on numerical
aspects but Weierstraß already uses predicate logic and it appears that algebra and the
logic of the manipulation of the domain create the derivative just as well. Even better, since
this eliminates the paradox of 'division by zero' and it avoids the educational combi-load of

                                                          
18 For completeness, let me mention a slandering text that is no real review, see
http://thomascool.eu/Papers/COTP/LOWI/Index.html
19 https://boycottholland.wordpress.com/2014/08/25/confusing-math-in-elementary-school/
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both limits and the derivative. Limits and infinitesimals are useful, e.g. for the understanding
of real numbers and approximations, but not necessarily for the derivative of functions used
in K-12 (and likely wider). See COTP and this book (based upon CCPO-PCWA). Hence, a
good understanding of division is not only required to survive 3rd grade but also the
derivative.

These insights (a), (b) and (c) are missing in Wu (2011c). It merely illustrates the
importance of the empirical approach to education, and may cause the reader to look at the
other cases mentioned in EWS and developed in COTP.

An outline

Neoclassical mathematics has no precise definition yet but uses ALOE, with an
application to education in EWS. The latter is implemented again in COTP. Now there is
this present book. Neoclassical mathematics gives a point of view that Aristotle and Euclid
supposedly could live with, and that people might find rather natural to understand. Some
points are:

(1) The Liar and Gödeliar statements are nonsensical, in a three-valued logic.
(2) Russell's set paradox and Cantor's Conjecture for infinite sets are nonsense too. We

may use a set of all sets. There are no 'transfinites'.
For example, Russell's set is }{  xx | x R ∉= . This definition can be diagnosed as self-

contradictory, whence it is decided that the concept is nonsensical. Using a three-valued
logic, the definition is still allowed, i.e. not excluded by a Theory of Types (that makes it
non-sensical too). Statements using it receive a truthvalue nonsense or Indeterminate. An
example of a set similar to Russell's set but without contradiction is

}{ Sx xx | x S ∈∉ ∧= which definition uses a small consistency condition, taken from

Paul of Venice, see ALOE:127-129. (See page 80 below for a discussion on infinite
regress.)

(3) Euclidean space is defined as our notion of space. Non-Euclidean space can only be
imagined in Euclidean space.

(4) The natural numbers � = {0, 1, 2, ...} are denumerable, with a potential infinite while
their 'total' is an actual infinite. The continuum � or the interval [0, 1] is also an actual
infinite. There is a bijection by abstraction between � and � such that these are 'equally
large'. See this book (edited from CCPO-PCWA).

(5) Probability and statistics in relation to the sorites paradox. (Not developed.)
(6) Mathematics (abstraction) and engineering (approximation to reality) are discussed in

conjunction, to foster sensitivity to the translations. For example, measurement errors due
to the constancy of the speed of light do not mean a distortion of space but remain
measurement errors.

(7) An encyclopedia of mathematics, e.g. what might result if some assumptions are
changed. For example fuzzy logic, the Brouwer-Heyting axioms, incompleteness,
computability, transfinites, fractals, chaos theory ...

(8) Democracy is a key concept but generally misrepresented by mathematicians, see my
book Voting Theory for Democracy (VTFD). Mathematician Kenneth Arrow claimed that
reasonable and morally desirable properties caused an inconsistency, and hence that what
we ideally expect from democracy would be impossible. This however appears to be
unwarranted. See Colignatus (2011h) how some mathematicians are still locked in denial of
reasonable analysis on democracy.

A table

Table 1 gives an overview of the differences between traditional and the proposed
neoclassical mathematics. The table lists my books in which the points are discussed. This
also identifies what this present book (FMNAI) emphasizes (i.e. infinity).
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Table 1. Comparison of traditional and neoclassical mathematics

Traditional mathematics (TM) Neoclassical mathematics (NM)
1 Two-valued logic. What is

nonsensical is excluded by
restrictions on form

Three-valued logic. Closer to linguistic freedom.
What is nonsensical is explicitly called nonsensical
(ALOE)

2

Gödel's theorems on
undecidability

Under some stronger properties of the proof
predicate the Gödeliar sentence causes a
contradiction so that it can be judged to be as
nonsensical as the Liar statement.
There remains a similar kind of philosophy: that
mathematical activity by mankind has the
fundamental uncertainty that some inconsistency
may pop up (ALOE)

3 Zermelo Fraenkel axioms of set
theory, also to deal with Russell’s
paradox

Self-reference is allowed, and nonsensical cases
like Russell’s paradox are recognised for what
they are. ZFC is inconsistent (FMNAI)

4
Cantor's Conjecture on the power
set

The conjecture holds for finite sets but not for
infinite sets. The diagonal argument appears to be
nonsense  (FMNAI)

5
Difference between denumerable
and non-denumerable infinity.
There are transfinites

Potential infinity associates with counting, actual
infinity associates with the continuum. There is a
bijection by abstraction between natural and real
numbers. There are no transfinites (FMNAI)

6
Weierstraß for the derivative of
regular functions (i.e. used in
highschool)

Algebraic definition of derivative and integral for
such functions. Limits are useful but not for the
derivative. (Possibly Weierstraß for other
functions.) (ALOE, COTP)

7
What is ‘space’ depends upon
axioms

Euclidean space is defined as our notion of space.
Non-Euclidean space can only be imagined in
Euclidean space (COTP)

8
Arrow’s Theorem shows that ideal
democracy is impossible

A key property of the ideal of democracy is that it
should work. Hence one of Arrow’s axioms has to
be rejected. This appears to be the axiom of
pairwise decision making (VTFD)

9 Mathematics education for
highschool and first year of
college requires training on
traditional concepts

Mathematics education requires a fundamental re-
engineering. Much of mathematical content will
remain the same but there are key gains in
consistency and didactics (EWS, COTP, FMNAI).

Conclusion

If neoclassical mathematics as indicated above is adopted as school mathematics then
professor Wu probably still might be happy that there at least is a SM, and undoubtedly
many kids would be happy too. The choices involved will be clear. When research
mathematicians (RM) drop the nonsense and look more into engineering with sound
standards, and when the empirical sciences look into the education in mathematics, then
there will be more cause for hope for improvement. Since so much is at stake and since
professionals entertain standards that currently cannot be met without sizeable
investments, and since individuals should not try to do the impossible, it is advisable that
the national Parliaments investigate the issue.
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Part 2. Pro Occam Contra Cantor
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William of Ockham (Occam)

William of Ockham (c. 1287-1347) 20 – henceforth Occam – is known for his philosophy of
nominalism, that holds that words are just words, so that words need not refer to things that
really exist. He opposed realism, that assumes that words refer to something. In
mathematics, platonism is that mathematical notions exist in some realm, and are
discovered rather than invented.

Mankind is a story-telling breed, and people may prefer a story – with a storyline,
engaging persons, drama, enticement – more than a sober reckoning of reality. Perhaps
science only became succesful when scientists discovered that they had to tell better
stories than the sorcerers.

Occam's razor is a criterion to get rid of superfluous words, and confusing notions that
they would cause. The razor requires necessity. When you don't really need something,
why bother ?

Apparently it is historically unclear how Occam formulated his razor, but the common
formulation also seems the strongest:

Entia non sunt multiplicanda sine necessitate.

Things are not to be multiplied without necessity.

Razors are to be used with caution. Dictators might well desire to get rid of words like
freedom and democracy, since these words would be confusing too, and apparently are not
necessary, since everything is fine as long as you do – and think – as your local dictator
desires.

Thus it may well be that Occam's introduction of his razor didn't really solve anything. For
us it may be a mere didactic tool: to help us focus on the points – or rather the sharp edges
– that we should really think about.

We now think about numbers and infinity. As holds for evolutionary biology where we
tend to forget what ‘deep time’ is, we may forget for the natural numbers what infinity really
means.
• The googol is 10^100.
• Let g[n] = n^...^n with n times ^ (dropping brackets). For example g[2] = 2^(2^2) = 16.

My version of Mathematica already generates an overflow for g[3] = 3^(3^(3^3)).
• Try g[googol].
• Apply g a googol times to itself, as in g[... g[googol]...].

These are just small numbers compared to what is possible. While this concerns the
natural numbers and their infinity, Georg Cantor (1845-1918) 21 argued that the real
numbers had a different kind of infinity, much greater. Would it really be true that the natural
numbers are not enough to take stock of the real numbers ? If it is necessary then we must
accept that idea. Otherwise it would be called philosophy.

                                                          
20 https://en.wikipedia.org/wiki/William_of_Ockham
21 https://en.wikipedia.org/wiki/Georg_Cantor
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Notation, injection, surjection, bijection

When two sets X and Y are equally large then we denote this as X ~ Y. Then we say that
the two sets are equivalent.

A bijection is a one-to-one relationship or map. If a merry-go-round has as many seats as
children then it is possible to match each seat to a single kid and to match each kid to a
single seat. The map explains where everyone sits. A bijection avoids empty seats (or one
kid having more seats) and kids who cannot find a seat (or have to sit together).

A bijection thus provides for a proper definition for the notion of 'equally large' sets.

A bijection relies upon these underlying notions, see also Table 2:

• X is called the domain and Y is called the range.
• A function f : X → Y maps elements from the domain to elements in the range.
• For elements x in X and y in Y we can write f[x] = y when the definition of f applies.
• We are using functions and not correspondences. For a function, if f[x] has a value,

then this is a unique single value. A correspondence c[x] might have more values. An
example of a correspondence is in plane geometry, where the vertical line at x = a
provides for multiple values of y.

• A function is injective iff for all a and b in X:  f[a] = f[b]  ⇒  a = b.

• A function is surjective iff for all y in Y there is a x in X such that f[x] = y.
• A function is bijective iff it is both injective and surjective.
• A bijection f has an inverse function, f -1: Y → X, that is also a bijection.

Table 2. A bijection iff both injective and surjective 
22

f : X → Y Surjective Non-surjective

Injective

Non-injective

                                                          
22 The graphs and the idea of this table format are by Schapel in Wikimedia Commons,
https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection
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Is zero an ordinal or cardinal number ?

August 1 2014 23

Introduction

Peter Harremoës (2011) 24 wondered whether zero is a natural number. He starts out by
admitting that it is a matter of definition, but then proceeds with the issue of ordinal and
cardinal numbers, so perhaps I should rephrase his true question as I did now in my own
title above. A google on “Is zero a natural number ?” and “Is 0 a natural number ?”
generates some 15,000 hits. A bit to my amazement there are more people pondering the
question – though close to 0.0% of mankind in statistical approximation (in writing and not
reading).

Harremoës approaches the issue from a set-theoretic point of view, though visits
Kindergarten with some nice observations. My focus is didactics, and thus I will begin with
Kindergarten.

Kids learn the sequence � = {1, 2, 3, h } – the lower case � refers to the successor
function – and tally off their fingers. When they count the elements of a set A (apples), they
bring the elements in A in a one-to-one relation with the elements in �, and also in that
order {1, 2, 3, h }. The last element counted gives the total number of elements in A.

Ordinal and cardinal numbers

For terminology: an ordered sequence gives an ordinal measure, while the total gives the
cardinal measure for the number of elements in a set.

The kids learn also the sequence � = {1st, 2nd, 3rd, h.}. Now this is interesting ! It is rather
this list � that gives the ordinals ! Rather than saying “This is apple one, this is apple two,
this is 8.” they may say “This is the first apple, this is the second apple, this is 8”.

When counting elements in a set A then it does not matter in which order the elements
are put – and the cardinal number has the property that it has the same value in whatever
order its elements are put. But, for �, the order must follow the order of the elements of the
set A that is being considered.

Thus, kids first learn ordinals and cardinals in a mixed manner with �. Then the ordinals
are created separately in �. Then � becomes important for the cardinals. The introduction
of � requires a bit of unlearning alongside learning.

Set A is counted using
ordered {1, 2, 3, L}

Order in A is not relevant Order in A is relevant

Counting (process)
(“Order some or all.”) � = {1, 2, 3, h.} first training � = {1st, 2nd, 3rd, h}

Cardinal (result)
(“How many elements ?")

�
+ = {1, 2, 3, h.} �

+ = {1, 2, 3, h.}

With this established, I think that I must object to the use of the idea that “ordinal
numbers” and “cardinal numbers” would be separate sorts of numbers. We only have the
numbers �. The “cardinal number of a set A” is just idiom to identify the number of
elements, but this does not suggest that “cardinal number” is a specific kind of number (like
rational number or complex number). It is less common to speak about the “ordinal number
of an element”. While “What number are you in line ?” indicates such ordering, still you are
not a number. “Ordinal number” is not a special number but merely � applied to ordering.

                                                          
23 https://boycottholland.wordpress.com/2014/08/01/is-zero-an-ordinal-or-cardinal-number-q
24 http://www.harremoes.dk/Peter
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Seen from abstraction - update 2015

The latter may be expressed such that we have � ~ � ~ � with the following relations:

• � is a pure sequence. It abstracts from position and size. If element a is given then
the list gives the instruction that b follows.

• � has the notion of position (cumulation of position but not of size). Being the 6th

means that 5 have passed (or will come). (There are addition and subtraction.)
• � has the notion of size (full cumulation). For example 6 is twice 3. (There are also

multiplication and division.) (Group theory distinguishes plus and times.)

Answer

Thus “Is zero an ordinal or cardinal number ?” is a nonsensical question. Zero is just a
natural number. Zero can be the value of the cardinal number of a set. Whether you start
counting with 0 is an issue of convenience, and probably not practical in Kindergarten (but
this needs testing). The true issue at hand is not quite arithmetic but actually part of the
theory of measurement, with nominal, ordinal, interval and ratio scales (see below).

Some remaining comments for context

In etymology we can find a curious connection of counting with speech itself. To give an
account or reckoning may consist of a story or a list of numbers: “Origin of tale: 25 (Webster)
Middle English ; from Old English talu, speech, number, akin to German zahl, number,
Dutch taal, speech ; from Indo-European base an unverified form del-, to aim, reckon, trick
from source Classical Greek dolos, Classical Latin dolus, guile, artifice”. In Dutch there is
the subtle distinction between “tellen” (to count) and “vertellen” (to tell). Dutch has different
words for number (“getal”, as in the list of natural numbers, or the pure decimal system, old-
English “tale”) and cardinal number (“aantal”, the number of elements, English “tally”).
Teaching this in Dutch is a bit easier than in English.

Let us consider kids in Syria, Israel, Gaza or Ukraine who have �[10] = {0, 1, 2, 3, h, 10}
fingers left. Since the places of these fingers on their hands or the way how these fingers
are ordered doesn’t matter, the natural point of view is that the numbers are cardinal values
(“how many left ?”). There also arises a natural order that one set is larger than another,
(but 0 < 1 < 2 < 3 h < 10 might also be ordinal).

The Egyptians already had a symbol for “none”. They didn’t regard it as a number though.
However once you set up a system of arithmetic then it becomes convenient to regard 0 as
a number, so that 1 – 1 = 0. Slowly language adapts to that use. Given the naturalness of
the question for kids to ask “How many fingers do I have left ?”, thus with the focus on
cardinality, and given that the answer may also be “zero”, it is more reasonable to include 0
in the list of numbers that are regarded as natural, giving � = {0, 1, 2, h }.

When you have a list of elements, it is not so practical to start the labeling with 0, since
the rank numbers might become adjectives that differ from the proper ranks. For example,
Pierre van Hiele (1909-2010), in his masterly exposition on didactics, 26 labeled his levels of
understanding by starting at a base or zero level, counting on to level 4. In terms of rank,
the first level would be level 0. However, the tendency would be to associated “level 3″ with
“the third level”, with “third” the adjective of “three”. It appears difficult to suppress that
tendency. Hence it is better to start lists with label 1. (In inverted manner, the calendar has
no year 0 but it has a first year – and a zero year would seem to be useful.)

However, when you know that a set is non-empty, then you can use �
+ = � for the

positive integers. Hopefully the little ones still have a thumb to suck on, to fall asleep, and
be ready for another day of counting.

                                                          
25 http://www.yourdictionary.com/tale
26 http://en.wikipedia.org/wiki/Van_Hiele_model



35

The distinction between counting (how many) and measuring
(how much) and the supposed distinction between
denumerable and non-denumerable infinity

Introduction

The following distinction can be accepted without problem:

• The natural numbers � = {0, 1, 2, 3, h} reflect counting and a denumerable infinity.
• The real numbers � = {x | x can be represented as a decimal number} reflect

measuring and also give an infinity: a question is what this latter infinity is.

The Key Question is: Is that latter infinity also denumerable or is it non-denumerable ?
This can be stated as the question whether � ~ �, or, in the definition given earlier,
whether there exists a bijection between these sets.

Constructivism and abstraction

The distinction between counting (how many) and measuring (how much) is basic. Above
short introduction defines it and should be clear. Counting takes discrete lumps. Measuring
is for continuous phenomena. For length we may use a measuring rod and mark the
appropriate length at any particular place.

It may still be the same infinity that only looks differently.

An analogy is this: take a cup of tea and a sugar cube, and call this Situation �. Now put
the cube in the tea, watch it dissolve, and call this Situation �. There are still as many
sugar molecules in the tea as were in the cube before, but we certainly lost track of where
they are, except for: in the tea. If we call Situation � denumerable then Situation � is not
the same, and might be called non-denumerable, but given that there are as many
molecules as before, we many still presume the existence of some bijection. The only thing
that happened is that we lost clarity of which is where.

There are at least two approaches to the Key Question:

• Constructivism tends to require the formulation of a bijection f such that for each n
and r we can calculate f[n] = r or the inverse value n = f- -1[r].

• Constructivism with abstraction allows that we can determine by abstraction that
such a bijection must exist, even though we cannot actually give a construction like
required normally.

The bijection by abstraction contains the notion that the human mind applies abstraction
to create such a bijection between � and �. We can denote � ~ � to express that the sets
are ‘equally large’ (though ordered differently). Since one can hardly object to a definition,
the prime goal of this approach succeeds by itself. The only possible objection to a
definition is that it is vacuous and has no application. A strong version of this rejection is
that the definition is inconsistent and has no application by necessity.

When one has a bijection then one has a multiplicity of bijections. The question arises
which one to use. How to order the alphabet ? There might be no natural bijection between
any two equivalent sets. Thus, the question about a possible bijection between � and �
might well be academic, without much relevance for the practice of counting or measuring.
Saying that Θ = 2π would be the 1001th number would be irrelevant if someone else would
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hold it to be the 3rd number, and so on, while we already have a decimal expansion Θ = 2π
= 6.28... that people tend to agree upon. The only reason why the Key Question might be
interesting are the transfinites, see below. Before we consider those, let us first consider the
levels of measurement.

Levels of measurement

Within the theory of measurement there is this distinction given by S.S. Stevens: 27

• Nominal scale: names, classifications. For example the names of different
languages. Statistics can give the frequencies of occurrence.

• Ordinal scale: a rank order, but the difference between the ranks has no meaning
other than the difference in rank. The objects can be sorted in 1st, 2nd, 3rd, and so on.
Statistics can meaningfully determine a median observation. This is �[n] for some n,

see above.
• Interval scale: differences have meaning, but not the ratio of measured points. The

difference between 10 °C and 20 °C is the same as the difference between 40 °C
and 50 °C, but 20 °C is not "twice as hot" as 10 °C. An important model with an
interval scale is the Georg Rasch model for competence in reading. 28 It was found
independently by Arpad Elo for the Elo-rating in chess. 29 It now is generally called
the Item-Response model. When students do a test, the test measures their
competence, but, also, the students measure the difficulty of the test. If you are more
competent than the test then you grow bored. If you are less competent then you
grow frustrated. The ideal test gives a flow. 30

• Ratio scale: ratios of measured points have meaning. "The measurement is the
estimation of the ratio between a magnitude of a continuous quantity and a unit

magnitude of the same kind" (quote from Mitchell in wikipedia). This is actually � for
discrete data and � for continuous data.

In psychological constructivism one may observe that measurement tends to reduce to
the use of a discrete grid since instruments or sense organs may never capture infinite
accuracy. The point however is that repeated measurements can generate different values
on the same phenomenon, so that the set of real numbers has been developed to capture
that very notion of the infinite accuracy of the underlying model for reality. The ancient
Greeks used a theory of proportions to deal with geometric lengths but in the subsequent
two millennia mathematicians have developed the real numbers to better handle these
phenomena.

For our purposes it suffices to mention that the discussion might be embedded in this
structure of measurement. We will not actually try this embedding at this very moment. It
suffices here that we consider � and �. The reader might object that we could have said so
before mentioning the theory of measurement. However, above identification of different
types of scales really is useful, since our purpose is not abstract mathematics but an
analysis that relates to scientific practice and understanding in the classroom.

George Cantor, the transfinites and Occam's razor

Georg Cantor (1845-1918) 31 developed the transfinites, that do not occur in above levels
of measurement. They are entirely a product of mathematical imagination.

                                                          
27 https://en.wikipedia.org/wiki/Level_of_measurement
28 https://en.wikipedia.org/wiki/Rasch_model
29 https://en.wikipedia.org/wiki/Elo_rating_system
30 https://en.wikipedia.org/wiki/Mihaly_Csikszentmihalyi
31 https://en.wikipedia.org/wiki/Georg_Cantor
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To this day, no-one has presented a model about some phenomenon in empirical reality
that can be explained by the transfinites. There is a body of mathematical research after
Cantor that has contributed to modern society, but those results do not depend upon
Cantor's transfinites.

What are those transfinites ? Cantor suggested that � = 2�, and that beyond � there are
2�, and so on. If we accept that the natural numbers give the infinite, then there are various
transfinites beyond that. Cantor's suggestion:

• The denumerable infinite of � is denoted as 0א (Hebrew A, "aleph null")

• The "non-denumerable" infinite of � is denoted as 1א ("aleph one")
• And so on.

One of the mathematical research questions is whether there are intermediate stages.

The continuum hypothesis is that 2 = 1א
i.e. there is nothing inbetween. 32 (I regard this ,0א

phrase as an abuse of the notion of the continuum.)

A fine introduction into such traditional logic is by Howard DeLong (1971), who also
explains about the transfinites. There are numerous discussions on the internet, but
frequently less comprehensible than DeLong's book. Popular science books are by Aczel
(2000) and Wallace (2003) but be sure to read the review of the latter by Harris (2008). A
critique is by Brady & Rush (2008) but I would have to think more on this.

Applying Occam's razor to Cantor's transfinites causes the question: are we really forced
to accept those, or are they created by a mere act of volition ?

Cantor was deeply aware of this question. He had to convince himself of course, and
subsequently also his sceptical mathematical colleagues. Thus he provided two proofs, one
in 1874 and another one in 1890/91, see Hart (2015) but see also Appendix B. 33

Around that time mathematical logic and set theory were still under development.
Bertrand Russell (1872-1970) 34 produced his famous paradox, and subsequently the
Theory of Types to block it. Russell also reformulated Cantor's proof of 1890/91 into what
became known as Cantor's Theorem on the Power Set, which has become the bread and
butter of every course in set theory. We will refer to it as Cantor's Conjecture.

The set theoretic conjecture is a generalisation, and stands by itself. Thus there are at
least three proofs for Cantor's transfinites: 1874, 1890/91 and the set-theoretic version.

Taking stock

Collecting these points, also including some other information, we find:

• It is good practice in mathematics to maintain Occam's razor.
• There would be at least three proofs for Cantor's transfinites.
• It must be observed also that Russell's version of Cantor's conjecture clearly relates

to Russell's paradox.
• There is a bijection by abstraction with � ~ �, that contradicts Cantor's transfinites.
• There is no empirical application for the transfinites (after more than 140 years).
• Traditional logic and set theory are still rather chaotic, and ALOE with its three-

valued logic allows a consistent approach to nonsense, like the Liar paradox, the
Gödeliar, Russell's paradox, and now also Cantor's conjecture.

• There is a breach in scientific integrity since 1980 on this, see Colignatus (2015e).

                                                          
32 http://mathworld.wolfram.com/ContinuumHypothesis.html
33 Originally Colignatus (2015c)
34 https://en.wikipedia.org/wiki/Bertrand_Russell
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Overview of various Cantorian conjectures and refutations of their proofs

We will refer to various forms of Cantor's Conjecture, also known as the diagonal
argument, see Table 3.

Table 3. Various Cantorian conjectures and their refutations

Author & date Conjectures, page numbers in this book Refutation

Cantor 1874 Reals are non-denumerable, via intervals, p 51 CCPO-PCWA

Cantor 1890/91 Diagonal argument, binary, bijection, p 47 CCPO 2007j

Russell 1907 Power set, using bijection ("common"), p 75 ALOE

Coplakova et al.
2011

Power set, using surjection ("standard"), p 138 PV-RP-CDA-
ZFC

Hart 2012 Weakest form that underlies the argument, p 64 The latter too

PM. Wikipedia (a portal, no source) uses "Cantor's Theorem".

There is an issue on terminology w.r.t. the term refutation in the table. Observe that the
table gives refutations of proofs and not of the conjectures themselves. There might be
other proofs, unless a counterexample has been presented.

A theorem or conjecture is generally refuted by a counterexample. For the natural
numbers and the reals we can find � ~ �, via the notion of bijection by abstraction, below.
This uses constructive methods that some might not agree with, and it uses abstraction that
some constructivists might not agree with.

Perhaps a better term for the RHS in the table might be deproven, in the sense that the
theorem is stripped from its proof and no longer can count as a theorem and only survives
as a conjecture. It may be that it would still hold, but via a different proof.

The refutation of Cantor's Conjecture or the diagonal argument is done by showing that
the proof relies on logically improper constructs so that the proof can be rejected as invalid.

Saying that 'the proof is rejected' would be too simple because in this realm of discussion
– axiomatics – this might suggest that it is a mere act of volition to reject one of the axioms.

 One might say that the proof is 'invalidated' but this seems uncommon. A proper phrase
is that 'it is refuted that the 'proof' would be valid'. The latter becomes short: 'the proof is
refuted'.

Below we will look at ZFC, as the set-theoretic axiomatic system that Cantor's Conjecture
on the Power Set relies upon. A major refutation is that ZFC is inconsistent.

The latter form of the conjecture was actually devised by Russell in 1907. Cantor himself
published his own versions before the ZFC system came about in the 1920s. 35 Thus there
is value in refuting Cantor's original proofs as well. When a new axiomatic system is
developed, it would be advisable to prevent the re-occurrence of the transfinites.

Hart (2015) gives a review in Dutch of the various forms of Cantor's Conjecture. See
Appendix B for a critical rejection of his presentation. Hart also provided the weakest form
of the Conjecture. This form will play a key role in this book for its very useful properties. A
major feature is that it obscures the internal contradiction – useful for us to show the
confusion. Its refutation can be found in Appendix C. Since we can derive that ZFC is
inconsistent, this refutation has lost pride of place and has been put in that appendix.

                                                          
35 https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
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Steps in constructivism and bijection by abstraction

This section will repeat some of what we discussed above (page 22) and reformulate this
as steps (degrees) in constructivism. The label Si will be used. A main advice is to avoid the
term level since this is already put to use in perhaps already too many different meanings.

1. A place for abstraction in constructivism

The author thinks that abstraction is an activity of the human mind that can sometimes be
seen as proper constructivist.

For example, the natural numbers are figments of abstraction and don't occur in empirical
reality (in the standard sense, non-platonic). Brain research suggests that at least the first
numbers are hard-wired in the brain, but are these proper representations of the notion of
'number' ? While our thoughts might be equated with abstraction itself perhaps those hard-
wired 'numbers' are more computer-like. Results of abstract thought can be put into
computer programs that might not fully copy that abstraction – since computers cannot think
(yet) – but they reproduce it to good effect.

Abstraction is the elimination of other aspects.
An example of dealing with abstraction is the ability to give a name or label to the infinite

set of natural numbers without actually counting all of them, � = {0, 1, 2, ... }. This can be
done in computer algebra systems and it is unclear how the mind does it though we can
presume that it doesn't store all numbers. It is customary in math to use numerical
succession but the latter is procedural and doesn't seem quite the same as human
abstraction. With finite �[n] = {0, 1, 2, ..., n} then numerical succession is: that for each �[n]
there is an �[n+1]. The procedure uses n to create n+1 and subsequently the set.
Introspection suggests that this procedure differs from the mental act to grasp the whole �.
Perhaps one type of computer program can only count in actual numbers (printed on a
paper trail), with only different instances and a specific value per instance, but another type
of computer algebra system might use the symbol � as a representation for all natural
numbers (with the associated algebra to make it work). While the specification � = {0, 1, 2,
... } suggests that we are hard-pressed to understand what infinity could be as a completed
whole, the list {1, 2H, 3H, 4H, ... } clarifies that we only need the interval [0, 1] (with 0 and 1
included) to grasp that completed whole.

Another example of dealing with abstraction is to work with the real numbers � also using
a calculator even though the calculator represents such numbers only in finite form up to a
certain depth of digits. For example, for 9H = 0.111... the calculator screen may show only 8
digits, but on paper we can include the ellipsis (trailing dots) to indicate that the 1's
continue, while a computer algebra system may formalise that and only display 0.111... but
continue internally to work with 9H till a final answer is required.

In my mind I might think of a circle and a computer might print the mere word "Circle[r]"
(with radius r). Some authors might hold that thinking about a number or circle is platonic
but others might agree that ontology is a different subject (since people may also dream
about ghosts).

It seems that it suffices to hold that this kind of abstraction is precisely what we want to
include in the constructivist view on mathematical activity. This concerns the use of symbols
with properties that are described in procedures.

Let us design steps (or degrees) in constructivism S1 to S6. Agreement and disagreement
on the following step-by-step approach will help to delineate what constructivism is, or what
kind applies at a particular instance. Presumably a particular view is more efficient in terms
of information processing in some cases than in others. (This holds a fortiori with respect to
points of view on volition, determinism or randomness, where we also lack distinguishing
experiments to decide what really is the case, but where we can develop models that result
in different successes and failures.)
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PM. Ludwig Wittgenstein (1889-1951) used the term 'language game' to indicate that
individuals have their own understandings and negotiate meanings with one another. This
approach might reduce language to a soup. Mathematics educator Pierre van Hiele (1909-
2010) allowed for levels in understanding or abstraction, which notion seems to have merit
of itself and does not merely derive from the stratified language game in class. With words
that have a different meaning depending upon the level of (mathematical) understanding, a
language contains at least four sublanguages relating to these levels. Our reference to the
ordinal and ratio scales implies a reference to such levels, going from a child that is trying to
master arithmetic to research mathematicians doing axiomatics.

2. Abstraction on natural numbers

Aristotle's distinction between the potential and the actual infinite is a superb common
sense observation on the workings of the human mind. Elements of � and the notion of
repetition or recursion allow us to develop the potential infinite. The actual infinite is
developed (a) via abstraction, with associated 'naming' (while recursion is less crucial than
the step of abstraction), and (b) the notion of continuity of space (rather than time as
Brouwer does).

While we use the symbol � to denote the natural numbers, this not merely means that we
can give a program to construct integer values consecutively but at the same moment our
mind leaps to the idea of the completed whole (represented by the symbol � or the phrase
"natural numbers"), even though the latter seems as much a figment of the imagination as
the idea of an infinite line.

The notion of continuity for say the interval [0, 1] would be a close encounter with the
actual infinite. In the same way it is OK to use the mathematical construct that the decimal
expansion of Θ = 2π has an infinity of digits, which is apparently the conclusion when we
use such decimals.

Recall what we wrote on page 23. Some observations are:

• The abstraction �[n] @ � that is implicit in the difference between �[n] and � can
be interpreted as the change from counting to measuring. We might keep the notion
that � ~ �, or that both are 'equally large', 36 but they are only ordered differently.

• The step from (1) potential infinity to (2) actual infinity may be too large and we can
try to find intermediate steps. At a lower level of abstraction you can be blind to the
larger implications and higher levels. At a higher level of abstraction you might think
that this might be logically be included in the lower level though you didn't see it.
(This is one link between philosophy and didactics.) Introducing steps is also tricky
since it might create what isn't there.

• One approach is to distinguish numbers 0, 1, 2, ... from lists of numbers {0}, {0, 1},
{0, 1, 2}, ... that display a whole. Making 'lists of numbers' generates the notion of a
'whole' which might be absent from the numbers themselves. But in the intended
interpretation the numbers are supposed to count something and thus include some
notion of 'whole' anyway – see page 34. Perhaps the successor function might be
used without the notion of a 'whole', but when numbers are used for counting as
generally understood then the notion of cumulation is present.

We proceed as follows. Developing these steps is one of the key contributions of this
book.

                                                          
36 CCPO-WIP (2011, superseded) used the terms 'limit' and 'bijection in the limit'. The mathematical
notion of a limit might perhaps be used to express the leap from the potential to the actual, though the
use and precise definition of that notion of a limit also appears to depend upon context, e.g. with a
distinction between 'up to but not including' and 'up to and including'. To avoid confusion we use the
notion of abstraction, as is implicit in the conceptual difference between �[n] and �.
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3. Steps (degrees) in construction with abstraction

We can recognise these steps (degrees) in constructivism with abstraction:

(S1) �[0], �[1], ... for concrete numbers only. (They just ‘are’. This might be seen as
the platonic case, where there is no invention but discovery. In strict finitism there might
even be a biggest number.)

(S2) �[n] ⇒ �[n+1]. This would be an algorithm that generates the numbers
consecutively. Given some n, it has the ability to calculate n+1 and include it in a list. There
is no recognition of a variable n yet however. (This cannot be Aristotle’s potential infinite.
Though Aristotle didn’t explicitly use the modern notion of a variable his reasoning
anticipated it.) (This may be the successor function but without a variable.)

(S3) �[n] = {0, 1, 2, ..., n} as an abstraction of S2. The variable n is identified explicitly.
(The neoclassical form of Aristotle’s potential infinite.)

Numerical succession (NS) is at the level of S3 because of the abstract use of the
variable n. Namely, for predicate P the application of P[n] ⇒ P[n+1] is numerical succession
only if there is explicit understanding of the necessary link via n. A computer program that
for each P[n] subsequently prints P[n+1] merely shows the execution of a mathematical
proposition (S2), but does not provide a proof that something would hold for all n (S3) . (A
student might continue to work at level S2 before it dawns that this could potentially
continue ad infinitum, S3.)

(S4) � = {n | n = 0 ∨ (n – 1) ∈ �}. This uses the recursive procedure written as up to n,

but any n still transforms into all n. This leaves out from S3 that there is some n, but it still
generates a completed whole. (The neoclassical form of Aristotle’s actual infinite.)

As Kronecker is reported to have said “God made the integers” the subsequent question
is: “Really all of them ? He didn’t forget a single one ?” The crux in S4 lies in the symbol �
that captures the “all”, and a consistent Kronecker thus would accept S4. (But it seems that
he wanted to remain in S3.) NS is often understood to be relevant for this level. In that case
it might be useful to speak about ‘basic’ NS for S3 and ‘full’ NS for S4.

(S5) � = {0, 1, 2, ....}. The reformulation of S4 in the format of S3 with an ellipsis, to
emphasize the shift from finite n to a completed whole. (Compared to S1, the dots now are
used within the notation and not at the meta level. Compared to S4 it is merely a matter of
notation.Some students may have a problem to shift from the procedural S4 to the more
abstract S5, but it shows mathematical maturity to see that the forms are equivalent.)

(S6) The next step would leave the realm of constructivism. The intellectual movement
towards constructivism might become so popular that all want to join up, also users of non-
constructive methods. But a line may be drawn and this line will actually define
constructivism. An example of a non-constructive method is Cantor’s manipulation of the
diagonal element, see below, where he assumes some positional number C so that there is
a digit dC,C on the diagonal, but this number remains undefined, so that actually C → ∞.
Drawing the line here, allows us to express that S5 with its abstraction still belongs to
constructivism.

The distinctions between these Si would be crucial if we would deal with inflexible minds

who cannot get used to some degree of constructivism. For those who can use all degrees,
the distinctions may seem somewhat arbitrary, because they will wonder: don’t the simpler
degrees invite the abstractions to the higher degrees ?

My suggestion is that S1 and S2 aren’t relevant for mathematics (except for the
engineering of calculators), and that Aristotle was right that the interesting question
concerns the distinction between S3 and S4 (or the step S5) (which also could apply to the
engineering of computer algebra languages).
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4. Definition of the real numbers

Definition of �

Above we had � = {x | x can be represented as a decimal number}.

This is commonly regarded as somewhat imprecise. Regard the following paradox:

(a) 3H = 0.333333...

(b) 3 * 0.333333... = 0.999999...

(c) 3 * 3H = 1 = 1.00000...

In general we better take 0.999999... = 1.00000... and we better also adopt a definition
that includes this.

Let us define the real numbers in a variant of Gowers (2003), leaving out some of his
algebra. It suffices to look at the points in [0, 1] (and others could be found by xH etcetera).
Thus � is the set of numbers from 0 to 1 inclusive. A number between 0 and 1 is an infinite
sequence of digits not ending with only 9's; if it ends with only 0's we call it terminating.
Rather than defining � independently it is better to create it simultaneously with a map
(bijection) with � to account for the otherwise hidden dependence.

A map between � and �

Let d be the number of digits. For each d we have �[d]:

For d = 1, we have 0.0, 0.1, 0.2, ..., 0.9, 1.0.

For d = 2, we have 0.00, 0.01, 0.02, ..., 0.09, 0.10, 0.11, 0.12, ..., 0.98, 0.99, 1.00.

For d = 3, we have 0.000, 0.001, ..., 1.000

Etcetera.

Values in � can be assigned to these, using this algorithm:

For d = 1 we assign numbers 0, ... , 10.
For d = 2 we find that 0 = 0.0 = 0.00 and thus we assign 11 to 0.01, 12 to 0.02, etcetera,

skipping 0.10, 0.20, 0.30, ... since those have already been assigned.
Thus the rule is that an assignment of 0 does not require a new number from �.

Thus for numbers with a finite number of digits d in � we associate a finite list of 1 + 10d

numbers in �, or �[10d].

Subsequently, �[10d] @ �.
The latter creates both � and a map between that � and �.
Let us look into the latter map.

PM 1) There has been much discussion whether a point has a size or not, but when we
understand it as a co-ordinate, then it will have no size.

PM 2) Mathematicians apparently tend to prefer to construct the real numbers in other
ways. Above construction however helps in deconstructing Cantor's conjectures
in didactic manner.
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5. Definition of bijection by abstraction

The creation of � above simply defines away Cantor’s problem. Crucially:

The state of paradox is turned into a definition.

The intention is to only capture what we have been doing in mathematics for ages. It is
not intended to present something horribly new. The procedure above only describes what
we have been doing, but what has not been described in these terms before. It is a new
photograph but at higher resolution, and it allows to see where Cantor was too quick.

The created map is better not called merely a ‘bijection’ but rather ‘bijection by
abstraction’. A common bijection should allow us to identify the index of say 3H = 0.333....
while we don't have this ability in actual infinity S4 – and didn't have it in potential infinity S3.

In an overview, the procedure thus is:

(1) Potential infinity: �[n] = {0, 1, 2, ..., n}
(2) Actual infinity: � = {0, 1, 2, ....}
(3) For all n ∈ �, including variables n ∈ �:  �[n] @ �

(4) The definition of �[d], and then the creation of � via (�[10
d
] @ �) ⇒  (�[d] @ �).

Check that indeed � arises: no holes.

(5) We construct the bijection b[d]: �[10
d
] ↔ �[d] for d a finite depth of digits.

(6) Definition of what it means to have a bijection by abstraction between domain D and
range �: this applies when these three properties are satisfied:

(a) There are a function f[d]: � → � and a bijection b[d]: D[f[d]] ↔ �[d]

(b) (D[d] @ D) or (D[f[d]] @ D)

(c) �[d] @ �

Bijection by abstraction can be denoted Б: D ↔ � or D ~ �. In that sense D and � are
equally large. When (6a) - (6c) are satisfied then this is also accepted as sufficient
proof that there is a bijection b, at constructive level S4 even though that b no longer
needs to be constructive in S3.
Note that the function f also allows the use of binaries (0 and 1 only) and other formats.

(7) Then we get the scheme: on the left we use �[10
d
] @ � and on the right

simultaneously �[d] @ �:

b[d]:  �[ ]10d  ↔  �[d] 
↓  @  ↓  @ 

?:  �  ??  � 

(8) Filling in the question marks: given its definition, there is a ‘bijection by abstraction’
between � and �.

Our construction apparently is valid for the creation of �. Since we have a map with �
for each value of d, we find ourselves forced to the conclusion that with the creation of �
there is simultaneously the creation of a map between � and �.

PM. In (4) for m = 10
d
, �[m] @ � has the same portent as �[n] @ � in (3), and this has

the same portent as �[d] @ �. Thus (�[10
d
] @ �)  ⇔  (�[d] @ �). Thus we can also use

(�[d] @ �)  ⇒  (�[d] @ �). Currently (6) uses the function f to stay closer to what actually is
done, but also the latter might be used.
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6. The interpretation of ‘bijection by abstraction’

The definition captures and emphasizes the wonder of � ~ � rather than hiding it. � and
� are abstract notions that may be understood by a mental act by a conscious brain.
Nobody has ever seen a fully listed print of these numbers and it is physically inconceivable
that this will ever happen. The above steps seem to properly capture what steps in
abstractions are taken to handle these notions.

There are the two observations on the ‘to’ and ‘from’ relations:

(a) From � to �. Above scheme allows for each particular element in � to determine
what number in � is associated with it (and it will have a finite number of digits: these form
a subset of the rational numbers).

(b) From � to �. The abstraction �[d] @ � appears to be vague and insufficiently
constructive (in terms of S3) to the effect we cannot pinpoint a particular value in �

associated with say 3H or a truly random sequence. It is paradoxical that we can decode a
value in � to a particular number in � but that we cannot specify an algorithm to decode
from 3H to a particular value in �. The construction with �[d] @ � apparently introduces
vagueness, even though we can infer that such a map must have been created since also
� has been created. See the analog of tea and sugar on page 35. (Perhaps it is this very
vagueness that causes that we have to distinguish between � and �, and make the
distinction between counting and measuring. Likely though the latter is the basic empirical
observation, and we have modeling � and �, to fit that observation.)

This might also be summarised in this manner. Though the name � suggests an actual
infinite, and though the collection is an actual infinite, the natural numbers remain
associated with counting and counting associates more strongly with the potential infinite.
Whence � associates much better with the actual infinite given by the totality of �, which is
the continuum, which is measuring.

If you look for something in a filing cabinet or encyclopedia, you might start with A, and
step through all values, but it is smarter (‘measuring’) to jump to the appropriate first letter,
etcetera.

An unrepenting constructivist (S3) might want to see a 'constructive' bijection between

� and � and might reject the vagueness of the ‘bijection by abstraction’.
An eclectic and unrepenting Aristotelian (S4) might be happy that both sets have the

same ‘cardinal number’, namely infinity, and that there is no necessity for ‘transfinites’.

7. Some observations

A fallacy of composition

When we consider a real number with an infinite string of digits, like 3H or a truly random
sequence, we employ the notion of the actual infinite. At the same time, in above definition
and construction of � we employ the potential infinite. When we combine these notions
then we are at risk of making a fallacy of composition. We should not mix these notions.

When 3H is still in the process of being built up as an element in �, then we can ask for
a value in �[10d], but it is not guaranteed that we can ask for the value in � for 3H once it
has been 'completed' (a notion that is as well-defined as �).

By abstraction we get �, including 3H, but this apparently also means that we resign
constructive specifics.

Stating �[d] @ � means a conceptual leap or a shift of perspective from the potential to
the actual infinite. Rather than counting 1, 2, 3, we shift to the set of natural numbers, �
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(and the name ‘the natural numbers’ refers to that actual infinite). When we use that symbol
then this does not mean that we actually have a full list of all the natural numbers. We only
have the name. The shift in perspective is not per se ‘constructive’ in the sense of S3 but
can be accepted as ‘constructive’ in the sense of S4.

A misunderstanding due to ‘replacement’

One might see the step from finite d to infinity as a mere replacement of d by the symbol
∞ (now not read as “undefined” but as “infinity”). This could be a form of algebra. Such mere
replacement might be relevant for how our actual brains work. It might be relevant for
didactics, something to suggest to some students who have difficulty understanding what is
happening. However, at this point in the discussion there is no developed algebra on such
methods, and the proper interpretation still is, only, the switch from the potential infinite to
the actual infinite: which is a conceptual leap (and no simple substitution).

Properties of @

The symbol @ has been introduced for � and � specifically, and without claim for
generality. Perhaps we can work towards some rules on it, such that we can assume those
rules and some weaker property to arrive at the same outcome. This however is a tricky
area.

(i) One reader argued:
(1) �[d] @ � means that for every n ∈ � there is an m (say n+1) such that for d > m we

have n ∈ �[d].
(2) Then �[d] @ � means that for every r ∈ � there is an m such that for d > m we

have r ∈ �[d].
(3) The latter however is not true. Trivially, 3H has no finite number of digits.
(4) Hence the meaning of a[d] @ a differs for � and � and "thus is not well-defined".
End of the argument.
In reply: Above, the symbol @ is not presented in a general format a[d] @ a. Only the

expressions �[d] @ � and �[d] @ � are defined separately, where it thus matters whether
we look at � or �. The observation by the reader thus is partly accurate since there is
indeed no general definition given for a[d] @ a, but it is inaccurate since it wants to impose
such a definition while it hasn’t been given.

(ii) One reader wondered whether the expression Θ[d] @ Θ (for Θ = 2π) would be
meaningful. It is doubtful whether there is any value in looking into this kind of question.
Perhaps Θ[d] might be defined as the number with the first d digits of Θ, and then what ?
There is no meaningful way in how abstraction might cause one to get from such a value to
the full value of Θ. This is discussed in Appendix F.

(iii) Some potential algebraic properties in relation to subsection 5 step (5) might be:

((A @ B) ∧ (A ~ C))  ⇒  (C @ B)

applied to (�[d] @ �) ∧ (�[d] ~ �[m] for some m = 10d)  ⇒  (�[m] @ �)

((A @ B) ∧ (A @ C))  ⇒  (B ~ C) applied to (�[m] @ �) ∧ (�[m] @ �)  ⇒  (� ~ �)
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8. Conclusions

The interpretation is:

(1) The decimals in [0, 1] can be constructed via a loop on d, the depth of decimals, and
then assuming this for denumerable infinity. This is not radically novel. The distinction
between potential and actual infinity is given by Aristotle, and everyone has been aware of
amazement and a sense of wonder.

(2) Due to Cantor people have started thinking that the loop would require ‘higher’
infinity. Cantor’s arguments however collapse: see the deconstructions below.

(3) The concept of bijection by abstraction helps to get our feet on the ground again.
The potential infinite can be associated with counting and the actual infinite can be
associated with measuring (the continuum). Two faces of the same infinity. Clarity restored.

(4) The clarity actually arises by taking the wonder of the relation between the natural
numbers and the continuum as the definition of bijection via abstraction. (The amazement

is that for each d we have 10d decimal numbers but for �[d] @ � we lose identification.)

(5) To avoid confusion in discussion:
• � is ‘denumerable infinite’ in all approaches, also via abstraction.
• � is ‘non-denumerable infinite’ in Cantor’s view, i.e. with identification lost.
• � is ‘denumerable infinite by abstraction’ according to the present discussion.
• For � we might drop the “via abstraction” but for � we might include it for clarity.

We may also say that � is ‘Cantor-non-denumerable infinite’ for clarity.

(6) The construction works for two reasons: (a) We construct � from the decimal format.
Somehow mathematicians have been keener on using other ways to create �, which may
have caused that they missed this particular development. (b) We do not use a notion of
limit of d → ∞, but we use the notion of abstraction that is implicit in �[n] @ �. This
abstraction already has been given while the notion of a limit with this particular purpose
would require some more development, while it is not guaranteed that it would work.

(7) This discussion of how � is constructed, and that � ~ �, can also be held in
secondary school, where pupils have to develop a number sense, except for perhaps some
philosophical technicalities and use of language. The point of view deserves to be included
in courses on set theory, also for math majors, since students ought to have a chance to
occulate themselves against the transfinites.
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Cantor’s diagonal argument for the real numbers, 1890/91

1. Occam’s razor

Let us first consider Cantor's 2nd argument from 1890/91 that the real numbers would be
non-denumerable. Cantor used a binary representation, with values m and w. When these
values are flipped then m becomes w and w becomes m. Compared to this necessity in
outcome, the changing of values in the decimal case causes a feeling of arbitrariness.
However, students are more used to decimals, and thus decimals are more didactic. 37

Cantor is known for his plea of freedom in mathematics. This freedom holds for the
posing of axioms and for the pursuing of lines of questioning. It is quite another thing to
derive ‘transfinites’. I wholeheartedly agree with Cantor’s plea for freedom but mathematics
turns to philosophy indeed if there is no necessary reason to distinguish different
cardinalities for � and �. See also Edwards (1988) and (2008). If there is no necessity,
then Occam’s razor applies. Let us see whether there is necessity.

2. Restatement

Cantor’s diagonal argument on the non-denumerability of the reals � is presented in
DeLong (1971:75, 83) and Wallace (2003:254). Let us restate it.

Conjecture. (R), (Cantor's Conjecture on �) The real numbers are not denumerable.

Proof. (Cantor, 1890/91) If � is denumerable, then its numbers can be put into a list. It
suffices to assume a bijection between � and [0, 1] that uses digits di,j :

1 ~ 0.d1,1d1,2...

2 ~ 0.d2,1d2,2...

... etcetera.

Using suffix D as a label and not as an index, the diagonal number is nD = 0.d1,1d2,2....
taken from that list. We can define a real number that would not be in the list. For example,
with index C ("Cantor"): nC = 0.nC,1nC,2...., where nC,j = 2 iff dj,j = 1, and nC,j = 1 iff dj,j ≠
1. If the position in the list would be C then nC,C = dC,C by definition of the list and nC,C ≠
dC,C by definition of nC, which is a contradiction. Nevertheless, nC would be a true real
number and thus should be in the list somewhere. Hence there is no such list, and the real
numbers are not denumerable. Q.E.D. PM. We can create an infinity of such points.

Conjectured Corollary. (2015) The definition of bijection by abstraction is nonsensical. It
should create a list but clearly cannot.

I’ve seen the diagonal argument on � in 1980 and considered it at some length, and
have done so now again. In 1980-2010 I still accepted it. My only excuse is that I did not
teach the subject. With some more maturity I can better appreciate some constructivist
views. One may observe that neither DeLong (1971) nor Wallace (2003) mentions those
constructivist considerations on this proof. It would be better if those would be mentioned in
summary statements since they better clarify what is at issue. Curiously though I have not
found a direct counterargument yet, neither in papers by others on Kronecker, while
Hodges (1998) tends to give only outlines. Thus the following is my own. 38

                                                          
37 Hart (2015) – see Appendix B for some critique – mentions that the decimal form was presented by
Young & Young (1906), who referred to it as "Cantor's second proof".
38 Hodges (1998) discusses some "hopeless papers", apparently with arguments that he rejected – but
apparently with non-constructivist arguments, see his email page 15 above.
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3. An aspect of self-reference

Cantor's argument would be logical. The suggestion is that we wouldn't have to calculate
C since for every ranking and mutation rule there would be a different C.

Still, the diagonal argument attracts attention since there seems to be something fishy
about taking an element dC,C and redefine it to have another value than it already has. This
aspect of self-reference would be clearer if we could pinpoint a value for C.

The reader is invited to look again at the paradox with the squircle, page 17. If we use X
for which we don't have a proof of existence, then we may be in problem. Particularly so,
when this X shows that (1) it cannot exist and (2) we continue using it for a proof (think of
the Cheshire cat that leaves its grin).

4. C → ∞ or C = ∞ ?

There is no algorithm to find the specific number C for the diagonal digit dC,C. The

reasoning is non-constructive in the sense that the number cannot be calculated. This might
be clarified by writing C → ∞ or C = ∞ so that we are discussing n∞,∞ which may be
recognized as rather awkward since the symbol ∞ generally stands for “undefined” as well.

5. A formalisation of the rejection

Let us make the above a bit more formal.

Rejection of conjecture R.  Conjecture R is fallacious.
Proof. Let p = “There is a (well-defined) diagonal element dC,C”.
Cantor concludes that there is no list and thus no diagonal. Thus he agrees with Ÿ p. His

argument can be rephrased as the following scheme: p ⇒ Ÿ p, ergo Ÿ p.
However, his true deduction is Ÿp ⇒ (p ⇒ Ÿp), which is an instance of Ÿp ⇒ (p ⇒ q), which

tautology is known as ‘ex falso sequitur quodlibet’ – EFSQ: from falsehood follows whatever
one wishes, see Table 4. For q = Ÿ p look at rows 2 and 3.

For position C we have nC,C = dC,C by definition of the list and nC,C ≠ dC,C by definition
of nC, which is a contradiction. Hence C not-well-defined, hence neither dC,C. Q.E.D.

Table 4. Truthtable of Ex falso sequitur quodlibet (EFSQ)

Ÿp ⇒ (p ⇒ q)

0 1 1 1 1
0 1 1 0 0
1 1 0 1 1
1 1 0 1 0

Another way to put it: Cantor implicitly uses that the diagonal element dC,C does not exist
(for he suggests to give it a value) to prove its nonexistence. Hence it is also ‘petitio
principii’ or begging the question, Ÿ p ⇒ Ÿ p. (This fits with EFSQ with q = Ÿ p.)

6. Discussion: the reasons why C is undefined

6.1. Fallacy of composition

Above diagonal argument suffers from the fallacy of composition. The list of numbers in
� is created in the manner of a potential infinite but the diagonal proof suggests that they
can be accessed as actual infinites. This rather confuses the argumentation, since it
requires more of the bijection than the bijection by abstraction is capable of.
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(1) Above, for each �[d] in the list we might try to take a diagonal but the numbers are
not long enough. For d = 2 we already get stuck at 0.01. The mutated number becomes
0.12 and when we move up the list we find it.

(1a) The 'mutation rule' on the ‘diagonal’ stated in nC is rather a waiting rule than a

number creation rule. The numbers are in the list at some point, and do not have to be
created anew. We only have to go from one value of d to another value of d to let the
mutated number appear (up to the required value of d). And given the approach of
abstraction this apparently also holds for completed � and �.

(1b) Supposedly though we could extend the numbers with a sufficient length of zero’s.
Creating a new number based upon such a diagonal number would not be proper however
since we are already creating � in another fashion. Such diagonal number conflicts with the
situation defined for that particular value of d.

(2) Cantor’s argument has this structure: “Suppose that there is a list, then there is a
diagonal, then a new number is created that cannot be on the list. Hence there is no such
list, hence real numbers are not denumerable.”

But the bijection by abstraction showed that there must be a list, that comes about
alongside with the creation of � itself. The alternative argument is rather: Given the list and
if we allow that such a notion of a diagonal is implied and well-defined, we apparently
cannot find a value for C, whence such rules of creation like nC are nonsense.

This book comes close to generating a particular diagonal, via the bijection b[d] and the
step of abstraction. But that final step loses both identification and a value for C that Cantor
wishes to use. When something cannot be identified then we should be cautious to use it.
This is rather not an issue on the infinite but rather a point of logic.

(3) The unrepenting constructivist (S3) who rejects the usefulness of the ‘bijection by
abstraction’ and who wants to see a constructive bijection such that we can calculate the
proper number for 3H, would also stick to a constructive approach for the diagonal, which
however is not what Cantor offers.

In other words, S3 regards it as a fallacy to suggest that there would be a ‘diagonal’ nD
= 0.d1,1d2,2.... Cantor’s proof assumes a diagonal but rather that diagonal should be
created. (While it is constructed, at the same time the mapped value nC is created, and
then it appears that it could not be created, since it is inconsistent that nC,C = dC,C by
definition of the list but nC,C ≠ dC,C by definition of nC.)

(4) Readers who allow Cantor this freedom to be non-constructive on diagonal digit
dC,C should also allow for the 'non-constructive' aspect in the ‘bijection by abstraction’ –
namely that an index for 3H must exist but cannot be identified. Of course, allowing Cantor
his freedom would generate the contradiction of a list that cannot be a list.

Conversely, however: who allows for the ‘non-constructive’ aspect in the bijection by
abstraction (S4 instead of S3) does not necessarily have to allow for the non-constructive
Cantorian handling of that diagonal digit dC,C (with C → ∞).

In �[d] @ � we allow that � is completed; and some readers object to this, because
they interprete this as if � were constructed from the rational numbers (quod non: for all
numbers are there). On the other hand, we criticize that C has no completed value. The
difference is that we have a construction for � while there is no way to find C.

6.2. Compare with the squircle

On page 17 we pointed to the fallacious lemma: Each square has an associated squircle.
In the same way Cantor’s argument uses a fallacious lemma: Each diagonal has an
associated mutated number. The fallacy obviously lies in the nC,C construction.
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(1) It is too simple to say that dC,C must be a digit from 0,..., 9, and that each digit allows
a redefinition. The latter only allows a conclusion that if nC,C exists then it has a value, but
it does not allow a calculation of C, and thus we still have no dC,C.

Indeed, once we have dC,C then we can define nC,C, but we need nC,C to find C, to find
dC,C. The argument that nC,C only gets a new value is fallacious: since that assumes that
there is a value dC,C to start with.

(2) Consider nC = 0.nC,1nC,2......nC,C.... and the 10 adjacent numbers. Use C±k for
some value of k such that all digits 0, ..., 9 in column C are covered. For 0 there will be a k0,
for 1 there will be a k1, etcetera. For convenience we write k for all. For purity we also write
m, so that if k = 0 then the mi,j = ni,j and otherwise mi,j = di,j. At least, if this is consistent.

mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 0)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 1)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 2)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 3)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 4)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 5)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 6)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 7)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 8)....
mC±k = 0.mC±k,1mC±k,2......(mC±k,C = 9)....

Consider the two possibilities for unknown C:

Possibility (a) has nC,C = dC,C by definition of the list. Other values are off-diagonal:
(a1) For k = 0 there would be a value 0 ≤ mC±k ,C = dC,C ≤ 9.
(a2) For k ≠ 0 the values in the column are different, with 0 ≤ dC±k ,C ≠  dC,C ≤ 9.

Possibility (b) goes inversely from nC,C and tries to locate where it came from:
(b1) For k = 0 there would be a value 0 ≤ mC±k ,C = nC,C ≤ 9. But still nC,C = dC,C by

definition of the list.
(b2) For k ≠ 0 there must be an original value with 0 ≤ dC±k ,C ≠  nC,C ≤ 9.

Other ways are self-contradictory – which however is what Cantor proposes. We can
redefine a value but it means shifting around the diagonal – and not only on it.

(3) In the creation of � and � by abstraction, the diagonal element dC,C is not well-
defined since the value of C remains vague. That this diagonal element dC,C is not well-

defined does not prove that � is non-denumerable. When something is not well-defined
then it is tempting to conclude that it doesn’t exist, and then Cantorian reasoning p ⇒ Ÿ p
takes off. It is better to hold on to the notion that it is not-well-defined what dC,C would be.

As said in the Introduction (page 15): There is a distinction between not-being-well-
defined and non-existence. We can sensibly discuss the existence or non-existence of
something when we know what we are speaking about. For well-defined topics we can
accept the TND p ∨ Ÿ p. But it may be that we are dealing with nonsense, †p, so that in
general only p ∨ Ÿp ∨ †p. When a rhinoceros exists, we can say whether it is in the room or
not. For squircles we may say that they don’t exist but we actually mean to say that the
notion isn’t well-defined. We may say that elements dj,j exist but we cannot say that dC,C
sensically exists (though it has meaning): since, what C is being used ?
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Cantor’s original argument of 1874

The original argument of 1874 suffers the same fallacy of composition. The formulation
of the conjecture assumes �, which is built up in the manner of a potential infinite, but the
proof uses that all elements are actual infinites. Instead, a constructive proof can only use
numbers up to a certain digital depth d, and create what Cantor proposes to do only
alongside the creation of �.

The argument of 1874 uses the notion of an interval. The interval [a, b] contains all x with
a ≤ x ≤ b. The interval (a, b) contains all x with a < x < b. The interior of [a, b] is (a, b).

Conjecture on the continuum. (C), (Cantor 1874, Hart (2011) in Dutch, wikipedia 39):

Translation: "Given any sequence of real numbers x1, x2, x3, h and any interval [a, b],
one can determine numbers in [a, b] that are not contained in the given sequence."

Reproduction - Edited Quote (Hart (2011), Wikipedia March 6 2012):
Proof. Build two sequences of real numbers as follows: Find the first two numbers of

the given sequence x1, x2, x3, h that belong to the interior of the interval [a, b]. Designate
the lesser of these two numbers by a1, and the greater by b1. This gives interval [a1, b1].
Similarly, find the first two numbers of the given sequence belonging to the interior of the
interval [a1, b1]. Designate the lesser by a2 and the greater by b2. Continuing this procedure
generates a sequence of intervals [a1, b1], [a2, b2], h such that each interval in the
sequence contains all succeeding intervals. This implies the sequence a1, a2, a3, h is
increasing, the sequence b1, b2, b3, h is decreasing, and every member of the first
sequence is less than every member of the second sequence.

The number of intervals generated is either finite or infinite.
If finite, let [aN, bN] be the last interval. Since at most one xn can belong to the interior of

[aN, bN], any number η belonging to this interior besides xn is not contained in the given
sequence.

If infinite, let a∞ =  lim(n → ∞) an. (Remark.)

Let b∞ =  lim(n → ∞) bn and break the proof into two cases: a∞ = b∞ and a∞ < b∞.

In the first case, η = a∞ = b∞ is not contained in the given sequence. In the second

case, any real number η in [a∞, b∞] is not contained in the given sequence. Q.E.D.

Remark. At this point, Cantor could finish his proof by noting that a∞ is not contained in

the given sequence, since for every n: a∞ belongs to the interior of [an, bn], but xn does not.
(Wikipedia footnote)

End Quote.

Quote: "Cantor does not explicitly prove [the non-denumerability of the real numbers],
which follows easily from [Conjecture C]. To prove it, use proof by contradiction. Assume

                                                          
39 Proof checked on Hart (2011); https://en.wikipedia.org/wiki/Cantor%27s_first_uncountability_proof
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that the interval [a, b] can be put into one-to-one correspondence with the set of positive
integers, or equivalently: The real numbers in [a, b] can be written as a sequence in which
each real number appears only once. Applying [Conjecture C] to this sequence and [a, b]
produces a real number in [a, b] that does not belong to the sequence. This contradicts our
original assumption, and proves the uncountability theorem." (wikipedia)

This approach however breaks down when Conjecture C is invalid.

Counter-example to (C).  The proof of Conjecture C is fallacious.
Proof. Let us redo the 'proof' using �[1], ... , �[d]. These numbers are ranked up to

10d
. Take the news D[d] = �[d] \ �[d-1], and rank the numbers as X[d] = D[1] ∪ D[2] ∪ ∪ ... 

D[d] = {x1, x2, ..., x10d}, where the union maintains order. Taking the interval from [a, b]

generates [ad, bd]. Starting on [0, 1] then [a1, b1] = [0.1, 0.2], then [a2, b2] = [0.11, 0.12],
then [a3, b3] = [0.111, 0.112] and so on. There will be a limit in 9H = 0.1111.....

We take �[d] @ �. Subsequently also X[d] @ X. Clearly X is only a permutation of �,
and all numbers are in the list. It is erroneous to think that some number is missing. Q.E.D.

Discussion:

(1) Consider the possibility of a final interval [α, β]. The idea of η ∈ [α, β] but η – � is
erroneous since all elements of � are present in X.

(2) We build � up in the manner of a potential infinite and then take a final step of
abstraction. A constructive proof can only use numbers up to a certain digital depth d, and
create the interval only alongside the construction of � itself. This �[d] case has no finite
number of steps for the final interval. Taking the interior of [ad, bd] is possible since the
numbers are defined such that ad ≠ bd . The notion of an ‘interior’ may become nonsensical
when we take the step of abstraction: e.g. taking the interior of [α, β] is impossible if α = β.

The 'proof' to Conjecture C assumes that all elements have an actual infinity of digits.
The 'proof' assumes that one can define the various notions on limit and � independently,
but they get only meaning in their mutual dependence, and then must be constructed in a
dependent manner.

(3) A potential possibility is that α = β and that this number is in the list. However, the
algorithm does not allow us to take only a single value x and create an interval [x, x]. The
logical conclusion is that there is no other result than: the creation of ever smaller intervals.

Taking limits a∞ and b∞ need not be relevant for these intervals. In this counter-example

we might regard a∞ = b∞ = 9H = 0.111... but this value will never be actually selected to
create the interval [9H, 9H] since the algorithm is to take two values and not a single one.
One cannot say that 9H isn't in the list because all elements of � are.

(4) The statement "η = a∞ = b∞ is not contained in the given sequence" depends upon
this footnote in wikipedia: "Cantor states (without proof) that xn does not belong to the
interior of [an, bn]. To prove this, we use an inductive proof to prove the stronger result: x1,
x2, ..., x2n do not belong to the interior of [an, bn]." 40 The latter statement and proof by
numerical succession are correct. However, observe the two different statements:

(a) xn does not belong to the interior of [an, bn] (if it is, then it is made a border)

(b) η = a∞ = b∞ is not contained in the sequence x1, x2, x3, h

One cannot hold that (a) implies (b). While (a) is true, (b) can be false: since η = a∞ =

b∞ = 9H = 0.111... is in the list of �. (It is tricky to show this. An effort at counterexample is
using the found sequence b1, b2, b3, hand consider [η, bn]. However, if we set x1 = a1 = η =

a∞ = b∞ = 9H and look at [an, bn] then the algorithm would generate a different sequence ...
It should suffice to hold on to the basic notion that �[d] @ � generates the full list.)

                                                          
40 https://en.wikipedia.org/wiki/Cantor%27s_first_uncountability_proof#cite_note-15
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The context of education

This analysis has been written in the context of education. This appears to cause
misunderstandings amongst some readers, so it is useful to spend some attention to that
context. This analysis is not about education itself but about how to handle the infinite and
the mathematics of the infinite, such that there is more scope for proper treatment in
education. This present analysis does not develop a course on the infinite, but identifies
essential issues, and creates scope for the development of such a course.

An essential feature in education is that we do not want to overburden students, even
though they may think to the contrary. If a textbook chapter would end with the statement
“We didn’t tell you all yet, for there are still things too complex for you”, then students might
feel lost and cheated. They quite understand that there are many things that they do not
understand yet, but, the closing statement of a chapter should be about what they have
learned. Then a test to check this, then a new chapter.

The steps S1, ..., S6 allow an educational ladder, in which there is an increasing grasp
of counting, measuring, and the infinite. There is a cesure between constructive S5 and
non-constructive S6.

S5 is constructive, uses three-valued logic to eliminate Cantorian nonsense, and uses
the label ‘bijection by abstraction’ to capture the paradox that we can identify a bijection in
potential infinity but lose identification when we create actual infinity by the mental act of
abstraction (and mapping onto the continuum).

S6 is the standard mathematical realm, is non-constructive, uses two-valued logic to
support the Cantorian figments, and might use the loss of identification as an argument that
there would be ‘different kinds of infinity’.

Below we will see that the ZFC system for set theory is inconsistent, so that S6 is a bit
different than expected at the time in 2012 when the steps S1, ..., S6 were designed. It still
is conceivable that some research mathematicians develop a system ZFC-X such that the
transfinites survive.

For S5, ‘bijection by abstraction’ is just a term, and in a sense it is also ‘no-bijection by
abstraction’ namely given the loss of identification. The didactic situation still is:

(a) Cantor’s proofs of 1874 and 1890/91 have evaporated,
(b) we want to grasp � ~ �: describe what we know and don't know about infinity,
(c) we want closure, without the unsettling “This is too complex for you now.”

Having � ~ �, or that there is only one kind of infinity, allows for simplicity, and creates
room for the learning of the other elements in the discussion:

(i) the construction of �,
(ii) properties such as 1 = 0.999...,
(iii) the distinction between counting and measuring,
(iv) the notion of bijection and ‘equality of sets’. (Yes, set theory in the schools.)

A mathematician with a firm root in S6 may be offended by S5. I take the liberty to quote
from an email and keep this anonymous (March 2013):

“Your proposal is anti-scientific and thus anti-Occam’s-spirit. You want to obscure a
distinction that actually is important. Occam says: why a complex explanation when
there is a simple one ? You propose to no longer speak about a distinction, but this
distinction explains all kinds of issues. You propose to close your eyes, so that you
don’t see some phenomena: yes, then you don’t need an explanation ! (....) You
change a definition in order to remove an imagined conflict with a metaphysical
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stance which you *want* to hold about mathematics, but the pay-off for mathematics
is zero. It’s obscurantism. Newspeak. Big Brother. Abolish certain words from the
dictionary and certain “problems” dissappear because they can’t be stated in words
any more. In fact they were not problems at all, they were challenges, and they’ve
been surmounted, and this has borne enormous fruit. (....) My impression is
strengthened that you are building an elaborate construction in order to be able to
tell lies to children. You’re a neo-Pythagorean: mathematical truth has to be bent to
conform to your world-view (in this case, your view of the sociology of
mathematicians). I just don’t see the point. I don’t see a problem. I do see a major
misapprehension: you seem to think that modern non-constructivist mathematics is
an abstract game. There you are wrong. It helps real people to effectively and
constructively solve real problems, e.g. in modern statistics, in modern quantum
engineering. (...) We don’t solve real problems by redefining the concept “countable”
so that the real numbers are no longer “uncountable”. (...) But who wants to discuss
d(C, C) with C = infinity? Only you, as far as I know.”

The latter statements may have some weak points:

(a) “modern non-constructive mathematics” would “constructively solve real problems”:
constructivists will challenge the “constructiveness” of non-constructive methods,

(b) there is a blindness on d[C, C] with C = infinity, which I propose should be lifted,
(c) my ‘sociology of mathematicians’ is that they confuse their abstract thoughts for reality:

but this is not an axiom of me but a result from empirical observation, see (i) Table 1,
(ii) Appendix D, and (iii) EWS (2009, 2015).

The key point is that this analysis has been written in the context of education. If S6
teachers want to continue with the nonsense of the transfinites while there is no necessity
for it then they are still free to do so, but they ought to inform their students that there is
another way to look at it too, namely S5.

The argument of openness of mind cuts two ways. In an educational ladder, S5 is
followed by S6, for historical reasons, since it is useful to know what the illusions of Cantor
have been, and how most mathematicians followed him. If there would be a result for the
real world that relies on the transfinites, I am interested to hear. Conversely, a teacher of
non-constructivist denomination would be required to explain the approach of S5. Students
ought to have a chance to be inocculated against nonsense, instead of being lured into it by
fallacies.
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Conclusions

Apart from the more mundane conclusion that it indeed appears feasible to set up a
highschool or first year higher education course on infinity without the need to refer to the
transfinites, the following conclusions are possible.

1. A summary of the differences

Table 5 collects the differences in views. It is assumed that the column on the right is
correct so that erroneous claims in the middle are put in quotation marks.

Table 5. Differences between Cantorian and Occamite positions

Topic Cantor ALOE, EWS, FMNAI (Occam)

Logic Two-valued Three-valued

Cantor's Conjecture Accept Reject, like Russell's paradox

Potential & actual infinity Commits a fallacy of
composition

Proper distinction

Diagonal "Assuming a diagonal
causes its rejection"

Is only d deep in potential infinity
and is implied in actual infinity

Mutation rule on diagonal "Creates a new number" A waiting rule for �[d], and a
logical error for �

Bijection "Impossible to create" By abstraction

Cardinality "� < �" � ~ �

In the RHS view the following statements mean precisely the same:

(i) the shift in perspective from potential infinity to actual infinity (the continuum)
(ii) the imagination of the continuous interval of [0, 1]
(iii) regarding this imagination as a constructive act (for geometry)
(iv) accepting this to be what we mean by a ‘bijection by abstraction’ between � and �
(v) the specification in the steps above for the definition of ‘bijection by abstraction’.

2. Conclusion on the continuum

The unrepenting constructivist (S3) has a strong position and might actually be right. On
the other hand, below will show that ZFC in S6 is inconsistent. The creation of some ZFC-X
might still contain Cantor's Conjecture, perhaps even as a separate axiom. There might be
theoretical advantages in assuming a continuity with a higher cardinality than the set of
natural numbers – but this hasn't been shown yet.

Currently, the main reason to accept the diagonal argument and thus different cardinal
numbers for � and � is rather not ‘mathematical’ but ‘philosophical’. Instead of getting
entangled in logical knots we might also use Occam’s razor and assume the same
cardinality. Above considerations on ‘bijection by abstraction’ would support the latter.

3. Conclusion on the foundations

The diagonal argument on the real numbers can be rejected (a new finding in 2011,
restated above). There is a bijection by abstraction between � and �.
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(Below in the discussion on Set Theory, we will restate the refutation by ALOE 2007 of
'the’ general proof of Cantor's Conjecture on the power set (while there is truth for finite sets
but not for infinite sets). If no contradiction turns up then it would become feasible to use the
notion of a set of all sets �, as it would no longer be considered a contradiction that the
power set of � would be an element and subset of � itself. These terms are explained in the
part on Set Theory below.)

4. Conclusion on constructivism

The specification of the construction steps (degrees) S1, ..., S6 worked well in identifying
the various mathematical and philosophical aspects in the various arguments. S3 would be
the potential infinite and S4 the actual infinite, and the latter would still be constructive but
with some abstraction. The two concepts of infinity would be two faces of the same coin.
The confusions within non-constructive S6, the transfinites, derive rather from logic than
from infinity.
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Part 3. Set theory: ZFC and propositional logic
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From Epimenides to Paul of Venice to Cantor to Russell to ZFC

 The relevance of freedom of definition

This book deals with self-reference and derives contradictions. It may thus be difficult to
follow. As stated in the Introduction: We can maintain clarity by holding on to the notion of
freedom of definition. When a restriction on that freedom generates a consistent framework,
while release of that restriction generates confusion, then the restriction is to be preferred
above too much freedom. This notion is particularly important for these next Parts 3, 4 and
5 on set theory.

Paul of Venice (1369-1429)

There is an old way to deal with self-reference. Bochenski (1956, 1970:250) discusses
the approach by Paul of Venice (1369-1429) (Paulus Venetus) 41 w.r.t. the Liar paradox. A
proposition may be extended with "and this proposition is true".

The Liar: "This proposition is false"

becomes: "This proposition is false and this proposition is true",

 whence it shows itself to be inconsistent. An idea is to apply such a condition to the
paradoxes in set theory.

Logic, set theory, and Cantor's Conjecture on the Power Set

Aristotle gave the first formalisation of the notions of all, some and none, of which an
origin can be found in the Greek language. This developed into modern set theory, in which
the notion of a set provides for the all.

There is a parallel between constants in propositional logic and set theory: and giving
intersection, or giving union, implication giving subset.

Different axioms give different systems. A common contrast is between the formal ZFC
system for set theory (from Zermelo, Fraenkel and the Axiom of Choice) and naive set
theory. The latter is not quite defined, but think perhaps of Frege's system, and it is not to
be confused with Halmos's verbal description of ZFC. There is a plethora – perhaps an
infinity – of models for properties of sets.

Frege gave the first system, and Russell's problem was a blow to it. Researchers spoke
about a crisis in the foundations of logic and mathematics. Logicomix by Doxiadis and
Papadimitriou (2009) is a nice graphic display. The idea of a crisis was eventually put to
rest by the ZFC system. A consequence of ZFC is the impossibility of a set of all sets.

Cantor will be remembered at least for starting set-theory. He developed his original
conjectures on infinity and the transfinites before there was an axiomatic development of
set theory – we might say: he worked within the intended interpretation. Bertrand Russell in
1907 reformulated Cantor's 1890/91 proof into a form that uses sets. This proof was
renamed into Cantor's Theorem on the Power Set. (See below, page 75.) Once the ZFC
system was developed, this "theorem" became the corner stone in every introduction in set
theory. A drawback is that it causes the transfinites.

We will deproof this "theorem" and for us it is wiser to speak about a conjecture.
Set theory belongs to logic because of the notions of all, some and none, and it belongs

to mathematics once we start counting and measuring. Cantor's Conjecture on the Power
Set somewhat blurs that distinction since the general proof uses logical methods while it
would also apply to infinity – and the latter notion applies to the set of natural numbers � =
{0, 1, 2, ... } and the set of reals � (the continuum, actual infinity, the interval [0, 1]).

                                                          
41 https://en.wikipedia.org/wiki/Paul_of_Venice
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The intended interpretation

When we create a formal and even axiomatic system then the original environment from
which we started becomes the intended interpretation. For this book, the intended
interpretation of set theory remains an important notion. Mathematicians might tend to
forget about this once they have developed the formal system, but we don't.

For example, a formal development of addition 1 + 1 = 2 has the intended interpretation
that one apple plus one apple gives two apples. An intended interpretation of a set is that it
collects items. For example there can be the collection of these two apples, and the
cardinality of that set is 2.

A problem is that the transfinites are no part of any intended interpretation. They came
about from Cantor's reasoning. We have shown above that this reasoning was misguided.
But Russell in 1907 created that Power Set "Theorem", that later was set into stone in ZFC.
The transfinites are now a product of ZFC, and looking for an interpretation. To my
knowledge no one has given an example of what they help solving in practice.

Three strategies on the transfinites

When we want to eliminate the confusion of the transfinites then there are these options:

(1) The philosophical approach is to reject ZFC and present a new system that does not
allow for transfinites. Mathematicians will not easily go along with this. ZFC is the
working horse for mathematics, and few are willing to learn to ride a new horse.
Mathematicians have grown fond of the complexities of the transfinites too: "those
show the wonders that mathematics can create".

(2) The traditional mathematical approach is to prove that ZFC is inconsistent. In this case
a new system must be chosen by necessity. It puts the key question into focus: are the
transfinites really necessary, or are they only a figment of an inconsistent system ?
Above, in considering Cantor 1874 and 1890/91 we saw that part of his reasoning
relied on self-contradictory self-reference. Is it possible that such also got set into
mathematical stone in set theory ?

(3) The neoclassical mathematical approach allows for a third option. This is to perform an
analysis within the intended interpretation – i.e. outside of formal ZFC and not
necessarily within philosophy – and show that Cantor's conjecture generates nonsense.
This gives an anomaly, and then may branch into (1) or (2). It depends upon how much
mathematicians still value the intended interpretation whether they start with (2).

Our discussion about set theory is mostly within the intended interpretation and doesn’t
rely on an axiomatic base. If we arrive at some coherent view then it will be up to others to
see whether they can create an axiomatic system that fits it.

However, in handling ZFC, we will work within ZFC, and show that it is inconsistent.

Parts 3, 4 and 5 on set theory

Our handling of set theory is split into Parts:

(i) This Part 3 gives basic notions of ZFC and looks at the singleton, i.e. a set with one
element. Element α gives set A = { α }. Propositional logic gives a condition, that is
used to show that ZFC is inconsistent. It appears to be a Paul of Venice condition.

(ii) Part 4 will look at ZFC more generally, and suggest alternative systems. The condition
by Paul of Venice is formalised, also to design alternative axioms.

(iii) Part 5 gives a framework for discussion of these results.

This structure will help to focus on the different angles. Part 3 looks at logic and
inconsistency, Part 4 looks at the whole system that we want to use. Part 5 returns to what
we discussed above about the three strategies on mathematics and philosophy.

We now must set up ZFC and identify the basic notions.
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Definition of ZFC

1. A syllabus at Leiden and Delft

We take our definitions from a matricola course in set theory at Leiden and Delft.

Definition of ZFC. 42

Axioms that are directly relevant for us are:

Axiom of the Power Set. 
43

 For each set A there is a set of all subsets of A. (POW)

Definition of the power set. The latter set of subsets is called the power set and is

denoted as P[A]. Another notation is 2
A

, whence its name.
Remark: For example, if A = {a, b} then P[A] = {Ø, {a}, {b}, A} in which Ø is the empty set.

Axiom of Regularity. No formula is needed here. (REG)
Remark. REG implies that a set cannot be a member of itself.
Remark. Sets that satisfy ZFC are called ZFC-sets, or often just sets. Sets that do not

satisfy ZFC can be called entities, or classes, or non-ZFC-sets. For example, the universe
� and the set of all sets � would not be ZFC-sets. They are blocked by REG.

Axiom of Extensionality. 44 Two sets are identical when they have the same elements:

(A = B) ⇔ ∀  ( x) (x œ A  ⇔  x œ B) (EXT)

Axiom of Separation, 45 (inserting here a by-line on freedom): If A is a set and g[x] is a
formula with variable x, while B is not free in g[x], then there exists a set B that consists of
the elements of A that satisfy g[x]:

("A) ($B) ("x) (x œ B ⇔  ((x œ A) ∧ g[x]))                             (SEP)

Remark. This is also called an axiom-schema since there is no quantifier on g.  

2. Structure of the discussion in this Part

The discussion in this Part below has this structure:

• Above system of axioms appears to be inconsistent. The axioms are still too lax on
the notion of a well-defined set.

• A step in developing this proof is the observation that ZFC would be deductively
incomplete if it were consistent. This means that there is a truth that cannot be
derived.

• Both points are proven by means of the singleton.

To start, let us first look at Russell's paradox and how ZFC blocks it, and then at the
paradoxical properties of the Cantorian sets.

                                                          
42 Coplakova et al. (2011:144-145)
43 Coplakova et al. (2011:18), I.4.7
44 Coplakova et al. (2011:145)
45 Coplakova et al. (2011:145). Some authors call it by its German name: Aussonderung. Weisstein
(2015) of MathWorld calls it the Axiom of Subsets, see page 95 below.
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Russell's paradox and how ZFC blocks it

Russell's paradox

Bertrand Russell devised his paradox after studying Cantor. In naive set theory, Russell’s
set is R = {x | x ∉ x}. His own example are the teaspoons. The set of teaspoons is not a
teaspoon itself. However, applying R to itself gives (R ∈ R) ⇔ (R ∉ R) and naive set theory
collapses.

The definition of R can be diagnosed as self-contradictory, whence it is decided that the
concept is nonsensical. Russell himself proposed a Theory of Types to eliminate the
paradox. Set's shouldn't refer to themselves but only to sets of a lower type.

Observe: (1) a theory of types forbids the set of all sets � while it is a useful concept, (2)
a theory of types has R in the category 'may not be formed' and thus implies a third
category next to truth and falsehood. It would be illogical to reject that third category. It is
logical instead to generalize that third category into the general notion of 'nonsense'. Thus
we do well to formally develop a three-valued logic that allows both the definition of R and
also to determine that R is nonsense. (It has meaning, that allows us to see that it is
nonsense.) It remains an issue that three-valued logic is not without its paradoxes, but
ALOE holds that these can be solved too.

ZFC is a partial application of the Theory of Types. It blocks Russell's paradox but it
doesn't block Cantor's transfinites. The Axiom of Regularity (REG) already forbids R ∈ R.
When we want a set of all sets � then we would abolish REG. Then Russell's paradox
would still be blocked by Separation. Let us look into this.

Truthtable

For ZFC, take the axiom of separation, substitute Russell's idea that the set of teaspoons
is not a teaspoon, denote that result as R = R[A], then test it.

("A) ($B) ("x) (x œ B  ñ  ((x œ A) ∧ g[x])) (SEP)

        ("A) ("x) (x œ R  ñ  ((x œ A) ∧ (x – x)) (RUS)

             ("A)  (R œ R  ñ  ((R œ A) ∧ (R – R)) (test R)

The truthtable allows only for R – A ∧ R – R.

R ∈ R ⇔ (R ∈ A ∧ R ∉ R)

1 0 1 0 0
1 0 0 0 0
0 0 1 1 1
0 1 0 0 1

Thus the definition of RUS itself is not blocked. RUS means that R = R[A] can exist as a

subset of A, i.e. (R Œ A). Thus R œ P[A].

Let us play with this a bit, and see whether ρ = P[A] also has a Russell set.
The Russell set for ρ is different now. Applying Separation to it:

 ("x) (x œ R[ρ]  ñ  ((x œ ρ) ∧ (x – x)) (RUS on  ρ = P[A])

For R = R[A]: R œ ρ and R – R, thus we find R œ R[ρ] without contradiction.
When R[ρ] is applied to itself again:

 (R[ρ] œ R[ρ] ñ  ((R[ρ] œ ρ) ∧ (R[ρ] – R[ρ]))        (R[ρ] with ρ = P[A])

The truthtable generates: (R[ρ] – ρ) ∧ (R[ρ] – R[ρ]). Thus R[ρ] ŒP[A].
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Stanford Encyclopedia of Philosophy

Irvine & Deutsch (2014) seem to take the Cantorian position in the reading of the Axiom
of Separation (see Part 5, page 84). In these quotes their notation has been adapted to the
present one. Comments are in square brackets:

"Again, to avoid circularity [really ?], B cannot be free in γ. [Presumably the
Cantorian reading ?] This demands that in order to gain entry into B, x must be a
member of an existing set A. [This is a different property than the Cantorian
reading.] As one might imagine, this requires a host of additional set-existence
axioms, none of which would be required if [naive set theory] had held up.
How does SEP avoid Russell's paradox? One might think at first that it doesn't.
After all, if we let A be � – the whole universe of sets – and γ[x] be x ∉ x, a
contradiction again appears to arise. [Indeed, for then ((R ∈ �) ∧ (R ∉ �))] But in
this case, all the contradiction shows is that � is not a set. All the contradiction
shows is that “�” is an empty name (i.e., that it has no reference, that � does not
exist), since the ontology of Zermelo's system consists solely of sets."
[Observe that REG causes that � would not be a ZFC-set anyhow. It is a pity that
the authors give the word "set" to ZFC, instead of speaking about ZFC-sets.]
"This same point can be made in yet another way, involving a relativized form of
Russell's argument. [Meaning: not � but any A.] Let A be any set. By SEP, the set
R[A] = {x ∈ A | x ∉ x} exists, but it cannot be an element of A. For if it is an
element of A, then we can ask whether or not it is an element of R[A]; and it is if
and only if it is not. Thus something, namely R[A], is “missing” from each set A. So
again, � is not a set, since nothing can be missing from �. But notice the following
subtlety: unlike the previous argument involving the direct application of
Aussonderungs to �, the present argument hints at the idea that, while � is not a
set, “�” is not an empty name. The next strategy for dealing with Russell's paradox
capitalizes on this hint. [Referring to Von Neumann's approach that they discuss
next]"

Wikipedia

The portal (no source) Wikipedia on Russell's paradox (retrieved May 30 2015) gives the
traditional view. They sometimes clearly refer to ZFC-sets, but not always.

"ZFC does not assume that, for every property, there is a set of all things satisfying
that property. Rather, it asserts that given any set X, any subset of X definable
using first-order logic exists. The object R discussed above [in naive set theory]
cannot be constructed in this fashion, and is therefore not a ZFC set. In some
extensions of ZFC, objects like R are called proper classes."
"In ZFC, given a set A, it is possible to define a set B that consists of exactly the
sets in A that are not members of themselves. B cannot be in A by the same
reasoning in Russell's Paradox. This variation of Russell's paradox shows that no
set contains everything."

The latter should rather be "no ZFC-set contains everything". The reasoning is a bit
implicit. It is better to show it. Assume the possibility that there is �, then R[�]∉� would
generate a contradiction. (In ALOE it would be nonsense.)
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Conjectures E and W on strictly Cantorian sets

Now that we have seen Russell's paradox, we may better appreciate the Cantorian sets
that are so much like it. The following is streamlined and set within ZFC.

The following conjectures are "theorems of ZFC". Below we will show that ZFC is
inconsistent, so that it proves everything. Thus these aren't "theorems" but conjectures.

Conjecture. (E), (Existence of strictly Cantorian sets). 46 Let A be a set, P[A] its power
set. For every function f : A → P[A] there is a set Ψ = {x œ A | x ∉ f[x]}.

Proof. (a) P[A] exists because of the Axiom of the Power Set. (b) f can be regarded as a
subset of A × P[A], and f exists because of Axiom of Pairing. (c) Ψ exists because of the
Axiom of Separation. Q.E.D.

Remark. Find Ψ⊆ A, thus Ψ∈P[A]. Observe that Ψ depends upon f, i.e. Ψ = Ψ[f].

When x œ A then we can use (x œ Ψ) ⇔  (x∉ f[x]).

Definition of a Cantorian set. Above Ψ = {x œ A | x ∉ f[x]} is called a strictly Cantorian
set. A generalised Cantorian set has x ∉ f[x] as part of its definition. The meaning of
'Cantorian set' without qualification depends upon the context.

Remark. The Cantorian set clearly has some kind of self-reference.

Conjecture. (W), (Weakest conjecture on strictly Cantorian sets.) 47 Let (domain) A be a
set, and (range) B Œ P[A]. For every f : A → B there is a Ψ∈P[A] such that for all α ∈A it
holds that Ψ ≠ f[α].

Proof. Define Ψ = {x œ A | x ∉ f[x]}. Take α∈ A. Check the two possibilities.
Case 1: α∈ Ψ. In that case α ∉ f[α]. Thus Ψ ≠ f[α].  (We have α ∈ Ψ \ f[α].)
Case 2: α∉ Ψ. In that case α∈ f[α]. Thus Ψ ≠ f[α].  (We have α ∈  f[α] \ Ψ.)  Q.E.D.

Remark.This conjecture combines the definition of strictly Cantorian sets, the existence
Conjecture E and an identification of their key property. It is essentially a rewrite of:

(i) ∀α∈A: (α∈ Ψ) ⇔  (α ∉ f[α]) and application of extensionality (EXT),
(ii) which is deducible from ∀α: (α∈ Ψ) ⇔  ((α ∈A) ∧ (α ∉ f[α])), i.e. the definition of Ψ.

For example: Let K[n] = {x | x is a prime number less than n}.
Take A = K[10] = {2, 3, 5, 7}. Thus P[A] = {Ø, {2}, {3}, {5}, {7}, {2, 3}, (2, 5}, ..., K[10] }.
We are interested in a bijection. Let us e.g. take B = {{2}, {3}, {5}, {7}}, with f[x] = {x}.
Regard Ψ = {x œ A | x ∉ f[x]}. We find that all x are in their images, so that Ψ[f] = Ø.
Alternatively, let us take B = {{2}, {2, 7}, {2, 5}, {2, 3}}, with g[x] specified by that order.
Now Ψ[g] = {3, 7}, since 3 ∉ {2, 7} and 7 ∉ {2, 3}.
Alternatively, let us take B = {{3, 5}, {2, 5}, {2, 7}, {2, 3}}, with h[x] specified by that order.
Now Ψ[h] = A.
These examples indicate that Ψ would be a sensible concept. But is it really ?

We can get logical clarity about these conjectures by looking at the singleton. There is a
deproof of Conjecture W in Appendix C but the singleton is a much better stepping stone.

                                                          
46 Conjecture E is a reformulation of the addendum provided by B. Edixhoven, statement in Colignatus
(2014a), its appendix D (there, not below).
47 Conjecture W for B = P[A] was given by K.P. Hart (TU Delft), 2012, in Colignatus (2015b). An
advantage of this form is that it doesn't specify notions of injection, surjection and bijection.
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The singleton with a nutshell link between Russell and Cantor

Let A be a set with a single element, A = {α}. Thus P[A] = {Ø, A}. Let f: A→P[A].

If f[α] = Ø then α – f[α]. If f[α] = A then α ∈ f[α].

Thus (f[α] = Ø) ⇔ (α – f[α]).
Consider:

(1) In steps: define Ψ = {x ∈ A | x – f[x]}, then try f[α] = Ψ.

(2) Directly: f[α] = {x ∈ A | x – f[x]}.

(3) Either directly or indirectly via (1) or (2): Ψ = {x ∈ A | x –  Ψ }.

The latter is a variant of Russell’s paradox: (α ∈ Ψ) ⇔ (α – Ψ). Thus (1) - (3) are only
consistent when Ψ ≠ f[α]. This is an instance of Conjecture W.

Choosing f[α] = Ψ in (1) assumes freedom that conflicts with the other properties. We
have liberty to choose f[α] = Ø or f[α] = A. This choice defines f and we should write is Ψ =
Ψ[f] indeed. This shows why (2) with f[α] = Ψ[f] is tricky. If (2) is an implicit definition of f

then it doesn’t exist. If it exists then this f [α] will not be in its definition.

Checking all possibilities gives Table 6. The cells are labeled with ∆-case-numbers. (The
∆ refers to a difference analysis (marginal analysis) when a set is extended with single
element.) Because of α ∉ f[α], the row f[α] = Ø is important for us. The case of ∆2 is
depicted in a Venn-diagram in Figure 1.

Table 6. Possibilities for )][(Ψ ααα f∉⇔∈ given that A∈α

For all cases: A∈α  Ψ = Ø,  α ∉ Ψ  Ψ = A,  α ∈ Ψ

f[α] = Ø
α ∉ f[α]

∆1: ØØ ∉⇔∈ αα
f[α] = Ψ,  impossible

∆2: Ø∉⇔∈ αα A

f[α] ≠ Ψ,  possible

f[α] = A
α ∈ f[α]

∆3: A∉⇔∈ αα Ø
f[α] ≠ Ψ,  possible

∆4: AA ∉⇔∈ αα
f[α] = Ψ,  impossible

Figure 1.  The strictly Cantorian set for the singleton, case ∆2: f[α] = Ø ≠ Ψ

  x œ A

  α
Ψ = A

x – A

x – f[x]
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Deductive incompleteness

1. Existence of ∆1

An idea is that Ψ in Conjecture E and Conjecture W or Table 6 covers all α – f[α]. This
appears to be false: it doesn’t cover ∆1. The cell is declared impossible. Let us first verify
that it exists as a truth (outside of ZFC), and then accept deductive incompleteness.

Theorem. (ExT1)  Case ∆1 exists as a possibility with α ∉ f[α].

Proof. We consider the case f[α] = Ø, so that (α ∉ f[α]).

Take q = (α ∉ f[α]) and use tautology T1: ))(( pqpq ∧⇔⇒  for any p, see Table 7.

We are free to take p = (α ∈ A) for Ψ = A, which would give ∆2, or not-p = (α ∈ Ø) for Ψ
= Ø, which would give ∆1. Take the latter, apply modus ponens on q and tautology T1, and
find Ø)ØØ ∈∧∉⇔∈ ααα ( . The equivalence reduces into α ∉ Ø or α ∈ A. The

equivalence is by itself consistent, so that it is possible for α ∈ { α }. Case ∆1 with both f[α]
= Ø and Ψ = Ø, fits this equivalence: )Ψ][(Ψ ∈∧∉⇔∈ αααα f . We merely establish

possibility, and thus the deduction stops here. Q.E.D.

Table 7. Truthtable for T1: ))(( pqpq ∧⇔⇒ with )][( αα f∉=q

Case α ∉ f[α] ⇒ (p ⇔ (α ∉ f[α] ∧ p))

∆2 1 1 1 1 1 1 1
∆4 0 1 1 0 0 0 1
∆1 1 1 0 1 1 0 0
∆3 0 1 0 1 0 0 0

Remark. See page 72 for an indication how ∆1 can exist outside of ZFC based upon
other axioms than ZFC. We are tempted to derive inconsistency now, but for understanding
of the situation it is better to formally establish deductive incompleteness.

The case shows up by requiring that all properties of the case hold, thus jointly (α ∉ Ø ∧
α ∈ Ø) and not only (α ∉ Ø). See Figure 2. The diagram uses that Ø⊆ A. In this approach

for ∆1 or in the figure: when we test α ∈ Ψ, then we test α ∉ f[α] ∧ α ∈ Ψ jointly. From this
joint test the decision follows that α ∉ Ψ, or α ∈ A.

Figure 2. The strictly Cantorian set for the singleton, case ∆1: f[α] = Ø = Ψ

  x œ A

  α Ψ = Ø

x – A

x – f[x]
x – f[x] Ʌ x œ  Ψ
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2. Definition, theorem and proof

Definition. (DeLong (1971:132)): "A formal system is deductively complete if under the
intended interpretation there is no truth which is not also a theorem."

Theorem. (D)  If ZFC is consistent then it is deductively incomplete.
Proof. Let A = {α} have a single element. Thus P[A] = {Ø, A}.
Let f : A → P[A] with f[α] = Ø. Then α ∉ Ø and α ∉ f[α].
Under the intended interpretation, there is the case ∆1 that has α ∉ f[α].
Ψ is formulated such that it should contain all cases with α ∉ f[α].
However, trying to prove that ∆1 fits Ψ, causes a shift to ∆2 or Ψ = A (Conjecture W).
If ZFC is consistent then there is no path to reach ∆1. Q.E.D.

Remark. If there is such a path then ZFC becomes inconsistent.
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Inconsistency

1. An implication for the singleton Cantorian set

For the singleton we have α ∈ A, and thus we have (α ∈ Ψ) ⇔ (α – f[α]). It is possible to
weaken this by means of another tautology T2: ∀p,q: (p ⇔ q) ⇒ (p ⇔ (q∧ p)). The truthtable
for the singleton Cantorian set is in Table 8. The truthtable holds for every f while Ψ = Ψ[f].

Table 8. Truthtable for T2: ))(()( pqpqp ∧⇔⇒⇔ for the singleton Cantorian set

Case (α ∈ Ψ ⇔ α ∉ f[α] ) ⇒ (α ∈ Ψ ⇔ (α ∉ f[α] ∧ α œ Ψ))

∆2 1 1 1 1 1 1 1 1 1
∆4 1 0 0 1 1 0 0 0 1
∆1 0 0 1 1 0 1 1 0 0
∆3 0 1 0 1 0 1 0 0 0

Consider again f[α] = Ø. The equivalence on the LHS only allows Ψ = A. Look at row ∆1

in Table 8. On the LHS we have ∆1 with (α – Ψ) ∧ (α – f[α]), and the equivalence would
declare this combination impossible. However, there is also the relaxed condition on the
RHS, that we already encountered in Theorem ExT1.

The crucial step is to distill the RHS from the table. Conjecture E and Conjecture W
establish the LHS. Modus ponens with T2 gives the RHS as a separate expression FT2
(’from T2’) - provided that we maintain Ψ = Ψ[f]:

)Ψ][(Ψ ∈∧∉⇔∈ αααα f       (FT2)

For FT2 we get get Table 9. The same ∆-case-numbers apply. Now ∆1 is allowed too: a
possible f[α] = Ψ rather than an impossible f[α] = Ψ.

Table 9.  Possibilities for )Ψ][(Ψ ∈∧∉⇔∈ αααα f , given A∈α

For all cases: A∈α  Ψ = Ø,  α ∉ Ψ  Ψ = A,  α ∈ Ψ

f[α] = Ø
α ∉ f[α]

Ø)&ØØ ∈∉⇔∈ ααα (

f[α] = Ψ,  possible: α – Ø

)( AA ∈∉⇔∈ ααα &Ø
f[α] ≠ Ψ,  possible

f[α] = A
α ∈ f[α]

Ø)Ø ∈∉⇔∈ ααα &( A

f[α] ≠ Ψ,  possible

)&( AAA ∈∉⇔∈ ααα
 f[α] = Ψ, impossible: A ∉α

Note that f[α] = Ø doesn't give a unique Ψ now. Both Ψ = A (Figure 1) and Ψ = Ø (Figure
2) are possible. Note that f is still a function and no correspondence.

PM. We can also gain access to ∆4 by another relaxing condition but we are interested in
the α ∉ f[α] case.

2. A counterexample for Conjecture W

Let us make the latter observations formal. The discovery of ∆1 and tautology T2 gives a
contradiction to Conjecture W. While Theorem D stopped looking for a path towards ∆1, we
now found that path, namely tautology T2, which gives Theorem Not-W. When ∆1 not
merely exists as a truth outside of ZFC (using tautology T1) but also can been proven from
Ψ (using tautology T2), then it becomes a counterexample for Conjecture W, which gives
Theorem Not-ZFC.
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Theorem. (Not-W) For the strictly Cantorian case there are a f and Ψ with f[α] = Ψ.

Proof. Let A = {α} have a single element. Thus P[A] = {Ø, A}.
Let f : A → P[A]. (Remark 1.) Let f[α] = Ø. Then α ∉ Ø and α ∉ f[α].

Consider Ψ = ]}[|{ xxAx f∉∈ . With A∈α  then (α∈ Ψ) ⇔ (α ∉ f[α]). (Remark 2.)

Look at Table 8. Use (α∈ Ψ) ⇔ (α ∉ f[α]) and tautology T2 ))(()( pqpqp ∧⇔⇒⇔ ,

and apply modus ponens to find FT2: )Ψ][(Ψ ∈∧∉⇔∈ αααα f . In this deduction we

have maintained the definition of Ψ. The modus ponens is independent of the possibility that
also Ψ = A might be derived via another route. The formula FT2 stands as a separate
relation for Ψ.

A substitution of f[α] = Ø and Ψ = Ø into FT2 gives ∆1: Ø)ØØ ∈∧∉⇔∈ ααα ( that

we saw above in Theorem ExT1 and subsequently in Table 9, which reduces to α ∉ Ø, or

A∈α . The case is consistent by itself, i.e. reduces to A∈α . And we have established a
path to it. The case has f[α] = Ø = Ψ.  Q.E.D.

Remark 1. In an algebraic version of the proof, we would not assign a value to f but first
derive FT2 and only then assign such value. This might however run into the objection that
such algebraic application is not possible, and that application of the Axiom of Separation
requires a definition of f beforehand. We can do such algebra at the level of the axioms, see
below. For this proof we assign f.

Remark 2. At this point in the proof we do not follow the deductive path that leads to a
deduction of Ψ = A, since this has been already done in Conjecture W. Making this
deduction here again confuses the two different proofs. We are now interested in the other
path that follows from T2. Inconsistency of ZFC can better be established by the separate
Theorem Not-ZFC.

Theorem. (Not-ZFC) ZFC is inconsistent.

Proof. For the singleton, Conjecture E and Conjecture W generate that Ψ = A. Theorem
Not-W generates the possibility that Ψ = Ø. Thus it is possible that A = Ø. This is a clear
contradiction. Q.E.D.
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Discussion of these two results on ZFC

1. Nominalism versus realism

Recall what we said about holding on to the notion of freedom of definition. Amendment
of ZFC will tend to reduce the freedom of definition, unless one allows for a three-valued
logic that is strong enough to recognise nonsense.

We can look at Table 6 and Table 9 in horizontal or vertical direction. This reflects the
schism in philosophy between nominalism and realism. (See William of Ockham, page 31.)

(1) The horizontal view gives the realists who take predicates as ’real’: α – f[α] versus α
∈ f[α]. They are also sequentialist: ∆1 & ∆2 versus ∆3 & ∆4.

(2) The vertical view gives the nominalists (Occam) who regard the horizontal properties
as mere names or stickers, and who more realistically look at Ψ = Ø versus Ψ = A. They
see the table in even versus uneven fashion: ∆2 & ∆4 versus ∆1 & ∆3.

The nominalist reasoning is: The sets Ø and A exist. We are merely discussing how
they are referred to. The expression for Ψ is not a defining statement but an inferential

observation. Once the functions have been mapped out, the criteria can be used to see
whether the underlying sets may get also another sticker Ψ. We are discussing ’consistent
referring’ and not existence.

At issue is now whether ZFC has sufficient logical strength to block nonsensical
situations. ZFC has a realist bend. It translates predicates into sets (their extensions).
Instead we better employ an axiomatic system to only test whether a predicate is useful.
Merely cataloguing differently what already exists should not be confused with existence
itself. The freedom of definition can be a mere illusion and then should not be abused to
create nonsense.

A defining equivalence for Ψ on the LHS of Table 8 results via this tautology into a
weaker relation on the RHS that contradicts this definition.

The problem with Conjecture E and Conjecture W is that they impose the equivalence
on the LHS. This assumes a freedom of definition, whence this assumes that the truthtable
on the LHS is true, whence ∆1 is forbidden. But that freedom of definition does not exist.
Something exists, that is infringed upon by the definition. When Ψ is the empty set, as in the
singleton possibility of Figure 2 then one no longer has the freedom to switch from Ø to A,
as in Figure 1.

The discussion is not without consequence, see page 79:

The logical construction x – f[x] and only a single problematic element, in
badly understood self-reference, should not be abused to draw conclusions on
the infinite. There are ample reasons to look for ways how this can be avoided.

2. Diagnosis, and an axiom for a solution set

ZFC blocks Russell’s paradox (essentially) by the Axiom of Separation (SEP). When the
paradoxical γ[x] = (x ∉ x) is separated from A to create some set R then the conclusion
follows that R ∉ A, so that the separation cannot be achieved. For the Cantorian set we
use α ∈  A, or for the singleton α ∈ {α}, so that we can use (α ∈ Ψ) ⇔ (α ∉ f[α]), and there
is no separation escape anymore. Separation is an irrelevant solution concept here, and
what is at issue is self-reference that requires a fundamental solution.

The diagnosis is that Ψ is a variable (name) rather than a constant. There is a solution
set Ψ* = {Ø, A}, and Ψ is a variable that runs over Ψ*. Compare to algebra, when one uses
a variable x with value x = 0 in one case and x = 1 in another case: then one might derive 0
= x = 1, but this goes against the notion of a variable. The inconsistency in ZFC is caused
by that it does not allow for that Ψ is such a variable.

The following is not in ZFC but will help to understand ZFC.
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Definition. An Axiom for a Solution Set might be:

("A) ($Z) ($B) ((B ∈  Z) ñ  ("x) ((x ∈  B)  ñ  ((x ∈  A) ∧ γ[x])))   (SOL)

This SOL could reduce to the Axiom of Separation (SEP). A way is to eliminate B ∈ Z as
superfluous, with Z = {B}, or self-evident (which it apparently isn’t). Another way is to
replace B ∈ Z by B = Z. This imposes uniqueness. When γ[x] has more solutions, then a
contradiction arises when SEP requires that a single solution B is also the whole set Z. ZFC
has the latter effect.

For the singleton A = {α} with f[α] = Ø, Conjecture W finds B = Ψ = A but we find Z = {Ø,
A} = P[A]. In itself it is true that Ψ ∈ P[A], but when the solution set Z = P[A] then it is
erroneous to require Z ∈ P[A].

It is not just an issue of notation. It is not sufficient to suggest to read Conjecture W now
as generating a value for the variable, rather than restricting the solution set to that value.
For, this reads something into SEP which it does not do: for it really restricts that solution
set.

In ZFC Ψ creates the illusion of a unique set, and thus we need amendment of ZFC to
correct that. One might hold that Conjecture E and Conjecture W are not necessarily wrong,
since one can find for any f a Ψ[f] such that for all α: f[α] ≠ Ψ. (For the singleton f[α] = Ø
gives Ψ = A.) But the formula of Ψ allows Theorem ExT1 to also find another case with f[α]
= Ø. (For the singleton f[α] = Ø also gives Ψ = Ø.) One can conceive that the two options
co-exist, but Conjecture W does not allow for Ψ = Ø. Thus Theorem Not-W is a real
counterexample for Conjecture W.

The freedom of definition used in Conjecture W depends upon the existence Conjecture
E. Then something is wrong with Conjecture E, that proved the existence of what
Conjecture W uses. The Conjectures were derived in ZFC. Thus ZFC has a
counterexample and thus is inconsistent.

Again, consider f[α] = Ø = Ψ (∆1). This is consistent, but is not seen 'easily' by Ψ, even
though it is covered in Table 8 by the falsehood of α ∈ Ψ. In a realist mode of thought, we

deduce from f[α] = Ø that Ψ = A, which is the only possibility on the LHS for α – f[α] that is
recognised (row ∆2). This is not necessarily the proper response. The problem with ZFC is
that it focuses on the LHS and neglects the RHS. We can derive a relaxed condition FT2,
and then Theorem Not-W allows to recover ∆1. The latter deductions are actually within
ZFC and thus there is scope to argue that Conjecture W presents only part of the picture.
However, that part is formulated in such manner that it causes the contradiction in Theorem
Not-ZFC. We must switch to a better axiomatic system that covers the intended
interpretation and that blocks the paradoxical Ψ. The better system blocks the LHS and
allows only the RHS.

While this analysis has a destructive flavour on ZFC, it is actually constructive since it
indicates what the improvement will be.

3. Logical structure of these deductions on the singleton

The inconsistency shows itself in Table 8 with two cases on the LHS for Conjecture W
and three cases on the RHS for Theorem Not-W. In itself it might be possible to use only
this table and forget about deductive incompleteness. However, it is useful to build up
understanding by first explaining such existence by the use of tautology T1.

The idea that Ψ in Conjecture E and Conjecture W or Table 6 covers all α ∉f[α] appears
to be false: it doesn’t cover ∆1. Thus when α ∉f[α] then there still exists a case of α∉f[α].
Now, isn’t Ψ supposed to cover all such cases ? The conclusion is: Conjecture E and
Conjecture W do not cover the intended interpretation (DeLong (1971)). However: since
Theorem Not-W deducts this neglected truth, and still is in ZFC, ZFC becomes inconsistent,
can prove everything, and the notion of deductive incompleteness loses meaning.

Thus, looking at only consistency would lose sight of Theorem ExT1 and Theorem D.
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Since Conjecture E and Conjecture W are well accepted in the literature and Theorem
Not-W is new, there is great inducement to find error in it. Indeed, Theorem Not-W allows
the deduction of a contradiction in Theorem Not-ZFC, and thus one might hold that it should
go. However, its steps are correct. It is more productive for the reader to accept
inconsistency of ZFC.

A discussion about self-reference that identifies a contradiction is always difficult to
follow. The problem lies not in the identification of the logical framework of the situation but
in the inconsistency of ZFC. Potentially the distinction between constant and variable has
most effect for clarity. But it also helps to see the distinct roles of the two tautologies T1 and
T2.

These tautologies were found to be useful, following an analysis that was inspired by
what Paul of Venice (1369-1429) wrote on the Liar paradox. The tautologies generate an
amendment to SEP that gives SEP-PV. If SEP in ZFC is replaced by SEP-PV then we get
ZFC-PV (see page 89). In this new system of axioms, Table 6 can no longer be derived, but
Table 9 can. This is another way to see that ∆1 is a truth that would exist outside of ZFC if
ZFC would be consistent.
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Part 4. Set theory: ZFC and infinity
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The dilemma: which horn to choose

1. Bijection by abstraction for infinity causes that ZFC is inconsistent

In a first reading, the following deduction may seem to be too simple, but there is a logical
framework now.

Theorem. (Not-ZFC-BA). ZFC is inconsistent.

Proof. Let A be denumerable infinite, P[A] the power set.
There is a bijection by abstraction, see page 43. Let this be f: A → P[A].

ZFC allows the creation of Ψ = {x ∈ A | x – f[x]},
Because of the bijection there is a ψ such that f[ψ] = Ψ.

The direct check on consistency gives: (ψ∈ Ψ) ñ (ψ∉ f[ψ]) ñ (ψ ∉ Ψ). Q.E.D.

For ZFC, the problem however is not really caused by infinity. The real issue is how ZFC
deals with self-reference, as we saw in the former Part for the singleton.

However, when that real issue is not seen then surprising conclusions are possible.

2. Cantor's Conjecture: there is no bijection between set and its power set

The Cantorian set plays a key role in the proof of Cantor's Conjecture on the power set.

Conjecture. (B), (Cantor's Conjecture for the power set, Russell's version, with the
bijection). Let A be a set. There is no bijective function f : A → P[A].

Proof. Regard an arbitrary set A. Let f: A Ø P[A] be a hypothetical bijection.
Let Ψ = {x ∈ A | x ∉ f[x]}. (*Addendum*, see below.) Clearly Ψ is a subset of A and thus

there is a ψ = f
 -1

[Ψ] so that f[ψ] = Ψ. The question now arises whether ψ∈ Ψ itself. We find
that

(ψ∈ Ψ) ñ (ψ∉ f[ψ]) ñ (ψ ∉ Ψ)

which is a contradiction. Ergo, there is no such f. Q.E.D.
Corollary. (RND). � and � are not equally large. � is non-denumerable. There are

transfinites. A 'bijection by abstraction' is nonsense.

Remarks. The conjecture holds for any set, and doesn't require denumerability. The
*Addendum* is often forgotten: This 'proof' relies on (i) existence Conjecture E and (ii) the
notion that ZFC provides for well-defined sets anyway. Given this addendum in the 'proof', it
should be clearer that if ZFC allows a paradoxical construct then one may feel that ZFC
needs amendment. NB. Appendix G uses only a surjection rather than a bijection.

3. The dilemma

For this book there is not much of a dilemma. We have deproven Cantor's original 'proofs'
of 1874 and 1890/91, and saw inconsistency for the singleton. Theorem Not-ZFC-BA is just
a logical consequence of the bijection by abstraction. This result merely shows in another
fashion that the strictly Cantorian set is not-well-defined.

All this is a different piece of cake for Cantorian mathematicians though. In the early
1900s they embraced Conjecture B and the implied transfinites. Conjecture B became the
corner stone of any course on set theory. Set theory caused that Cantor's original proofs
became topics rather for specialists. The transfinites are regarded in 2015 as a hallmark of
mathematical achievement. Only proper mathematicians understand those. Who disagrees
doesn't understand mathematics.
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Well-defined-ness versus the abuse of realism

Page 70 gives the crucial observations on realism versus nominalism.
For a function f from singleton A to P[A] we find that f[α] = Ø or f[α] = A. There is no doubt

that such a function can exist, or that subsets Ø or A exist.
Whether f[α] = Ψ or f[α] ≠ Ψ is merely an inferential property, it is not material to the

existence of f, and it gives no definition for Ø or A. This property that Ψ is irrelevant holds in
general, for both finite and infinite sets.

When we use the self-reference of Ψ to say something about the existence of f then this
is an abuse of an inferential and contingent property. This Ψ does not necessarily have to
support a conclusion on existence, even when a conclusion were true, and the reasoning
superficially accurate.

We reach irony:

This book spends a lot of attention to the Paul of Venice condition and the creation
of consistent axioms, partly in order to show that Ψ cannot really block a bijection
for the infinite. It is ironic – if that is the proper word – that this analysis is actually
superfluous. It is namely sufficient to say that Ψ is irrelevant anyway. (However,
adherents to Cantor's Conjecture would not believe Occam.)

An analogy is:

Consider e.g. a theorem "there cannot be a rational airforce",
with definition: An airforce that lets insane pilots fly is irrational,
and a proof with the Catch 22:

If a pilot is insane then he should not fly. If he applies for a test on insanity then
this is proof of sanity. Q.E.D.

This abuses a potential rule, i.e. no necessary rule. The conclusion seems true for
many cases and the reasoning is superficially accurate. This 'proof' makes for a
good novel but not for mathematics.

Indeed, for many functions there is no bijection, namely for finite sets. This can be proven
by numerical succession, see page 77. The proof in finite cases that uses the Cantorian set
does not use a necessary condition, and thus is dubious. It is actually invalid, given this
observed abuse.

The real issue is infinity. The infinite does not turn the Cantorian set from irrelevance into
a necessary condition. One should ask: is there really some set in infinity, that can only be
described by the Cantorian set, so that we really need that set to say something about a
surjection ? There is no proof for that. The Cantorian 'set' remains inferential and
contingent, and not something that can be used for such a proof on the supposed absence
of a surjection.

The inferential and contingent property however can be used to show that ZFC is
inconsistent. ZFC namely allows for the formulation of the strictly Cantorian set, with a self-
reference that generates an internal contradiction. This hold for the singleton but also for
infinity.
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Finite sets have no bijection between set and power set

1. Mindmap

The dilemma above is complicated by that Cantor's Conjecture holds for finite sets. The
mindmap is:

• For finite sets of arbitrary size - the potential infinite – it holds that the power set is
always greater than the set.

• That there is no bijection f : A → P[A] can be proven by numerical succession. 48

• The method of numerical succession does not work for the actual infinite. Cantor's
'diagonal argument' is supposed to work here.

• Cantor's Conjecture allows an elegant union of concepts. Both finite and infinite sets
A would share the general property of the lack of a bijection f : A → P[A].

• In terms of didactics: once there is an elegant method that also works for the infinite,
then numerical succession might be dropped as a method of proof, since there would
be this elegant general proof. (But does the 'diagonal method' really work ?)

 Our reason to look into Cantor's Conjecture originally was only in infinity.

2. Numerical succession for the finite case

Before continuing with ZFC and the infinite, it is useful to establish some of these
properties for the finite case, so that we better understand the lure of above mindmap.

Theorem. (FPS) A finite set is smaller than its power set.

Proof. Take A[n] = {a1, ..., an}. Let P[A[n]] be its power set.
(i) For the singleton the theorem is true. A[1] = {a1} has one element and P[A[1]] has two.
(ii) Assume that the theorem is true for n, with f : A[n] → B as a bijection for B Œ P[A[n]].

Regard A[n+1]. Observe that P[A[n]] Œ P[A[n+1]]. The elements with that bijection can be

regarded as allocated and we only have to establish a bijection between {an+1} and

elements in R = P[A[n+1]] \ B. However, R contains elements {{a1, an+1}, ..., {an, an+1}}, and
thus is much too large for a one-to-one relationship. Q.E.D.

3. Examples, and the objections

It may be useful to look at the examples for Conjecture W on page 64 again. The
conjecture has been formulated in its weakest form. Bijections f : A → B in the finite case
will leave great stretches of P[A] untouched.

Overall the Cantorian set does not look unreasonable. For finite cases we can calculate
what elements are in the set and what aren't.

There are these objections though:

• It blocks the possibility of a bijection for infinity. See the deproof in Appendix C.
• Deductive incompleteness: Ψ promises to collect all x ∉ f[x] but doesn't.
• ZFC is actually inconsistent because of it.

                                                          
48 Also known as mathematical induction: but this is no induction, see page 22.
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4. Revisit the paradox

The situation causes us to revisit the paradox:

(a) Theorem FPS proves: ∀n:  �[n] < P[�[n]]
(b) Potentially, but still unproven is: � < P[�] too ?
(c) Can we use abstraction: If (�[n] @ �) then also ((a) @ (b)) ?

The latter rule in (c) is not defined yet but needs investigating. If this abstraction holds,
then we are back to Cantor's conjecture, with � < P[�] ~ �.

Let us consider the scheme of abstraction like we saw on page 43. Let us also consider
two cases, one for a function itself and one for the statement about existence. On LHS and
RHS we simultaneously apply �[n] @ �:

(i) For any non-bijection (ii) There cannot be such bijection

not-b[n]:  �[n]  →  2�[n] 
↓  @  ↓  @ 

?:  �  ??  2�  

Ÿ∃ b[n]:  �[n]  ↔  2�[n] 
↓  @  ↓  @ 

?:  �  ??  2�  

(ad (i)) Like on page 43 we can provide a definition of a "non-bijection by abstraction",
consisting of the three sides of this square, and arrive at the conclusion that, given this
definition, there is a non-bijection by abstraction between � and �.

Indeed, we can easily imagine a function between the natural and the real numbers that
is not a bijection. What is missing is the necessity that holds for (ii), i.e. Theorem FPS for
the finite case. What we need to see is that this would be necessary for infinity as well.
Scheme (i) does not provide this. The bijection by abstraction in fact shows that scheme (i)
does not provide for that necessity indeed.

(ad (ii)) The issue is whether the necessity in Theorem FPS for the finite case can be
transferred to infinity. On page 43 there is no existential quantifier in the process of
abstraction. The particular bijection for the finite case is abstracted towards infinity. Once
this abstraction has been completed, only then there follows the conclusion that it exists.

Above scheme (ii) preloads this quantification into the process of abstraction. Perhaps
this is something that one might choose to do.

This book defines abstraction as 'leaving aspects out'. One may well argue that scheme
(ii)  starts from necessity for the finite case and only leaves out the finitary aspect (say, the
symbol n). In this approach the necessity transfers to infinity as well. This might be a
procedural thing to do, and neglects the special properties of infinity, like Hilbert's Hotel.

In this line of reasoning one might also hold that the above shows that anything can be
proven by abstraction, so that the bijection and necessary non-bijection by abstraction are
inconsistent, if not nonsensical. This however, would only follow from the earlier choice that
one made, of preloading existence in the process of abstraction. Given that this leads to this
contradiction, it is a safer conclusion that such preloading in (ii) cannot be done.

The above actually illuminates the paradox in the situation. For the finite case there
obviously is no bijection, and thus it would seem reasonable that there would be no such
bijection for the infinite as well. Cantor's conjecture is only an expression of that seemingly
reasonable expectation (in case (ii) above). It is only by looking a bit more sharply at what is
involved in the process of abstraction that we can decide that page 43 gives an acceptable
formalisation while case (ii) above tries to force too much.
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Objectives for this Part

The infinite is special and requires special care. The set-theoretical version of the
'diagonal argument' uses a self-reference that strongly reminds of Russell's paradox. The
logical construction x ∉ f[x] and only a single problematic element, in badly understood
self-reference, should not be abused to draw conclusions on the infinite. There are ample
reasons to look for ways how this can be avoided.

The reason to look into Cantor's Conjecture originally was infinity. In the course of this
study it was found that there already is inconsistency on the singleton. The need for a
change is obvious.

Finding an example in reality for a transfinite object (other than the real numbers, if they
really are) would be sufficient to keep them, but it is not necessary to wait till we have found
one.

DeLong (1971) explains that an axiomatic system tends to have an 'intended
interpretation', so that the axiomatic system is a model for that interpretation. Overall, with
an axiomatic system AS, the system defines well-defined-ness in its realm. When there is
an anomaly a for AS, so that AS ∧ a cause a contradiction, then adherents to AS will reject
a, but one must always keep in mind that it is also possible to reject AS.

Originally, PV-RP-CDA-ZFC presented the condition by Paul of Venice as an anomaly
within the intended interpretation of ZFC. Now however, it shows the way to repair ZFC into
a ZFC-PV.

To repair ZFC such that the transfinites re-occur again, is dubious. They are a figment of
x ∉ f[x] confusions, and there is no intended interpretation for them outside of those
Cantorian confusions. We have seen three 'proofs' of the non-denumerability of the real
numbers: Cantor 1874, 1890/91 and various set-theoretic forms based upon the Cantorian
set. There might be other vehicles, but as long there is no necessity, denumerability of the
reals, i.e. one kind of infinity, suffices (albeit ordered differently).

The remainder of this Part 4 then has the following objectives:

• Introduce the Paul of Venice consistency condition for sets
• Show how it blocks application of Cantor's Conjecture (though informally, at first)
• Derive it in ZFC
• Show how it makes ZFC inconsistent in the general setting too
• Suggest alternative axioms.
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The Paul of Venice consistency condition

Application to Russell's paradox

Russell’s set is R = {x | x ∉ x} for naive set theory, and we derived R ∈ R ⇔ R ∉ R, see
page 62. Paul of Venice suggested a criterion for the Liar paradox, see page 59. Can we
find a similar criterion for sets ?

A formulation is S = }|{ xxSx ∉≠  but this has the suggestion of choice, while the point is

that one must show that the property x ≠ S is necessary.
Define S = ))}()(()(|{ SxSxxxx ∈=∧∉ thenIf  i.e. with the consistency condition inspired

by Paul of Venice. 49 The If-switch gives a dynamic process of going through the steps, and
it is not a mere static implication. Without contradiction we find:

)( SSSSSS ∈∧∉⇔∈

SS∉

It is not clear what Russell's set would be, since it is inconsistent; but who wants to work
sensibly with a related notion can use S without problem.

The dynamic If-switch may be replaced by static S = ))}()(()(|{ SxSxxxx ∈⇒=∧∉  but

then the truthtable is bigger.
The translation of Paul of Venice's idea to set theory is a bit involved, notably with infinite

regress, when a test on S on the left causes a test on S on the right, which causes a test on
the left again, and so on. These issues can be resolved, however. The truthtable of

)( ppp ∧¬⇔ namely allows for a formal decision.

You should indeed recognise the form of the tautologies T1 and T2 used in the
deductions on the singleton in Part 3. There the condition surfaced by pure propositional
logic, and we used the normal "∧". Now, however, sets have more elements, and we
indeed must handle infinite regress.

A shorthand notation p ↑ q

A shorthand form is useful. It is only relevant for dealing with infinite regress.
Notation. V = }][|{ Vxxpx ∈↑ , 50 with asymmetric 'p ↑ q', stands for the longer V =

regress)}infinite preventing formally,(alsoory contradict isunless )][(][|{ Vxxpxpx ∈∧ .

Alternatively V = }][)][(|{ xpfalsumfalsumVxxpx elsethenIf ⇔∈∧ in which the first test

can be formal again without infinite regress. In static logic this reduces to V =
}][|{ Vxxpx ∈∧  but the idea is the dynamic switch, in which it is tested first whether the

Unless-condition reduces to a falsehood, formally without infinite regress, and if not, then
the unprotected original rule p[x] is applied.

Also: V = }][{ xpx ↑  means V = }][|{ Vxxpx ∈↑ .

Example: In the above we could write S = }{ xxx ∉↑ - and compare this with R.

A dangerous shorthand notation

In some texts I have used the form S = }|{ Sxxxx ∈∧∉ as shorthand only – see page

27. This allows students to focus on S. Experts however do not regard themselves as

                                                          
49 The consistency condition with the exception switch was given in ALOE:129 and applied to Russell.
Thus originally the consistency condition was created and this helped finding T1 and T2, not in reverse.
50 For shorthand I have tried p && q and p &| q. The arrow combines a vertical bar with a '∧' . It remains
an asymmetric relation.
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students who need education; they quickly recognise that this shorthand form causes
infinite regress when x ≠ S, and then they put this analysis aside, disappointed that it
contains such an elementary confusion. However, the shorthand only indicates the intuition
by Paul of Venice on the Liar paradox, that must be developed into modern consistency for
sets. It is rather curious that this intuition doesn't inspire the experts on set theory. Given
this reaction by set theorists it is safer to use V = }][|{ Vxxpx ∈↑ but sadly with the need of

more explanation.

Relevance for the remainder

While a result of this book is that ZFC is inconsistent, another result is that the Paul of
Venice condition might be used to repair this, like shown above for Russell. The following
sections will make the argument formal.

The asymmetric relation p ↑ q tests on a logical inconsistency of p ∧ q, and if there is no
conflict, then q is discarded. One can still follow the argument in outline by reading this as
'∧'. The following generalized Cantorian set is called Pauline:

Φ  = Φ[f] = }Φ][|{ ∈↑∉∈ xxxAx f

We compare this with Ψ = Ψ[f] = ]}[|{ xxAx f∉∈ . Does ZFC allow for Φ ? We saw

this for the singleton but what is the situation in general ?

Relation to three-valued logic

The Paul of Venice consistency condition gives a solution to both Russell and Cantor.
There is no reason for a crisis in the foundations of logic and mathematics and there is no
need for a Theory of Types - though you can use them if desired. 51

We cannot base mathematical conclusions upon an improper way of expressing our
statements. E.g. if our form-conventions allow a substitution of "a" and "oo" so that our
conclusions about "man" and "moon" are the same, then we can create art, but not
necessarily something that we would want to teach as serious mathematics. Discovering
what a good notation for well-defined sets is, has been studied even before the discovery of
Russell's paradox. Mathematicians thought they had solved it but apparently not.

This book uses 'well-defined' rather than 'well-formed'. The context of this book is ALOE
that presents three-valued logic, to the effect that logic allows to determine whether an
expression reduces to nonsense. This allows leisure on form, so that the Russell set can be
said to be of acceptable form – so that it is meaningful for deductive steps – but it turns out
to be nonsense and thus not-well-defined. In the same way the Cantorian set would not be
rejected merely because of form, i.e. in three-valued logic. In two-valued logic, both Russell
and Cantor do not satisfy criteria on well-formed-ness.

For formalisation of an alternative to ZFC there are at least two approaches. One
approach is to forbid the formation of Russell's R by always requiring the Paul of Venice
consistency condition. (This is ZFC-PV.) Alternatively we can allow that R is formally
acceptable: then we need a three-valued logic to determine that R is nonsense. It has
meaning, that allows us to see that it is nonsense. (This is BST.) (See below for ZFC-PV
and BST.)

                                                          
51 ALOE also provided for a solution of the LIar.
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Rejection of the proof of Cantor's Conjecture

1. Restatement of ALOE:239

Page 75 gives the common proof for Cantor's Conjecture that a set is always smaller than
its power set. The following gives the rejection of this proof by ALOE:239. 52 This rejection
assumes that ZFC might be consistent while the strictly Cantorian set is nonsensical.

Rejection of Conjecture B. We might hold that above Ψ is badly defined since it is self-
contradictory under the hypothesis of a bijection or surjection. A badly defined 'something'
may just be a weird expression and need not represent a true set. A test on this line of
reasoning is to insert a small consistency condition, giving us Φ = {x ∈ A | x ∉ f[x] ↑ x

∈ Φ}. See the section above for the notation on 'p ↑ q'. Reading it as 'p ∧ q' still gives an
idea of the argument. The bijection or surjection gives that there is a j such that f[j] = Φ.
Now we get:

j œ Φ ñ (j – f[j] ∧  j œ Φ)) ñ (j – Φ ∧ j œ Φ) ñ falsum

We find j ∉ Φ without contradiction. This closes the argument against the proof.

Remarks.

(1) The Ψ differs lexically from Φ, with the first expression being nonsensical and the
present one consistent. Ψ is part of a lexical description but does not sensically refer to a
set. Using this, define Φ* = Φ ∪ {j} and we can express consistently that j œ Φ*. So the
'proof' can be seen as using a confused mixture of Φ and Φ*.

It is remarkable that this explanation by itself is often not enough to recognise the
nonsense, i.e. for some people. For them more complex explanations must be added, for
infinity the notion of bijection by abstraction and for the singleton inconsistency via the
tautologies T1 and T2. The nonsense is obscured for finite sets. For example, the x – f[x]
rule seems to work for the singleton. Check what it does. Nevertheless, nonsensicality is
shown by the above, and the other explanations are only corroborations.

(2) The singleton has no surjection and thus the above does not quite compare. With only
one element, Φ∉α implies Φ = Ø and Φ* = A. We however have freedom to take f[α] = Φ or

f[α] ≠ Φ. Instead we have always f[α] ≠ Ψ, so it is no useful building block for a surjection.

(3) The consistency condition in Φ only enhances consistency, but Ψ and Φ still have a
different effect. This is an anomaly. Users of ZFC should explain this, see Part 5.

(4) ALOE:239 asumed the common case of a bijection but there is also the standard case
of a surjection, see Appendix G. Above rejection has been reformulated to cover both.

(5) In writing CCPO-PCWA in 2012 I considered using the more general ↑-construction,
but still preferred the ad hoc form Φ = {(x ∈ A) ∧ (x ≠ f -1[Φ])  | x ∉ f[x] } for the hypothesis
of a bijection. Now, looking at the challenge to ZFC, it seems better not to linger in ad hoc
solutions but to emphasize the general idea, and use the general notation p ↑ q.

 If one feels uncomfortable with the ↑-switch then it is useful to know that there may be an
ad hoc definition for Φ indeed. An ad hoc format without an inverse function is:

Φ = ]}[|Φ][{ xxxAx ff ∉≠∧∈ }Φ][|Φ][{ ∈∧∉=∧∈ xxxxAx ffU

                                                          
52 Here we use p ↑ q. ALOE:239 itself uses the 'dangerous' shorthand notation, assuming full formal
complexity as on ALOE:129 on the Russell paradox and the condition to prevent infinite regress.
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2. Conclusions

1. The common cq. standard proof for Cantor's Conjecture on any set is based upon a
badly defined and problematic self-referential construct. The proof and the variants
evaporate once the problematic construct is disabled and a sound construct is used.

2. The theorem is proven for finite sets by means of numerical succession (mathematical
induction) but is still unproven for infinite sets: that is, this author is not aware of other
proofs. Above we have called it a "conjecture", but Cantor might not have done such a
conjecture (without proof) if he would have known about above refutation.

3. What Cantor did know: The distinction w.r.t. the natural and the real numbers would
rest (only) upon the specific interval (Cantor 1874) or specific diagonal argument (Cantor
1890/91) – that differ from the (common cq. standard) set-theoretic proof. See Part 2 for the
rejection of these original proofs, i.e. page 47 for the proof of 1890/91 and page 51 for the
proof of 1874.

4. The transfinites that are defined by using Cantor's Conjecture evaporate with it.

5. The context of ALOE is rather close to naive set theory and definitely not formal ZFC
theory. The question is whether Φ is a set in ZFC, or whether it is an entity outside of ZFC.
This leads to the next section on Cantorian and Pauline readings of ZFC.

3. Inconsistency seems worse than nonsense

The structure of this book is that we first develop � and � with the bijection by
abstraction. Hence the dilemma on page 75 is formulated as between the horn of Cantor's
conjecture and the horn of the bijection by abstraction. Originally in 2007, the dilemma
actually was between Cantor's conjecture and above rejection in ALOE. The bijection by
abstraction was found only in 2012. 53

Somehow it is more interesting in the mathematics community to say that something is
inconsistent rather than to say that something is nonsense. ALOE 2007, restated above,
concluded that there was nonsense. It seems that few mathematicians cared,
notwithstanding the review by Gill (2008).

In 2014-2015 I decided to look at ZFC myself and spotted inconsistency as discussed in
Part 3. Now the reaction should be expected to be a bit different.

Mathematicians are not trained on the three-valued logic in ALOE of course, but this
neglect of nonsense does not seem to be a good excuse.

See also the three strategies mentioned on page 60.
For ZFC-theorists, above rejection appears to be too vague or simply unacceptable. In

one respect they are right, since they are dealing with ZFC. In another respect they are as
wrong as ostriches can be. An axiomatic system has an intended interpretation. The
rejection above makes eminent sense in the intended interpretation of naive set theory or in
the context of the elementary logic of ALOE. Thus, mathematicians should be worried about
above rejection. The fact that above rejection is not (yet) in ZFC is no argument to neglect
it. Below we will bring it into ZFC, which means that some mathematicians missed the
opportunity to do so themselves.

These observations are useful for the Framework for Discussion, Part 5. They can best
be made here, at the place where the rejection of Cantor's Conjecture started, so that the
reader may better appreciate what is involved.

                                                          
53 It is a matter of didactic structure of this book. Starting this Part with the original dilemma would also
require that we first develop the notation p ↑ q w.r.t. infinite regress. An alternative structure would be to
start with ZFC so that also the power set can be used from the start. The current structure follows
history, starts with numbers and infinity, and only brings in set theory secondly.
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Cantorian and Pauline readings of the Axiom of Separation

The discussion now focuses on the Axiom of Separation (SEP), stated on page 61, and
the condition "B is not free in g[x]". There are a tolerant Pauline reading (supported by
Lemma P below) and a defensive Cantorian reading of this condition.

1. A Cantorian reading implies the possibility of a Pauline reading

Definition. The Pauline reading of SEP takes the axiomatic formula,
("A) ($B) ("x) (x ∈ B  ñ  ((x ∈ A) ∧ g[x])),

as basic, so that g*[x] = (g[x] ↑ (x∈ B)) with B = Φ is allowed with the Paul of Venice
consistency condition, since B = Φ is not free but bound by the existential quantifier ($B).
Thus the formation of Φ in the former section is allowed in ZFC.

The expression g*[x] is created within the formula and can be taken out for inspection,
but one should be careful about conclusions once it has been taken out. The explanatory
text in the axioma around the formula is about the whole formula, and not necessarily about
expressions once they have been taken out.

Definition. The Cantorian reading is that the expression g[x] is created outside of the
axiomatic formula, is judged on its own properties (though unstated why and how), and only
afterwards substituted into the formula. It holds: g*[x] = (g[x] ↑ (x œ B)) is not allowed
because B = Φ would be a free variable before the substitution (and not a constant).

Part 5 discusses these two interpretations. There exist not only different forms of ZFC but
also different readings. Lemma P however proves that the Cantorian reading implies the
possibility of the Pauline reading, i.e. for membership of the B which is being defined.

Lemma. (P) For "(x∈ B)": (The Cantorian reading) ⇒ (A possible Pauline reading).

Proof. There is the tautology in propositional logic (see Table 8):
))(()( pqpqp ∧⇔⇒⇔

With p = )( Bx∈ and q = ])[( xAx γ∧∈ we get:

( ) ( )))(][()(])[()( BxxAxBxxAxBx ∈∧∧∈⇔∈⇒∧∈⇔∈ γγ   (*)

Take the Cantorian reading that ("A) ($B) ("x) ((x∈ B) ñ (x∈ A ∧ g[x])) and eliminate
the existential quantifier by some constant set, say C = C[A, g]:   

("A) ("x)  ((x ∈ C)  ñ  (x ∈ A ∧ g[x]))
Given that the tautology (*) holds for all p and q, substitute C in B in (*), then apply Modus

Ponens, and find:
("A) ("x) ( )))(][()( CxxAxCx ∈∧∧∈⇔∈ γ  (**)

Then abstract to an existential quantifier again. There are two ways to do this. The first
way is set-preserving, in which the constant C is kept on the RHS.

("A) ($B) ("x) ( )))(][()( CxxAxBx ∈∧∧∈⇔∈ γ .

The other abstraction considers the whole expression and gives the Pauline reading:
 ("A) ($B) ("x) ( )))(][()( BxxAxBx ∈∧∧∈⇔∈ γ .

Propositional logic also accomodates the exception switch 'p ↑ q' (page 80). Q.E.D.

The lemma shows that there is no necessity to reject the Pauline interpretation.
This book now faces a choice of composition. The (**) relation above can be used to copy

the analysis on the singleton, now for the general situation, with proper choice of g and C.
However, as it has already been shown that ZFC is inconsistent, there is little advantage in
such copying of the argument. It is more interesting to investigate what consequences there
would be for the Pauline interpretation and for a development of a ZFC-PV. We proceed on
that second course. A first consequence is the following.
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2. The Cantorian and Pauline sets may differ

Corollary. (Q) The set created by the Pauline reading is not necessarily equal to the set
created by the Cantorian reading.

Proof. The proof of Lemma P used the method of eliminating the existential quantifier by
subsitution of a constant set C = C[A, g]. Thus the constant set C that satisfies the
Cantorian reading also satisfies a Pauline reading. This conclusion is not affected by the
later step of abstraction to ($B). However, abstraction over the whole expression may
introduce new solutions. Q.E.D.

Remarks.
(1) The above holds for any set and expression, not just the paradoxical ones.
(2) Inconsistency of ZFC in Part 3 was derived under the Cantorian reading. The

Cantorian reading allows Ψ = Φ, and subsequently the derivation for Theorem Not-W and
Theorem Not-ZFC. Inconsistency does not depend upon the Pauline reading but upon
direct propositional logic.

(3) The tautologies T1 and T2 in the proof for Theorem Not-W apply always. Still, the
singleton gives an example with Table 6 for Ψ and Table 9 for Φ = Ψ. While that analysis
has Φ = Ψ, there also arises the idea to differ. While it may not have been clear there under
what circumstances an independent application of the RHS (Φ) was allowed, this clarity has
now been given. The Cantorian interpretation always generates a Pauline form for the same
sets (Ψ = Φ). There might be a difference however when one would allow existential
abstraction from a proposition too: and then the two might start to differ, which gives scope
for an adjusted axiom SEP-PV and system ZFC-PV.

(4) It might be useful – e.g. for the expansion to '↑' – to write out some relations for the
paradoxical Φ and Ψ. Given the deduction in Lemma P we find for Ψ:

( ) ( )))Ψ(])[(()Ψ(]))[(()Ψ( ∈∧∉∧∈⇔∈⇒∉∧∈⇔∈ xxxAxxxxAxx ff

Given that the antecedens holds ("A) ("x), also the consequence holds ("A) ("x).
For Φ there is the consequence term only:

("A) ("x) ( )))Φ(])[(()Φ( ∈∧∉∧∈⇔∈ xxxAxx f

There is the same expression for both now:

For K = Φ, Ψ:  ("A) ("x) ( )))(])[(()( KxxxAxKx ∈∧∉∧∈⇔∈ f

With only the latter information it is doubtful whether ZFC is strong enough to derive
whether these are just different names for the same set Φ = Ψ or not. However, Lemma P
and Corollary Q make it certain, via another route, that there is ambiguity indeed.

The following question then becomes more acute.
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What is the difference between Ψ and Φ ?

1. It should have no effect but it has

The deduction on the singleton poses a challenge to ZFC. Sets R and S in the discussion
on the Russell set on page 80 were in naive set theory, so it has relatively little meaning –
for now – to ask about the difference between R and S. However, Ψ and Φ  belong to ZFC –
see Lemma P – and thus the question is (more) meaningful. Users of ZFC will have a hard
time trying to clarify:

(1) that the Pauline consistency condition should have no effect (it enhances consistency)
(2) but actually can have an effect.

I have considered this question only to some limited extent since I have no vested interest
in ZFC. I leave it to users of ZFC to clarify this issue. The following are useful clarifications
based upon the little that I could do.

(A) My solution of this issue is that Ψ is badly defined and that Φ is well-defined. I am
interested in a convincing argument to the contrary but haven't seen it yet. Note that Ψ at
first seems to work for finite sets, see for example the singleton or the examples on page
64. However, we identified for the singleton that Ψ does not cover the intended
interpretation and causes inconsistency. While Φ allows more solutions and thus clearly
works as a variable, Ψ must be a variable too but gives the suggestion as if it were a single
solution and a constant.

(B) Lemma P and Corollary Q allow us to pose the question about Ψ and Φ  a bit more
acutely. Let us neglect inconsistency because of the singleton and focus (more didactically)
on why this inconsistency may not be seen.

One option is to try to determine a contradiction in the general case, similar to the
contradiction for the singleton.

2. Changing a function at the margin (Hilbert's Hotel)

A Cantorian is likely to insists on Ψ = Φ for Table 6 but on Φ ∫ Ψ for Table 9. Let us take
advantage of a key property of the infinite case. Hilton's Hotel allows the construction of a
function f such that a Cantorian may sooner accept that both contradictory conditions hold.
Let us rework a function at the margin (whence the ∆'s). The following is called a theorem
since it also should hold in suggested ZFC-PV.

Theorem. (ESV, existence of a surjective value for Φ). Let A be denumerable infinite,
P[A] the power set. (i) For any non-trivial h: A → P[A] there are f: A → P[A] and φ∈A with
f[φ] = Φ  = Φ[A] = }Φ][|{ ∈↑∉∈ xxxAx f . (When Φ is written without brackets: Φ = Φ[A].)

(ii) The direct test has φ∉ Φ without direct contradiction.

Proof. (i) When there is a φ∈A such that h[φ] = Φ  = }Φ][|{ ∈↑∉∈ xxhxAx  then the

proof ends with f = h. (To block repeat application of the proof.)
Otherwise: consider an ordering of A = {a[1], ...} and let be φ = a[1].
Let B = A \ { φ } and g: B → P[A] as in Hilbert's Hotel: g[a[n]] = h[a[n-1]] for n > 1.

Take Φ*[B] = ]}[Φ][|{ * BxxxBx ∈↑∉∈ g .

(PM 1. Since we use P[B] and not P[A], we use a *. Φ*[B] exists in ZFC, see Conjecture
E: (a) g's domain is B and its range is P[A]; g can be regarded as a subset of B × P[A]. Then
g exists because of the Axiom of Pairing. (b) Φ*[B] exists because of the Axiom of
Separation applied to the part without '↑', and then applying Lemma P. N.B. There are the
set-preserving Φ1*[B] and the free Φ2*[B] versions of this theorem.)
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Define f: A → P[A] as:

(a) x∈B :  f[x] = g[x].  Rewrite: Φ*[B] = ]}[Φ][|{ * BxxxBx ∈↑∉∈ f .

(b) x = φ :  f[φ] = Φ*[B]
We need to prove that Φ = Φ[A] = Φ*[B].

Since )( B∉ϕ  also ])[Φ( * B∉ϕ .

Define: M = )}][Φ()][(|{ * Bxxxx ∈∧∉= fϕ  = Ø.                      (Margin, '∧', not '↑')

(PM 2. M = Ø is in ZFC. Or, do Separation of {φ} with γ*[x] = )][*Φ()][( Bxxx ∈∧∉ f ,

in which Φ*[B] is not a free variable but a constant given from the above; a different B than
in the axiom itself also.)

A union with M allows a rewrite from B to A:
Φ*[B] = Φ*[B] U  M = }][*Φ][|{ BxxxAx ∈↑∉∈ f             (Substeps 1&2)

Rewrite:       K = }][|{ KxxxAx ∈↑∉∈ f , for K = Φ*[B].

This is using another name for Φ, so that K = Φ*[B] = Φ. (Substep 3)
(ii) The direct test on consistency is:

)Φ][()Φ( ∈∧∉⇔∈ ϕϕϕϕ f

Whence it follows without direct contradiction that φ∉ Φ.
Q.E.D.
Substeps:

(1) ( ) ]}[|{]}[|{]}[|{ xBAxxBxxAx γγγ UU ∈⇔∈∈

The LHS and RHS mean for the elements of A and B, also allowing for infinity, also when
some or all subsets reduce to the empty set:

...]}[|{...]}[|{ UUU 1111 bbaa γγ

(2) Joining the two sets into K and directly introducing the '↑' notation may be tricky.
However, work in the opposite direction. Test ]))[Φ()][(()( BK *f ∈∧∉⇔∈ ϕϕϕϕ  since the

contradiction on the RHS takes ↑-precedence. The RHS falsum gives non-membership.
Then )( Ax∈ reduces to )( Bx∈ so that the original definition of Φ*[B] is retrieved.

(3) These are just names. If one allows the rewrite to K then this label K can also be used
in the Theorem itself rather than Φ. Who requires a difficult route first defines Ψ[A] then
derives Φ[A] via T2 in Table 8, and then embarks on proving Φ[A] = K, using (2).

Remarks.

(1) Let Y = }][|{ xhxAx ∉∈ . With Conjecture W there is no x in A such that h[x] = Y. Thus

h[φ] is unequal to Y and this would not give a bijection. The theorem shows that it is not
precluded that one can construct a bijection (by abstraction) by some f however.

(2) Some constructive methods still allow for fixed points (Brouwer). The proposition "This
proposition is true" is self-referential without much problem.

3. Inconsistency for the general situation

Theorem ESV can be used for the question how Φ and Ψ compare.

Lemma. (DPP, difference Ψ and Φ) Let A be denumerable infinite, P[A] the power set.
For any non-trivial h: A → P[A] there are f: A → P[A] and φ∈A with f[φ] = Φ  so that Φ ∫ Ψ.

Proof. Theorem ESV generates f with f[φ] = Φ  = }Φ][|{ ∈↑∉∈ xxxAx f .

Conjecture W generates Ψ[f] = ]}[|{ xxAx f∉∈  so that for all α ∈A it holds that Ψ ≠ f[α].

Thus also Ψ ≠ f[φ] = Φ . Q.E.D.

Remarks.
(1) Another way: Find φ ∉ f[φ], thus φ ∉ Φ and φ ∈ Ψ, so that Φ ∫ Ψ.
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(2) There is inconsistency if also Φ = Ψ. We already derived inconsistency for the
singleton. Who has doubts on the singleton may now check on denumerability.

Corollary. (Not-ZFC-2) ZFC is inconsistent for the denumerable infinite.

Proof.
(i) The Cantorian reading generates the possibility of a Pauline reading, see Lemma P.

Select the set-preserving case such that Ψ = Φ.
(ii) Do Theorem ESV for the latter case. Thus Φ1*[B] = Ψ*[B] in Pauline format. The

Pauline format is important to make this work: to create M = Ø and then have the union with
Φ1*[B] = Ψ*[B]. Because only M = Ø is included, the result must be equal to Ψ[A].

(iii) While Ψ = Φ, Lemma DPP shows that also Φ ∫ Ψ.

Q.E.D.

Remarks.
(1) That ZFC is inconsistent is not the major insight in this book. It are the considerations

that count. Major insights are the bijection by abstraction, and that strictly Cantorian sets
are actually irrelevant for this kind of existence proofs, see page 76.

(2) Above marginal analysis fits within ZFC without problem because of M = Ø. Appendix
H does a marginal analysis on the original Ψ, and generates these points: (a) Since it is
possible that the margin is not empty, there are some complications, and it is better that
experts on ZFC explain how it works out, with what properties. (b) It also shows that the
situation is highly artificial. We cannot do simple algebra, with assignment of a variable that
later finds its value, and we may have to stick to a certain order of manipulations, while
there doesn't seem to be an axiom that determines that order. The rationale of such gate-
keeping would be to prevent inconsistency, and one would do so when ZFC is regarded as
the holy grail. When one accepts however that ZFC is a monster that creates the
transfinites based upon badly understood and handled self-reference, then it is easier to
see that the order of manipulations is artificial and serves no real purpose.
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Amendments to ZFC, giving ZFC-PV or BST

To meet inconsistency we would require the PV-condition in general.

Possibility 1: Amendment by Paul of Venice to the Axiom of Separation:

("A) ($B) ("x) ((x ∈ B)  ñ  ((x∈ A) ∧ γ[x] ↑ (x ∈ B))) (SEP-PV)

Lemma P proves that SEP implies SEP-PV, but there arises a new system when SEP is
replaced by SEP-PV. In this case, Ψ is no longer possible, the proof for Cantor's Conjecture
collapses, and Ψ becomes ill-formed and nonsensical. My suggestion is to call this the neat
solution, and use the abbreviation ZFC-PV.

This formulation of SEP-PV might also cause a confusion, like SEP does, that γ[x] gvies a
unique B, whence it might be advisable to have a PV-version of SOL that states that
solutions need not be unique. However, as shown, application of SEP-PV generates
multiple solutions, see Table 9, and hence B clearly is a variable.

Another possibility is to move from ZFC closer to naive set theory, discard the Axiom of
Separation, and adopt an axiom that allows greater freedom to create sets from formulas.

Possibility 2: Discard the Separation axiom and have extensionality of formulas, a.k.a.
comprehension:

("g) ($B) ("x) ((x ∈ B)  ñ  (γ[x] ↑ (x ∈ B))) (EFC-PV)

This axiom protects against Russell's paradox and destroys the standard proof of
Cantor's Conjecture. This resulting system might be called ZFC-SEP+PV.

The Axiom of Regularity (REG) forbids that sets are member of themselves. Instead, it is
useful to be able to speak about the set of all sets. Though it is another discussion, my
suggestion is to drop this axiom too, then to call this the 'basic' solution, and use the
abbreviation BST (basic set theory), thus BST = ZFC-SEP+PV-REG. I would also propose
a rule that the PV-condition could be dropped in particular applications if it could be shown
to be superfluous. However, for paradoxical γ[x] it would not be superfluous.

I am not aware of a contradiction yet. I have not looked intensively for such a
contradiction, since my presumption is that others are better versed in (axiomatic) set
theory and that the problem only is that those authors aren't aware of the potential
relevance of the consistency condition by Paul of Venice.

A question for historians is: Zermelo (1871-1953) and Fraenkel (1891-1965) might have
embraced the Paul of Venice's condition if they had been aware of it.
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Conclusions

1. ZFC is inconsistent. Useful alternatives are ZFC-PV or BST.

2. The earlier conclusions on page 83 about the rejection of Cantor's Conjecture using
the informal context of ALOE:239 are valid also in ZFC, since the Pauline set is in ZFC.

3. Users of ZFC who do not accept this should give an answer to above questions, and
clarify why they accept Ψ and not Φ that has a better definition of a well-defined set.
Deproof would be required for the domino row of Lemma P, Corollary Q, Theorem ESV,
Lemma DPP and Corollary Not-ZFC-2.

4. If one holds that ZFC is consistent, against all logic, then one also accepts the
construction of a 'proof' for Cantor's Conjecture that generates the transfinites – and the
curious continuum hypothesis – which makes one wonder what this system is a model for.
We can agree with Cantor that the essence of mathematics lies in its freedom, but the
freedom to create nonsense somehow would no longer be mathematics proper.

5. It becomes feasible to speak again about the set of all sets. This has the advantage
that we do not need to distinguish (i) sets versus classes, (ii) all versus any.

6. The prime importance of this discussion lies in education, see page 25. Mathematics
education should respect that education itself is an empirical issue. In teaching, there is the
logic that students can grasp and there is the idea to challenge them with more; and there is
the wish for good history and and still not burden students with the confusions of the past.
My suggestion is that Cantor's transfinites can hardly be grasped, are not challenging, and
are burdening rather than enlightening. This book clarifies that highschool education and
matricola for a broad group of students, rather also not majoring in mathematics, could be
served well with a theory of the infinite that consistently develops both the natural and real
numbers, without requiring more than denumerability (� ~ �), using the notion of bijection
by abstraction. This book started its discussion for good reason with abstraction.

A major problem in schools would be when mathematics teachers think that Cantor's
Conjecture and its transfinites would be a great result and that they would feel frustrated
when they would not be in a position to explain it properly – while such frustration would
only be based upon a mirage and still show up in behaviour.
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Part 5. Framework for discussion
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Discussion regarded as a sign of mental incompetence

Mathematicians distinguish between results and philosophy.

The black-and-white image of mathematics would be: Definitions and axioms generate
theorems that are proven. Conjectures generate search for proofs. There is no scope for
discussion: a proof is valid or not. Who enters a discussion suggests an incapacity to
determine validity, and should look for a job in the Department of Philosophy. Who uses
diplomatic language ("this analysis causes questions for ...") indicates feelings of
uncertainty about the findings and thus apparently doesn't do mathematics.

In practice, research mathematicians (RM) are just people, and they discuss all kinds of
things. Some issues are not so clear-cut as RM hold, and then it requires discussion to
determine what aspects are clear and what aspects are vague.

The new results in this book will need to be discussed within and for both school
mathematics (SM) and research mathematics (RM). When I propose such a discussion,
then this does not imply that I would be uncertain about the results. The suggestion to
replace ZFC by ZFC-PV or BST is not an issue of volition and philosophy, but follows from
the necessity that mathematics itself generates. But I accept that people will find it hard to
drop ideas that they accepted before, so that some discussion is needed.

It may be added that I did not enjoy the idea of rejecting the proof for Cantor's Conjecture,
that I originally accepted in 1981-2006, and for the reals till 2010, and that has such an
acceptance in mathematics since Hilbert, even in constructivism. But, when one studies
logic, one may learn to respect necessity. It must be observed that this author is no expert
on ZFC or Cantor, see for background Appendix D. This book may reject various proofs
but perhaps there are other proofs. Not being an expert generates some uncertainty in
one's position, but not on the deductions that one has done.

The following are some suggestions for the Framework for Discussion of the present
results. They are based partly upon experience and partly upon the situation itself.

For a discussion it matters what the discussants know. A discussion with persons who
have read this book will be different from a discussion with people who haven't.

A discussion with a Cantorian mathematician who is married to the transfinites requires
some preparation on the maze of fallacies and misconceptions that one might meet. It is
advisable, for example, to look again first at the three strategies on page 60 and
subsequently at the observation on page 83 that nonsense doesn't ring alarm bells. The
first step in a discussion might well be to restore the awareness of the notion of the
intended interpretation.

It was Cantor himself who emphasized the freedom in mathematics. That freedom is
limited when the Cantorians themselves do not mention alternatives. Even a university
course like Coplakova et al. (2011) currently presents matricola students only with Cantor's
Conjecture without mentioning the alternative analysis in ALOE (2007), and thus potentially
seduces some students to waste their lives on transfinites. Such a course is indoctrination,
not worthy of an academic environment, and it is hypocritical since it claims to be open-
minded, as it invites students to check the proofs themselves, while criticism is taken as
evidence of failing the course. A discussion with such indoctrinated students might be more
complicated since they will think that they were free to check the proof themselves and they
will not accept the idea that they have been letting themselves getting indoctrinated.
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More on the genesis of this book

ALOE deals with logic and inference and thus keeps some distance from number theory
and issues of the infinite. Historically, logic developed parallel to geometry and theories of
the infinite (Zeno's paradoxes). Aristotle's syllogisms with all, some and none helped to
discuss the infinite. Yet, to develop logic and inference proper, it appeared that ALOE could
skip the tricky bits of number theory, non-Euclidean geometry, the development of limits,
and Cantor's development of the transfinites. Though it is close to impossible to discuss
logic without mentioning the subject matter that logic is applied to, ALOE originally kept and
keeps some distance from those subjects themselves.

But, since logic uses the notion of all, it seems fair to ask whether there are limitations to
the use of this all. Thus it is explained why ALOE 2007 said something about Cantor's
Conjecture and why this present book came about.

ALOE rejected Cantor's diagonal argument in 2007 by the Paul of Venice consistency
condition, see page 82 above. In 2012 CCPO-PCWA developed the notion of bijection by
abstraction which is a counterexample to the idea that there would be no bijection between
the natural and real numbers. This notion captures the amazement, if not paradox, by
identifying the three sides of the square that we know and the fourth side that creates a
sense of mystery – see page 43. The notion intends to emphasize the mystery, rather than
suggesting to stop thinking about it. New ideas are greatly welcome, but the suggestion of
transfinites apparently is a misconception.

These results in 2007 and 2012 already suggested that something would be wrong with
ZFC that allows Cantor's Conjecture. A discussion about this with mathematicians was
hindered by the phenomenon that they tended to regard these results as philosophy and
not mathematics. It is quite conceivable that ZFC theorists simply don’t have this affinity
with both elementary logic and empirical science that I can advise to every student.

A visit to a restaurant in October 27 2014 and subsequent e-mail exchange with
Edixhoven (Leiden), co-author of Coplakova et al. (2011), led to the memos Colignatus
(2014ab), and the inspiration to think about ZFC. 54 Originally I asked Edixhoven the
question here on page 86 on the relation between Ψ and Φ. Edixhoven agreed that the
Pauline consistency condition should have no effect, and I asked him to explain that it could
have an effect. Since November 2014, see Colignatus (2014ab), I have not received a
response even though the question was clear and articulate. Hart (TU Delft), who has
invested deeply into the transfinites, simply rejects that Φ belongs to ZFC, thus neglects
both the anomaly and its ramifications – including the logic that is now formulated in Lemma
P that it belongs to ZFC. In this period I only asked questions and explained the relevance
of those, and kept some distance from ZFC since I am no expert.

Seeing that I would not get answers from these experts and having seen ZFC more often
in the course of these exchanges, I decided on the morning of Wednesday May 27 2015 to
provide for the answers myself, and established major points for the singleton case, notably
Table 8, and subsequently also the general Lemma P before noon. It is a joy to see that
basic propositional logic still is so useful to resolve such issues like in this book. There was
a curious delay in finalising the analysis. I had introduced the different names Ψ and Φ for
clarity, given their different definitions. This made it more difficult to see though that Table 8
directly gives the inconsistency for Ψ alone. The rest is essentially didactics.

Colignatus (2015e) reports a breach in scientific integrity.

                                                          
54 This book uses ZFC and no other system since Edixhoven said that he restricted his attention to this.
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Discussing Cantorian versus Pauline ZFC

Part 3 shows that ZFC is inconsistent, using only the singleton. The Pauline interpretation
is not required, since the tautologies T1 and T2 use only propositional logic. The following
applies when one does not know about Part 3 or rejects its deduction.

This book discusses the choice of various possible axiomatic systems for set theory. The
chosen system defines what is well-defined according to that system. ZFC provides for
ZFC-sets. BST (to be developed) provides for BST-sets. A common idea is that developers
of ZFC have succeeded in capturing the notion of well-defined-ness best. This assumption
is often not mentioned in proofs (e.g. page 75, the *addendum*). This book challenges that
idea. It may be that ZFC-PV or BST capture it better.

Let us now consider Cantorian versus Pauline approaches to ZFC. The following arises
when we look at these approaches from the angles of research strategy or didactics.

Page 84 above defines the Cantorian versus Pauline readings of the Axiom of
Separation. Lemma P shows that the Cantorian reading implies the possibility of the
Pauline one. We take account of two cases:

(α) Lemma P is known and accepted. What are the consequences ? (α1) Does one hold
that the Pauline reading does not affect ZFC ? Or is some effect accepted as well, and
which one ? (α2) Does one also accept Theorem ESV ? (α3) Does one accept the
bijection by abstraction ? (It is basically only a definition.)

(β) Lemma P is not known or not accepted. In this case the different positions are regarded
as deriving from a difference in personal views only. Philosophy. How does this affect
the perception of the challenge to ZFC ? The Pauline view will be tolerant, the
Cantorian view will be defensive. What are the reasons for tolerance or defence ?

The following was written before inconsistency was establised for the singleton, see Part
3, and the text still is relevant, but it gains most relevance if we assume an exchange of
views with a set theorist who has no awareness of Part 3.

1. The Pauline cq. tolerant interpretation

Page 84 presents the view that the condition "B is not free in g[x]" is satisfied when B is
bound by the existential quantifier. This is a Pauline interpretation. It causes that Ψ and Φ 
belong to ZFC, so that the question about their differences (and the anomaly) can be
discussed within ZFC. This book shows that (also) this leads to a rejection of ZFC as a
proper axiomatic development for set theory.

This Pauline approach acknowledges the existence of the condition "B is not free in g[x]"
since this highlights the challenge to ZFC. However, ZFC is ambiguous. There are versions
available without this condition. We rely on Coplakova et al. (2011:145), but we had to
insert the by-line in SEP, see page 61. A notable example is also Weisstein (2015) of
MathWorld.

In Hart (2013:29) we find the following formulation that can be judged to be at least
ambiguous. Its formulation allows the Pauline interpretation, i.e. that the test on the free
variables of g[x] happens under the existential quantifier. (i) B can be regarded as a given
or constant, and not a free variable for g[x], and then one finds y = B. (ii) Is it really
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precluded that one starts out with an independent y but then deduces that y = w1 would be
a solution ? It would be an additional assumption ('clarification of how to read the axiom') to
adopt the Cantorian defence below.

2. The Cantorian cq. defensive interpretation

A Cantorian approach to ZFC would be to maintain that authors in the world are free, but
that only the interpretation of ZFC is acceptable that blocks Φ. This approach is to reject the
Pauline interpretation, and deny the challenge.

The defence is: g[x] originates as an independent expression. It is put into and is not
lifted out from the Axiom of Separation and its existential quantifier.

The Cantorian view remains: the condition "B is not free in g[x]" allows the creation of Ψ
but blocks Φ. This also presumes that Φ cannot be a constant. (Some systems allow that
'variable' might indicate symbols: constants and proper variables.)

This Cantorian approach seems to have the appeal of solidity, i.e. that ZFC exists now for
some time, that some researchers find fransfinites attractive and a work of art, and that the
view might be maintained even in the face of the Paul of Venice challenge. But it comes at
the price of some questions that are not answered except by dogma.

3. Questions for the Cantorian interpretation

(1) It does not matter if something is put into or lifted out while the relevant issue
concerns the scope of the existential quantifier. Yes, there is predicate logic that would
allow the creation of g[x]. But the idea is that set theory harnesses predicate logic.

(1a) A defence is that g[x] is not lifted out from the formula, but already existed as an
independent expression, say as a predicate in predicate logic. This merely shifts the
problem to predicate logic, and without looking into that problem there. One idea for set
theory was to harness predicate logic, but if one drops this idea then how is one to establish
well-defined-ness for predicates ?

(1b) To look at g[x] within the Axiom of Separation is the easiest way to see the scope of
the existential quantifier. Why would one lift it out ? Why judge it separately ? Axioms are
not posed out of thin air, but we generally look for a reason.

(1c) The transfinites are no reason, when they can be diagnosed as an illusion based
upon not-well-defined sets. They don't exist in reality, only in fancy because of ZFC.
Sticking to ZFC-Cantorian merely because of the transfinites is begging the question.

(2) Why deny the freedom for researchers to adopt the Pauline interpretation ? Didn't
Cantor himself argue that mathematics allows for freedom ? Why could ZFC-PV or BST not
be fine axiomatic systems, that deserve mention in an introduction course on set theory ?

(3) Beware of theology and the dispute between Gomarus (predestination) and Arminius
(freedom of choice). A former version of PV-RP-CDA-ZFC met with criticism that the
Pauline approach was based upon a 'misconception' and 'elementary error', and that the
use of the consistency condition 'was not allowed'. While the analysis at that time only
posed a problem, clearly formulated so that others could understand it, if only they opened
their minds to it. But this reader did not see the problem but only error and sin. This reader
apparently was so married to ZFC in its Cantorian interpretation, that he did not see
alternatives, and he was no longer aware that set theory is about studying axioms for sets
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and not just ZFC. Instead, in reality, there are alternatives to ZFC, also alternatives in
interpreting ZFC. (It is fortunate that there now is Lemma P, so that the power of the rational
argument in mathematics can be relied upon to help resolve an issue. In a way though this
is too simple, since arguments (1) and (2) were already convincing mathematically. This
also holds for the next points.)

(4) While (2) emphasizes freedom, there is also necessity. While the Cantorian approach
blocks the question on Ψ and Φ within ZFC-Cantorian, ZFC-defenders must acknowledge
that the question exists within ZFC-Pauline.

(4a) Thus, also, if they reject to answer the question within ZFC-Pauline, they must
answer it across variants of ZFC.

(4b) Thus, please, explain why Ψ in ZFC-Cantorian generates transfinites and Φ  in ZFC-
Pauline does not ? See page 82. What causes the difference, while the cause is a
consistency condition that should have no effect ?

(4c) Rather than neglecting the issue, and getting lost in the illusion of the transfinites,
ZFC-defenders might feel obliged to explain why that difference arises. It is not only the
consequence of the evaluation g[x], but also the impact of the consistency condition. Is it a
consistency condition or not ? How can it be that the insertion of consistency can cause the
collapse of Cantor's Conjecture and the transfinites ?

(4d) While questions (4a) - (4c) allow for that Lemma P and Theorem ESV are not known,
they become more acute when those and their proofs are accepted. One must now answer
such questions across systems, say between ZFC and ZFC-PV.

(5) It would help to establish whether this challenge to ZFC, based upon the Paul of
Venice condition, is new to researchers of set theory or not. I have no knowledge on this.

(5a) If it is new, then perhaps the tradition of ZFC has been based upon an illusion.
(5b) If it is old, then perhaps it was not properly evaluated in the past.
(5c) There is also the variety of formulations of ZFC that needs explanation, compare e.g.

Coplakova et al. (2011), Hart (2013) and Weisstein (2015).

(6) How is it with naive notions like the set of all sets ? Hart (2015) describes the
incongruity of using formal ZFC-sets and informal 'classes'. Would it not be mathematically
attractive when these could be brought in line within one consistent system ? The objective
is not to limit the freedom in mathematics but to find an adequate system for education, see
the Preface to this book.

((7) One cannot persistently neglect Part 3.)



98

4. Diagram of views when the propositions in Part 4 are known

Let us assume that the propositions in Part 4 are known and accepted.
Figure 3 shows how the views on ZFC relate to each other and to the overall Intended

Interpretation. The figure indicates only the expressions that are allowed. In the Cantorian
reading of ZFC, the bijection by abstraction Б is rejected, and its Ψ[Б] disappears in terms
of 'content' (leaving only its grin). But a non-surjective f would generate its Ψ[f], and thus we
can indicate that such an expression is allowed. The advantage of this presentation is also
that it shows that the issues can be discussed across systems.

Notions for reading the figure are:
(1) The roman letters indicate subareas, and the text labels their unions.
(2) ZFC-Pauline = M ∪ P ∪ R.  ZFC-Cantorian = M.  ZFC-PV = R ∪ S.
(3) The Intented Interpretation might be K ∪ M ∪ P ∪ R ∪ S but perhaps parts drop out.

Ideally, ZFC and ZFC-PV are a model for the Intended Interpretation. Then at least K = Ø.
(4) Ideally ZFC and ZFC-PV have the same Intended Interpretation, so researchers have

to determine which has to give way. (An important case is ∆1 in Part 3, see page 66.)
(5) Lemma P is that ZFC-Cantorian implies – is a subset of – ZFC-Pauline.
(6) Corollary Q holds that Φ may differ from Ψ. The symbols are distinct in the figure

because it looks at the formulas. The sets might disappear e.g. if the bijection by
abstraction is rejected. ZFC-Cantorian might hold that on content Φ = Ψ.

(7) Transfinites do not exist out of ZFC-Cantorian (unless there are really valid proofs),
and thus would not be part of the Intended Interpretation. Thus we should cut out a part of
M that depends upon Ψ. Thus ZFC-Cantorian has to explain why it includes a part that
would not belong to the Intended Interpretation.

(8) ZFC-Cantorian still must explain the difference between Ψ and Φ. One would tend to
hold, as in (7), that Φ falls under the Intended Interpretation, so that Ψ has a problem.

(9) This book only looked at M and R, and didn't look at other areas. Since ZFC is
restrictive, it is not unlikely that S = Ø and P = Ø. The relevant question is: what can ZFC-
Cantorian achieve in M that would fall under the Intended Interpretation, but which cannot
be achieved by ZFC-PV in R ? (The transfinites are excluded because of (7).)

Figure 3. Venn-diagram of ZFC versus ZFC-PV, when the propositions in Part 4 are
known and accepted: allowed formulas only

Intended Interpretation

 ZFC - Pauline  ZFC - PV

 Ψ   M

 K

 S
R

Φ
ZFC - Cantorian

P
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5. Diagram of views when the propositions in Part 4 aren't known

Let us assume that the propositions in Part 4 are not known or accepted. (This is at least
the situation before the June 4 2015 version of PV-RP-CDA-ZFC.)

Figure 4 shows how the views on ZFC relate to each other and to the overall Intended
Interpretation. The figure indicates only the expressions that are allowed. In the Cantorian
reading of ZFC, the bijection by abstraction Б is rejected, and its Ψ[Б] disappears in terms
of 'content' (leaving only its grin). But a non-surjective f would generate its Ψ[f], and thus we
can indicate that such an expression is allowed. The advantage of this presentation is also
that it shows that the issues can be discussed within ZFC-Pauline.

Notions for reading the figure are:
(1) The roman letters indicate subareas, and the text labels their unions.
(2) ZFC-Pauline = R ∪ M (assuming above P = Ø). ZFC-Cantorian = L ∪ M. (Lemma P

found that L = Ø, but one does not know or accept this.)
(3) The Intented Interpretation might be K ∪ L ∪ M ∪ R but perhaps parts drop out.

Ideally, ZFC is a model for the Intended Interpretation, and at least K = Ø.
(4) Ideally the two ZFC readings have the same Intended Interpretation, so researchers

have to determine which has to give way. (An important case is ∆1 in Part 3.)
(5) Transfinites do not exist out of ZFC-Cantorian (unless there are really valid proofs),

and thus would not be part of the Intended Interpretation. Thus we should cut out a part of
M that depends upon Ψ. Thus ZFC-Cantorian has to explain why it includes a part that
would not belong to the Intended Interpretation.

(6) ZFC-Cantorian holds that R would be nonsense: since Lemma P is unknown. But then
ZFC-Cantorian must first explain the difference between between Ψ and Φ. One would tend
to hold that Φ falls under the Intended Interpretation, so that Ψ has a problem.

(7) This book only looked at M and R, and didn't look at L. (Lemma P found that L = Ø.)
The relevant question here is: what can ZFC-Cantorian achieve in L that would fall under
the Intended Interpretation, but which cannot be achieved by ZFC-Pauline ?

Figure 4. Venn-diagram of the Cantorian and Pauline readings of ZFC, when the
propositions in Part 4 are not known or accepted: allowed formulas only

Intended Interpretation

 ZFC - Cantorian  ZFC - Pauline

 L

 K

 R

Φ

M

Ψ
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About: Pierre van Hiele and David Tall: Getting the facts right

In this Framework for Discussion it is relevant to know that not only research mathematics
(RM) is at a loss, but also the mathematics education research (MER).

Elegance with Substance (EWS) not only analyses errors on didactic content but also
provides the political economy of the mathematics industry, in which MER has a key role.
From the book cover text:

"The failure in mathematics and math education can be traced to a deep rooted
tradition and culture in mathematics itself. Mathematicians are trained for abstract
theory but when they teach then they meet with real life pupils and students.
Didactics requires a mindset that is sensitive to empirical observation which is not
what mathematicians are basically trained for."

While MER should be an empirical study, it appears to be misguided by the same
tendency towards abstraction. Nowadays there is more emphasis on the application of
statistics, but, then the mental training towards abstraction asserts itself again, and the
emphasis is on statistical significance (precision) and not on relevance and effect size, see
Ziliak & McCloskey (2007). The basic skill of observation tended to be forgotten but
fortunately there now is more attention e.g. in the concept of Lesson Study.

I had hoped that researchers in MER would recognise the diagnosis in EWS and respond
favourably towards improvement. The result was mixed, and then apparently a few critiques
are sufficient to cancel the positive views and make everyone a bit wary.

Apparently there is more to empirical research that is less easily mastered. A key
example is the following. Eddie Gray and David Tall coined the word and notion of the
procept. 55 This suggested to me an openness to empirical observation of how students
really study. But the situation appeared to be somewhat differently than expected.

This case is important for this book given the key role of the Van Hiele levels of
abstraction, see page 18. Let me refer to my paper on this, and reproduce its abstract:

"Pierre van Hiele (1909-2010) claimed wide application for the Van Hiele levels in
understanding, both for more disciplines and for different subjects in mathematics.
David Tall (2013) suggests that Van Hiele only saw application to geometry. Tall
claims that he himself now extends to wider application. Getting the facts right, it
can be observed that Tall misread Van Hiele (2002). It remains important that Tall
supports the wide application of Van Hiele's theory. There appears to exist a
general lack of understanding of the Van Hiele – Freudenthal combination since
1957. Part of this explains the current situation in the education in mathematics
and the research on this." (Colignatus (2014c))

 While this book paves the way for an acceptable treatment of set theory and number
theory in highschool and matricola for non-math majors, there are ample reasons to be
sceptical that the analysis will be adopted by teachers and researchers in MER. There
remains a clear role for Parliament.

                                                          
55 Albeit that ALOE in 1981 already used the distinction between statics and dynamics.
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Part 6. Philosophical aspects
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The context of ALOE

1. Theory of Types, proof theory, or three-valued logic

Though ALOE presents elementary logic, it contains various innovations that are
relevant but little-known. The common self-referential logical paradoxes have solution
methods: (1) the theory of types (levels), (2) proof theory, (3) three-valued logic with true,
false and nonsense. ALOE shows that the latter is consistent and superior, with a way to
deal with the three-valued-Liar as well. Three-valued logic has a straightforward
interpretation and allows the solution of the Liar paradox and Russell’s paradox, while the
Gödeliar collapses to the Liar in a sufficiently strong system. Russell’s solution with the
theory of types outlawed self-referential terms, and implicitly declared such forms as
nonsensical. The proposal of a three-valued logic thus only makes explicit what Russell left
implicit, while it actually allows useful forms of self-reference. Gödel’s uncertainty due to
incompleteness is replaced by an epistemological uncertainty that some day inconsistency
might turn up that proves some assumptions to be nonsensical.

It is a useful tendency to rephrase arguments in terms of two-valued logic. Still, this
book allows some self-reference in the definition of sets, and thus has to rely on a solution
where such self-reference would cause nonsense. Three-valued logic also makes a useful
distinction between existence and non-existence of sensical notions versus nonsense itself.
A common notion also in two-valued logic is that nonsensical things cannot exist, but that
might also cause the confusion that the nonexistence makes the notions involved sensical.

PM. It seems that (constructivist) Brouwer mixed up the notions of truth and proof. It
might be that his interpretation of a double negation might differ from twice a single
negation. “Not-not-A” might mean “There isn’t a proof that A is not the case” which differs
from A. It is somewhat of a miracle that Heyting succeeded in finding apparently consistent
axioms. There might be an interpretation in terms of a mixture of both truth and proof.

2. An approach to epistemology

A proposal is the definition & reality methodology. Youngsters grow up in a language and
culture and learn to catalogue events using particular terms. The issue of matching an
abstract idea (circle) with a concrete case (drawn circle) is basic to thought itself. For circles
we can find stable definitions and this might hold more in general. Questions like “all swans
are white” can be resolved by defining swans to be white. The uncertainty then is shifted
from the definition to the process of cataloguing. A black swanlike bird may be important
enough to revise the definition of a swan. See Definition & Reality in the General Theory of
Political Economy (DRGTPE, 2000, 2011a). Definitions in economic models may restrict
outcomes which other models may not observe that don’t maintain those definitions. In the
case of space, my suggestion in COTP (2011c) is that the human concept of space is
Euclidean, so that we don’t have the liberty to redefine it. Einstein’s redefinition of space-
time may be a handy way to deal with measurement errors but could be inappropriate in
terms of our understanding.

With respect to consciousness, language is a bit tricky here. As people experience
consciousness, and this experience is created by (what some models call) atoms and
energy in the universe, apparently consciousness is a phenomenon created by the universe
as well, and in this sense consciousness is as real as those atoms and energy or the
universe itself. While atoms and energy seem to be dead categories without pleasure and
pain it is strange that there can be a mind that experiences pleasure and pain. One way to
approach this is to say that sound, sight, smell and touch are the senses, but that
consciousness then is a ‘sense’ too. See Colignatus (2011e) and Davis & Hersh (1980,
1983:349). This is vague and speculative and not directly relevant for this present book but
it seems relevant enough to at least mention it. The point namely is that abstraction takes
place in consciousness or that consciousness might actually be composed of abstractions.
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Views on constructivism

The analysis in this book may help the definition of constructivism and the delineation of
views on constructivism. A very practical result also concerns mathematics in highschool
and matricola. It may be somewhat amazing how philosophical and methodological
discussion can boil down to a course in highschool. The real challenge is to avoid rote
learning and instead to rekindle the processes of wonder and insight.

A context for this discussion is the Special Issue of Constructivist Foundations of March
2012 edited by Van Kerkhove and Van Bendegem: Constructivism In and About
Mathematics. 56 There is the eternal tension between mathematics and engineering.
Mathematicians are trained for abstract thought and they may lose contact with limitations
that are relevant for constructivism that people will tend to regard as rather practical.

In the same way, the mathematical expositions on constructivism, and thus
aforementioned Special Issue, may be misleading with regard to proper constructivism,
since some mathematical assumptions may hang in the air. Let us coin the term proper
constructivism indeed for what this present book will try to clarify. This does not concern a
new branch of constructivism but it is about what any branch would like to contain, namely a
balance between abstraction and practical considerations. For example ‘strict finitism’ (Van
Bendegem (2012)) might perhaps allow more abstraction since it by itself already implies
some abstraction; and in other branches the abstraction might have to be reduced in some
respects.

The discussion concentrates on the continuum and (its) infinity. The quintessential
notion to understand constructivism is this: what Aristotle called the difference between the
potential versus the actual infinite. While Democritos held that division of matter eventually
resulted into atoms, Aristotle held that division of space could be continued forever, and
thus he helped Euclid in defining a point as location without size and a line as length without
width – note the abstraction. Some authors seem to hold (see page 23) that Aristotle
rejected the actual infinite but it seems to me that he would not have rejected the actual
infinity of the continuum, e.g. the interval [0, 1]. Classical or non-constructive mathematics
tends to allow relatively free assumptions on the continuum and even create higher forms of
infinity, the transfinites. My suggestion is that mathematicians since Cantor have been ‘too
abstract and unrealistic’ (in some sense) about those transfinites. A neoclassical – or proper
constructivist approach, namely constructivism that looks for the balance of abstraction and
practicality – can restore sense in many areas affected by mathematics, not the least in
philosophical discourse and in the didactics of mathematics.

Quale (2012) mentions different forms of constructivism, next to solipsism, platonism /
realism and relativism. Cariani (2012) uses the perhaps more traditional distinction between
three approaches of platonism (realism), formalism and constructivism (including
intuitionism and finitism). It is dubious whether there is a convincing experiment to
distinguish the one from the other, so these labels are likely to refer to flavours in
psychology. Indeed, see Cariani (2012:123, right column). Davis & Hersh (1980, 1983:358-
359) regard these three different philosophies as the aspects of a multidimensional
phenomenon that have to be considered all in order to arrive at a whole. They regard these
three even as extremes in abstraction, and they hold that real (mental) activities by
mathematicians are of a more practical kind. The words ‘matter’ and ‘mind’ could be
overused, imprecise, unrealistic, to describe what is really happening, see Davis & Hersh
(1980, 1983:410):

“Mathematics does have a subject matter, and its statements are meaningful.
The meaning, however, is to be found in the shared understanding of human
beings, not in an external reality.”

                                                          
56 http://www.univie.ac.at/constructivism/journal/7/2
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Perhaps an example of 'shared understanding' is the ‘average length of 10 cars’, which
average may be taken to ‘exist’, though can get different values even when the cars are
identified, still depending upon method of measurement and, say, temperature.

The discussion becomes even more complicated when mathematics can hang in the
air. Perhaps one type of computer program can be seen as constructivist without any doubt
but perhaps there are all kinds of variations in computer programs, not only with a common
random generator but also with input from outside measurement instruments, that still might
be seen as constructivist in some way or other. Rather than approach the issue head on,
this book proposes to take steps, see page 39, to identify (the) different views on
constructivism that pertain to finitism, continuum and infinity.

Constructivist Foundations is an interdisciplinary scholarly journal and only a smaller
part of its readers are professional mathematicians. Constructivists should be aware that
the very topic of this book requires some mathematical insight. And, as said, this book takes
the approach to link up the philosophical discussion with a highschool course, and that
ought to be an acceptable entry level. The level of math required is finished highschool or
participation in first-year mathematics and logic at a non-math-major level for a field that
uses mathematics, such as economics, physics or biology. The book uses elementary
mathematical concepts and notations from logic, set theory and functions. There are some
key proofs in the body of the text since it is important that non-math majors can verify that
professional mathematicians have gone astray in the most elementary manners.
Constructivism has been burdened by irrational winds from mathematical quarters and it is
essential to show how Occam helps to cut away the nonsense. Readers who have
developed an aversion against mathematics may actually be drawn into the argument and
discover how things finally make sense. Indeed, one target of the book is to develop the
outline of a course on real numbers in highschool. Most readers might want to hold that in
mind, while some might perhaps want to skip some details about where Cantor went wrong.

The reader is invited to read Riedler (2005) again, the first editorial on the constructivist
challenge, with the catalogue of ten points for the program to meet that challenge.
Interdisciplinarity doesn’t mean sacrificing the standards of quality of one field merely in
order to create some umbrella for its own sake however vague it is. Instead, the standards
of quality of all fields must be maintained if the results are to be useful. For some
researchers perhaps like me it comes across as somewhat curious that other people divide
up into disciplines while it ought to be clear that you need all to arrive at the best picture. A
paper that closely matches those ten points is Colignatus (2011e), Brain research and
mathematics education: some comments – included here on page 109 – that argues that
brain research on mathematics that is intended to be used for its education may go astray
when brain researchers do not see that many concepts in math are quite messed up.

Mathematicians are trained for abstract thought but in class they meet with real world
students. Traditional mathematicians resolve their cognitive dissonance by relying on
tradition. That tradition however is not targetted at didactic clarity and empirical relevance
with respect to psychology. The content in the mathematics curriculum has grown over the
ages by conscious construction but also as waste flushed onto the shores. A quick example
is that the Arabic numbers like 19 are written from right to left (as in Arabia) while the West
commonly writes from the left to the right. In pronunciation there is even a switch in order,
compare 19 and 29. Another quick example is that two-and-a-half is denoted as two-times-
a-halve, namely 2½. This kind of mathematical confusion applies to the finite, continuum
and infinite as well. It even contains pure errors against logic. It is not only a question how
the mind constructs those concepts but also whether our concepts are mathematically
sound and not messed up like so much else.

A first step towards clarity is to consider the educational context. At issue is not to
educate what is in the books on mathematics but to discover what we really would like to
teach. Mathematics education requires a re-engineering, and likely in the constructivist
manner. If we do this re-engineering, it helps to have some soundness in philosophy as
well.
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In the Riegler three-dimensional space of discipline, school and type of enquiry, this
book then can be located as follows.

• Discipline: the education of mathematics, the philosophy of mathematics,
foundations of mathematics, philosophy of science, and methodology of science,
with aspects on history, cognitive psychology and epistemology.

• School: linking up to the approach to constructivism in mathematics (not in the
Riegler list).

• Type of enquiry: conceptual book, to develop philosophical-argumentative support,
though with the understanding that philosophy doesn’t hang in the air but at least in
this case deals with practical questions in epistemology and the didactics of
mathematics.
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A simple core of this book

When readers progress through the argument in this book, they may think that it is quite
complex, but in fact it is rather simple. There is one major goal and that is to introduce a
new definition, namely the notion of bijection by abstraction – see pages 23 and 43. Though
the intention of this analysis is also a contribution to clarity about the definition of
constructivism, namely to make room for abstraction too, that contribution quickly narrows
down to emphasising a new definition for a minor though apparently key aspect, namely
‘bijection by abstraction’.

If the reader keeps an eye on this major goal of this book, to introduce this new
definition, then the other aspects in this book can be moved to the background, and then it
would seem that the issue is rather simple. The key notion is that a procedural approach to
� and � is insufficient for constructivism and that abstraction can be taken as an aspect in
proper constructivism.

Mathematicians might get lost in proof details but we don’t necessarily focus on full
formality in all that is said. Purely mathematical papers would focus on full formality but
scientific papers look at the ‘intended application’ or 'intended interpretation' of the
mathematical model. This book contains (formal) proofs and in that respect it has features
of a mathematical book. Still, the major issue is the intended application to abstraction, and
hence major parts of this analysis might likely not fit in a purely mathematical journal and
might perhaps not even be understood by pure mathematicians. Mathematicians who stick
to two-valued logic may not be aware that they can produce nonsense.

Georg Cantor (1845-1918) claimed to prove that there was no bijection between � and
�, and he created a whole universe of ‘transfinites’ to deal with the consequences. The
suggestion of this book is that Cantor may not have appreciated what abstraction may entail
– even though he actually used the notion. William of Ockham (1288-1348) held that
complexities should not be increased without necessity. This book uses Occam’s razor to
cut away Cantor’s universe as overly complex and without a base in necessity. Given the
wide acceptance of Cantor’s results, the opposition to this analysis will be strong. A
Cantorian will tend to hold that the definition of ‘bijection by abstraction’ is vacuous and
irrelevant. The purpose of this book is to at least present the definition, so that discussants
know about its existence and possibility.

That said, a fairly quick consequence however is that readers may wish to understand
more about the definition and its area of application. This is a somewhat dangerous
consequence. At this moment the application is tentative and not fully established by itself.
It seems relatively easy to generate all kinds of questions about what such abstraction does
entail indeed. Such questions and uncertainty may easily cause the reader to reject this
analysis. The reader is invited however to concentrate on understanding the definition, and
suspend judgement till after subsequent discussions about the application. On the other
hand, one should not fear the obvious, since already Aristotle distinguished between
potential and actual infinite.

A prime application is in the area of highschool education, where pupils could be
presented with a clear and consistent theory of numbers and infinity without the convoluted
Cantorian universe of the transfinites. Teachers of mathematics might feel guilty when they
don’t explain Cantor’s universe but they might be happy if there is a sound alternative and
when they can explain more about the wonders of abstraction itself.
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A key in the education of mathematics

To aid the discussion, my proposal is to use evidence based didactics of mathematics as
our anchor in a real world activity, to prevent that we get lost in mathematical
inconsequentialism. This actually holds for the philosophical discussion about mathematics
anyway. The didactics of mathematics are an excellent sounding board for philosophy, and
it seems also a necessary sounding board. It would be somewhat curious to hold that the
approaches to clarification would be entirely different for philosophy on the one hand and
didactics (of mathematical concepts involved) on the other hand, when the subjects would
still be the same. It is more reasonable to assume some overlap.

A reader suggested that my reference to the education of mathematics would be a
distracting deviation to what the proper topic of this analysis would be – constructivism  with
abstraction in the rejection of Cantor in favour of Occam - but this would be a
misunderstanding. The misguidedness in mathematics and its application can be quite
horrible and there is a huge need for anchors. In standard applications we can refer to
engineering, and for the present discussion it is a key insight that we can refer to the
education of mathematics. In a way, this very analysis is a development of the didactics on
the infinite. Also, when a philosopher would object to ‘abstraction’ as something quite
undefined, then we can refer to the classroom situation, and refer to the Van Hiele (1973)
levels of understanding, see page 18, while Colignatus (2011e) contains some comments
with respect to research on the brain.

The prime lesson is to beware of mathematical confusions. Apparently it cannot be
emphasised enough how important that is. (Mathematical) Philosophies for example
relating to the Russell set paradox may be misguided, and this kind of misguidedness has
been happening in mathematics overall. Given the suggestion above, the key reference is
to education. A didactic reconstruction results into another curriculum. Already the term
‘didactic reconstruction’ causes the question how this is seen in terms of constructivism
itself.

The discussion here selects for didactics the teaching for secondary education or for
first year (matricola) college and university students who will not be mathematics majors.
The discussion in this present book can be complex in itself, but it is directed at the more
simplified content that is to be taught. The latter simplified world view would still be true
(perhaps in quotes: ‘true’) but merely be less rich in complexity to allow easier
understanding at a more basic level. My paper Neoclassical mathematics for the schools
(2011f) – here page 25 above – uses the label ‘neoclassical’ but the approach may also be
understood as proper constructivist: that is, it is constructivism with some scope for human
abstraction. It may help the discussion when such constructivism with abstraction is
recognised. When a student can construct a path towards understanding then this will seem
more attractive didactics than requiring them to merely ‘get it’ (or tell them to find another
job).

There is an additional advantage of pointing to the mess in education. That mess in
itself does not prove anything about particular topics in this book of course. When official
dogma is that mathematics in the curricula is perfect, then it is less likely that
mathematicians goof on Cantor as well. However, when it is called into attention that
mathematics in the curricula is a mess, then the likelihood increases that this may also be
with Cantor’s results.
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Brain research and mathematics education: some comments

July 2011 57

Abstract

Combining brain research and mathematics education can be advantageous but it is
important to be aware of the risks. The present comments focus on Damasio (2010) Self
comes to mind. Constructing the conscious brain and Colignatus (2011c) Conquest of the
plane, a primer for the education of mathematics. Mathematical concepts like line and circle
are abstract notions like the other mental events that make up the mind. Education can use
this to its advantage. Van Hiele levels of abstraction can guide this research. Freudenthal’s
“realistic mathematics education” tends to contain too much distraction from the required
abstract development, and is not the proper answer to the current problems in mathematics
education. The main problem in mathematics education is that mathematicians are trained
for theory while when they meet students in class then these are real life students, which
requires an empirical mind set. Current mathematics education tries to solve its problems
by resorting to tradition but this causes mathematical concepts and notations that can be
cumbersome and actually hinder understanding. Such confusions need to be resolved,
otherwise the link up of brain research and mathematics education will have no results, or
even negative ones. The discussion of brain research applied to abstract notions such as
line and circle requires a firm foundation in the philosophy of science, and a perception on
the Platonic world frequently favoured by mathematicians.

Introduction

Mathematics education can benefit from brain research in various ways. The literature
however contains some confusing concepts. Confusion comes with the risk that wrong
concepts would become enshrined in education. The intention of the following comments is
to generate clarity.

Damasio (2010) defines the mind as consisting of mental events, both conscious and
nonconscious (rather than unconscious). If the image of a circle in the mind, e.g. as the
Platonic object, is to be a mental event, then supposedly it might exist also nonconsciously.
But thinking about a circle is different from not thinking about it. It seems more likely that the
circle comes into being as a mental event because of the thought. Damasio also clarifies
that the whole brain is required to create consciousness. If the image of the circle exists
only because it is created in the conscious mind, then there would be no similar image in
the nonconsciousness since this lacks the whole supporting apparatus. If this holds for all
such mental events, does that not imply that nonconsciousness does not use quite the
same mental events as consciousness ? The model then rather is that mind =
consciousness (with the equality sign), while nonconscious events are issues for the brain
only and have no mental counterpart but only a supporting role. In other words, the circle
exists only in the mind = consciousness while the brain keeps components that can be
collected by consciousness to form that circle.

The other source of confusion is, remarkably, mathematics itself.
 One example is this. My book A Logic of Exceptions (1981, 2007, 2011) (ALOE) shows

that three-valued logic is required to deal with the logical paradoxes like the Liar paradox or
Russell’s paradox, including Gödel’s “incompleteness theorems” (i.e. rather confusions). If
brain researchers follow current mainstream mathematical thought and are stuck in two-
valued logic (like the authors of Logicomix), they might miss out on some phenomena in the
brain related to three-valuedness. Their findings might be less relevant for good education.
(Though they would fit mainstream teaching, and potentially, if two-valuedness is the norm,
those brain parts might be ‘cured’ that support three-valuedness.)

                                                          
57 http://thomascool.eu/Papers/Math/2011-07-11-COTP-Damasio.pdf also included in SMOJ.
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Another example is this. In mathematics education, Pierre van Hiele created the theory of
levels. The same words can relate to different concepts, depending upon the level of
understanding by the student. We know from Wittgenstein of the Philosophical
Investigations with his language games that words are flexible anyway. Still, in mathematics
and its education there remains a tendency to think that definitions and proofs can be
formulated exactly. If one mathematician formulates the Pythagorean Theorem then
another shows his understanding by proving it. If brain research is to try to support
education in this, how can it deal with the gap between Wittgenstein’s language games and
the mathematical claim of exactness ? Pierre van Hiele’s levels provide a bridge. But if the
mathematical symbolism is formulated crookedly, for example with mixed numbers like 2½
that should rather be conceptualized and also written as 2 + ½, then we need a bridge plus
a supporting coil and perhaps an additional twist. The circus on fractions in elementary
school derives from failed didactics, and this would hinder brain research rather than create
scope for its practical use.

As mathematics and its education are best developed within philosophical understanding,
the discussion below will also consider Cartesius’s “Cogito ergo sum” and consciousness
and the self. Mathematics is often understood in Platonic abstraction, and its elements
might well be as abstract as the mind itself. A circle as an ideal object might be made of the
same ‘stuff’ as the mind itself.

My books Elegance with Substance (2009) (EWS) and Conquest of the Plane (2011c)
(COTP) have short references to brain research, notably Damasio Looking for Spinoza
(2003) (LFS). It will be useful to extend a bit and also update to Damasio Self comes to
mind (2010) (SCTM). Perhaps the title should rather read “Some comments on Damasio
and EWS & COTP” but the impression is that there is a wider consequence.

Prolegomena

When we combine philosophical ideas with practical matters such as brain research or
didactics of mathematics then all kinds of angles creep in that increase confusion. It will be
useful to mention some foundational points without further discussion.

(1) ALOE:179 discusses that there are three kinds of approaches – determinism,
randomness and volition – but that there is no experiment to determine which is the
true state. At best we can design models that illuminate the different angles and act
with pragmatic choice.

(2) Feeling and rationality can be seen as different dimensions rather than as opposites to
one another (in only one dimension). (Colignatus (1996) figure 2.) Though they may
occur in the mind/brain as a soup, and be linked by necessity, they can be separated
by abstract analysis.

(3) One way to see the brain is as a processor of information. Feelings can be seen as
information at emotional locations. The idea is to handle information as efficiently as
possible, at lowest cost, in particular of energy. A cheap way to handle (conflicting)
information is to discard it (cognitive dissonance). An efficient manner is to create
definitions with maximal explanatory power. The notion ‘all swans are white’ can be
treated as a definition rather than an empirical proposition that can be contradicted by a
black swan.

(4) Morality is related to survival. David Hume correctly diagnosed that ‘is’ and ‘ought’ are
different dimensions. This distinction however is analytical while the powerful impact of
morality derives from the need for survival (of the species). A bridge between ‘is’ and
‘ought’ might be to behave as is predicted what will be morally best.

Our concept of reality

When clarifying the terminology for reality, a useful aspect is the concept of continuity. An
example is a circle. As neurons are discontinuous, how does the brain handle ‘reality’ ?
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Basic reality can be denoted as reality0 and we will generally not know it. An example is
an electron, which is a theoretical term. Kant used the term ‘noumenon’ for such things-in-
themselves that we will never fully know. That term however is somewhat problematic since
we may still know some things, such as electrical charge (also a theoretical term) of that
electron. It suffices to assume reality0 without getting lost in questions about what ‘can’ be
known about it.

Then there is the reality1 created by the map in the brain. Apparently there are layers of
cells, and the person who looks at a circle that is drawn on paper or thinks about a circle
apparently has nerve cells activated indeed in such a circular form. Clearly, though, those
active cells are in discrete number, and the notion of continuity must be added separately.

Subsequently, there is reality2, for example a circle in the mind. Reality2 differs from
reality0 and perhaps does not deserve the label ‘reality’. Yet it functions in the mind as our
reality and thus may be labelled so. Obviously there are versions reality2a, reality2b, h with
different flavours (language games).

Note that reality1 is much like reality0, in that we can hardly verify how the brain actually
maps reality0. Thus reality1 would rather tend to be a model that we make in reality2. But it
can be idenfied as a logical phase.

Within reality2 there are space2 and time2. It is not entirely sure that there are similar
aspects within reality0 that we could call space0 and time0. Most likely it is rather useless to
query about space0 and time0. It suffices to identify reality0 as a container. It could be
sufficient that concepts space2 and time2 work.

Space2 is the concept of space as it naturally arises in the mind, and it is Euclidean.
Within that space2 we can imagine other models, for example the non-Euclidean rules for
the surface of a sphere. It is dubious whether it is wise to call these models ‘space’ too. A
name is only a name, but if there are ontological suggestions then we should be rather
careful about those.

My impression is that physicists are hopelessly confused in their verbal explanations
about their models of reality. When two objects pass each other in free space then there is
no obvious frame of reference, which is the base for the theory of relativity. But if I turn my
head then it is silly to take my head as the frame of reference and say that the universe is
spinning around – since huge masses would cover huge distances in mere seconds. It
makes sense to look for the center of gravity in the universe for a frame of reference. In the
19th century physicists lost much time in discussing the ‘aether’ and they resolved their
confusions by concentrating on measurement results. Einstein’s ‘contracting space’
describes such measurements, by resolving all measurement errors into a ‘flexible space’.
On the contrary, I think that it is better to remain in Euclidean space and continue speaking
about measurement errors. Otherwise the notion of ‘space’ is badly defined. I myself can
only understand non-Euclidean ‘space’ like the surface of a sphere when I imagine that
sphere within an Euclidean space. A short discussion is in COTP chapter 14.

Consciousness as a primitive concept

Consciousness is a primitive concept. It is understood by the conscious person. If it is not
experienced then it cannot be explained. If it is experienced then its existence can be
communicated to another person who experiences consciousness as well; but only its
existence, and it still cannot be explained what it is.

The brain creates the mind apparently in electrical pulses of a certain length. The eye
only has a small sensitive focus and it scans the world to build an image, that fits within
those pulses. If awareness indeed has a full delay of 0.2 milliseconds then an atomic blast
that destroys the brain leaves a mental after-life of 0.2 milliseconds. Likely though there still
is some ‘real-time’ linkage.

Looking for a simple model of this kind I found Bruce Hoeneisen (2002) at Fermi Lab. The
short paper and model explain how feedback loops can maintain an image in short-term
memory, and how long term learning and recognition can occur. The bio-engineering
principle thus seems to be clear.
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Terminology

Damasio has the following use of terms:
• Mind consists of mental events, conscious or nonconscious.
• A baby has a mind but still no ego and hence no consciousness (and only

nonconsciousness, like sleepwalking, or a state like mankind must have been during
much of evolution).

• When “self comes to mind” then the child grows aware and gets conscious.
• A person can sleep and not be aware (in the sense of awake) but still have a mind and

a self, for example in dreaming (e.g. as shown from dreams that are remembered).

My suggestion is not to adopt this terminology. In my terminology – that in my perception
is rather common – mind and consciousness are other words for the same. The mind is
awake and aware and equipped with a sense of self. Thus mind = consciousness.

My preferred usage of terms remains with Merriam-Webster (2011). In particular for
mind I confer with explanation 2a and 2b (while 2c is Damasio’s choice but problematic):

‘2a: the element or complex of elements in an individual that feels, perceives, thinks, wills,
and especially reasons;

2b: the conscious mental events and capabilities in an organism;
2c: the organized conscious and nonconscious adaptive mental activity of an organism’.
As Damasio clarifies, the whole brain is required to create consciousness. Mind /

consciousness only works because there is a large apparatus working at the nonconscious
level. For example, the very experience that I think about a circle and handle it, can only
happen because of the combined effort of all brain parts. This cannot happen at the
nonconscious level since there is no supporting apparatus for it. At the nonconscious level
there are only brain events – and not that concept of that circle.

A mental act of thinking about a circle, i.e. The thought of a circle, only ‘exists’ when
awake and aware (which rather is the self). My preference is that thinking about a circle
(e.g. as a Platonic ideal circle) can be classified as a ‘mental event’. The nonconscious
brain may contain a map of a circle at the level of reality1, but it only becomes the mental
object of a circle when it enters the mind and becomes part of reality2. It is not a convincing
suggestion that reality2 can also exist ‘nonconsciously’, as if all these mental objects are
also available ‘nonconsciously’. Reality1 would contain the elements that can be combined
to create reality2. (And it does not seem proper to assume that there is a reality3 consisting
of ‘reality2 turned nonconscious’.)

It would be a (bad) figure of speech to say ‘I was nonconsciously thinking about a circle
when suddenly the Pythagorean Theorem popped up in my mind.’ Properly seen,
nonconscious thought is different from conscious thought, and the associated ‘circles’ would
not be the same.

Saying that a baby is unconscious tends to mean that it is not awake, for example due to
a car crash that knocked it unconscious. It is only because of brain research that we now
employ the term ‘nonconscious’, and we may use it to mean that a baby has no developed
self. The change of language game is a bit awkward / surprising. However, all this should
not force us to change our basic vocabulary. I would rather say that a baby has an ‘less
developed mind’ and ‘low level of consciousness’ and ‘less developed self’. Damasio’s
terminology ‘self comes to mind’ then would rather be ‘the child develops a mind = grows
conscious’ (by passing particular tests on levels of consciousness).

It is surprising that Damasio in his effort to reach a wider public departs from standard
English and attaches different meanings to “mind” and “consciousness” than the standard
vocabulary gives us – and adopts the confusing use of Merriam-Webster entry 2c. Perhaps
it is the advantage of simple mathematical concepts like line and circle that help us to
cement that standard vocabulary as right and proper, and convince Damasio that he should
adapt his terms in new editions.
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Consciousness as an experience

What standard science cannot explain is the experience of consciousness itself, nor,
importantly, sensations of pleasure and pain as they occur in the mind. Inanimate atoms
bump around without pleasure and pain, how can it be that e.g. pain feels so horrible in my
mind ? It is not sufficient to point to pleasure and pain processes in the brain. What is at
issue is the mental experience.

The standard approach is to accept that the universe has human beings who say that
they are conscious. In reductionist mode, consciousness is seen as an emergent property
of unconscious particles and waves. This is adequate with respect to reality0 but it
inadequately denies the mental experience in reality2.

While we are accustomed to recognize the five senses of touch, tasting (touch by
molecular form), smelling (touch by molecular form), hearing (movement of air) and seeing
(touch by light), and while we are increasingly including other aspects such as balance or
sense of temperature or magnetism, it might be a suggestion to see the mind as another
‘sense’. The mind is a ‘sense’ in that it observes something special from reality0 that is not
observed by the other senses. One might argue that physical ‘matter’ and ‘electromagnetic
waves’ create the brain and the brain creates the mind, ergo: the mind must be physical
too. Mankind has tended to reject this view. As a conscious mind myself I follow that
tendency since for me too it seems that there is something quite un-physical about my
conscious mind. Let us be exact: it is un-physical2-standard [in terms of standard physical
models that we design in reality2], but it will still be physical0 in terms of reality0 since the
latter is our definition of all that is.

For me that ‘seems’ is so strong that I would rather say appears. While the brain is
physical1 and apparently consists of atoms that bump into each other without pleasure and
pain, the mind is non-physical in standard physics, i.e. un-physical2-standard. The brain
creates the situation that a conscious human being has that experience of consciousness –
with pleasure and pain. Thus arises the hypothesis that a certain constellation of atoms
might be sensitive to another dimension that is not directly accessible by the normal five
senses (forms of touching) that deal in commonly understood manner with reality0.

The mental experience, including pleasure and pain, regarded as a ‘sense’, need not be
more complex than the normal five senses. It could already exist in single cells, as Damasio
explains that those already show reactions that remind of reward and punishment systems.
Clearly, we already can make robots with light sensors that ‘look for light’ to charge their
batteries, so that feed and flight mechanisms don’t require such a sixth sense. If a cell has a
storage of energy it can ‘reward’ itself by its release. Inanimate feed and flight however do
not explain the mental experience, neither in the aggregate. The existence of that robot
model does not mean that single cell organisms work like that.

If we agree that reality0 (our definition of all that there is) has a dimension that relates to
mental experience, such as pleasure and pain, that are non-physical2-standard, then single
cell organisms might use a simpler feed and flight system by directly plugging into pleasure
and pain sensations that occur in that mental dimension. Subsequently, the brain builds up
from such single cell mechanisms to copy the similar process at the macro level, as feed
and flight are evolutionary successful at that level too. There are the two models that the
brain either collects and manages myriad sensations of pleasure and pain or mainly
magnifies those of some core cells. It remains to be seen whether this hypothesis
generates testable propositions or only remains a logical possibility that serves to perhaps
satisfy a curious mind.

The above seems just a reformulation of the old suggestion of a Platonic world where
ideal concepts might ‘exist’, and even a human soul as part of a deity. It is not quite the
same. The common ground is the acceptance that consciousness does not fit physical2-
standard models and thus is non-physical2-standard. The difference is the intention to work
with testable hypotheses.

In a discussion on brain research and mathematics education it is useful to have this
paragraph on the Platonic world. It is an obvious question “where does this ideal circle exist
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?” and apparantly many mathematicians tend to have a Platonic conception about this. The
answer suggested here is that abstraction does not imply ‘existence’ in terms of reality0.
Consciousness would however be part of reality0. Our universe has human beings who say
that they are conscious. The “Cogito ergo sum” is a valid argument of an intellect observing
existence. Pleasure and pain are such that there are no good alternatives but to accept
reality0 too. The (creation of the) thought of a circle in a conscious mind does not imply
anything other than what happens similarly when a circle is drawn (approximated) on a
piece of paper: it is not eternal, like the standard Platonic world would suppose.

PM. Smith, in Descartes (1958), observes that Augustinus already formulated the “Cogito
ergo sum” argument but not compactly. For various years I myself adopted the idea that
consciousness was rather an illusion in an entirely physical world, yet, an illusion
presupposes some intellect that suffers it, which is the “cogito ergo sum” argument. We can
observe a dog running after a ball and presume that it has all kinds of illusions, and
obviously it is not conscious as in recognizing a mirror image of itself, yet we should not let
ourselves be carried away by sorites types of paradoxes.

Mind – body equivalence

As Damasio uses ‘feeling’ for the mind and ‘emotion’ for the body, I have been tempted to
suggest to use Anglo-Saxon English for the mind and Latin-French English for the body.
(Shakespeare mixes these uses too, for both the common people and the high court.) But I
am afraid that this would not do. It is better to label with 1 and 2, or (our model of the) brain
and mind. Thus we have brain [reality1] and mind [reality2], and the question arises how
these are linked.

Damasio (2010) forwards the hypothesis – and the Note in his appendix p314-317 is
surprisingly the clearest on this: ‘that mental states and brain states are essentially
equivalent.’

A key paragraph is Damasio (2010:316):

‘Accepting the hypothesized mental/neural equivalence is especially helpful with the
vexing problem of downward causality. Mental states do exert their influence on
behavior, as can easily be revealed by all manner of actions executed by the nervous
system and the muscles at its command. The problem, some will say the mystery, has
to do with how a phenomenon that is regarded as non-physical – the mind – can exert
its influence on the very physical nervous system that moves us to action. Once mental
states and neural states are regarded as the two faces of the same process, one more
Janus out to trick us, downward causality is less of a problem.’

I agree with this. At the same time however he emphasizes that the whole brain is
required to generate consciousness. Is this still consistent with that equivalence ? If I study
the same proof on the Pythagorean Theorem either sitting in a train or in a chair at home, I
suppose that my mental states would be the same but brain elements would be different
since in the first case they have to deal with noise and wobbling of the train. Perhaps the
hypothesis is saved by the qualifier ‘essential’.

I would rather use ‘association’ instead of ‘equivalence’. Logically it would seem strange
that the same brain state might generate different mind states (for where would the random
element come from ?). Conversely different brain states might generate the same mind
state. (We would have to rely on the person who is experimented with whether it indeed is
the same mind state.)

Fully adopting ‘equivalence’ might have the awkward consequence that physical reality0
deterministically generates mental states. I don’t mind such models when they enhance
clarity but I reject the idea that they are more than models – since what is the proof ? [We
will never know reality0 anyway.]

Subsequently, with respect to that key paragraph, I would like to suggest an analogy for
the relation between the mental experience and the process of organisation of brain activity.
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An analogy is gravity. In the Newtonian model a shift of my hand has an instant impact on
the Moon. Possibly at the Big Bang not all dimensions have exploded and there still is an
instantaneous connection between all matter. Another model might require gravity waves
that travel at the speed of light. A deterministic model also explains the move of the hand,
assumes a common cause and then a simultaneous development such that both my hand
moves and the Moon is affected. With the latter analogy we may model states of brain and
mind, without getting lost in causality.

Thus what remains is that brain mechanisms evolve to ever better organisation, and that
the latter is experienced in the mind. It is not that the mind ‘causes’ organisation but the
ever better organisation at the brain level carries the flag of ever better mental states. As
long as we are aware of the proper causal order, figures of speech that employ downward
causality might help to increase understanding how mental concepts affect actions.

This usefulness is increased by the social environment of the human species. To my
taste Damasio does not mention it sufficiently often (neither in the development of the mirror
neurons) that mankind developed in a social situation. If we do include it with more
emphasis then we see that the flux of social events is quite ‘unphysical’ as the mind (except
for awareness). For example, non-physical minds understand what happens when a mother
embraces her child. Physics shows us two masses huddling together, and nothing more.
There is no need to suggest that the non-physical [reality2] affects the physical [reality0],
since there is a physical apparatus as a common cause. Yet it is true that my conscious
understanding of these events includes mental notions. And organised minds communicate
in a social fabric, that adds another layer of organisation namely in all kinds of cultural
dimensions. Importantly, when notions are encoded in language, the signs and sounds of
language impact on the mind (of others), and evolution, which means that the ‘unphysical’
[reality2] organisation finds a physical [reality0] counterpart.

[Reductionism will try to explain reality2 by reality0, but paradoxically we will tend to hold
that reality2 provides our criterion for correctness.]

A note on the flash of insight

Colignatus (2011c) COTP mentions that it can be a good teaching technique to create a
conundrum, then drop the punchline, and then all students ‘get it’ in ‘a flash’. I happened to
see the project on humor by gymnasium students Riksen, Wenink and Welling (2011), and
their reference called my attention to Helmuth Plessner (1970); and this also gave Agnes
Heller (2005) and her student Stuart Grant (2008) and Ulrike Günther (2002). I have not
studied these references but am struck by Grant’s formulation of one of Heller’s
propositions: ‘Laughter is the instinct of reason’. Clearly there is a cognitive element in
humor – it must be about something. Clearly, teaching and learning can employ the ‘get it in
a flash’ that also occurs in a joke. It might be, however, that we may define humor as
incongruity and that incongruity is the natural state of the mind, and that instead of humor it
is serious reasoning that is the exception that needs an explanation. For example, if 1 + 1 =
2 is serious, and 1 + 1 = √4 parody, and 1 + 1 = 1 + 2 – 1 sarcasm, and 1 + 1 = 1 is irony
(by teasingly using + for *), then the serious item only remains after elimination of all
incongruity. It is hard work to cut through the forest of inconsistencies and inefficiencies to
find something that works seriously. Neurons in a brain branch out with some randomness
and the mechanism to align them into something that works might be that ‘flash’. With a
feedback to consciousness that records with pleasure that something has been learned.
This is just a note.

Consciousness and free will

Brain research literature suggests that the brain first starts an action and that the
conscious mind records it only with a delay of 0.2 milliseconds. Damasio also discusses the
Dijksterhuis experiment on the quality of conscious decision making. It must be observed
though that, again, the whole brain is required to construct the mind. Thus it does not make
much sense to say that volition arises only after the fact. The sense of free will is already in
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the whole process of the generation of the state of mind. It still is the whole brain, that
comprises the individual, that generates both the act and its conscious state. It is not proper
to make another distinction.

It is another thing to observe that a person can react in instinct or in automation and only
later correct this. Someone can train his nonconscious mind to react on impulse so that the
conscious mind has only the results to deal with. This is great for math exams. These are
practical issues on the brain / mind interaction and not essential questions on volition
versus determinism.

Proper versus ‘realistic’ mathematics

Traditional mathematical education relies much on abstraction. Euclid’s Elements is
didactically dubious as a book, but Euclidean geometry with elements such as point, line,
triangle and circle might not be too abtract and may be grasped at the different Van Hiele
levels, working from the intuitions towards the deductive stage. After the Sputnik launch,
America started the New Math education program, that however was didactically
destructive. It tells us much about mathematics teachers (of that period ?) that they tried it
(collectively), before finally there was a revolt by parents and a few very disgusted
mathematicians. In Holland, Freudenthal proposed an alternative both to the traditional
programme and the New Math. He adopted notions of applied mathematics to introduce
concepts close to the life experience of students and his method was called “realistic
mathematics education ” (RME). Van den Heuvel-Panhuizen (1998) explained 10 years ago
that the project was 30 years old and still “work in progress”. She wishes to clarify that RME
stands for “making something real in your mind”. It tells us much about mathematics
teachers (of that period ?) that they tried it (collectively), before finally there was a revolt by
parents and a few very disgusted mathematicians. Elementary schools have recently been
instructed to work harder on arithmetic, highschools meet with higher requirements of
traditional skills, and teachers have managed to introduce more abstract math for the
talented.

The didactic point made in EWS and COTP is that the Dutch RME programme, even
adapted in the current manner, still is didactically misguided. It does not properly value that
mathematics is abstract by nature. The real life contexts can distract the student. RME says
that it uses real contexts to work towards abstraction, but in truth it creates confusion. It
does not properly distill the abstract notions from those real contexts and the student is left
to discover the abstractions himself. Freudenthal says that he wants “guided re-invention” to
help the student toward the abstractions but doesn’t deliver on the promise. My suggestion
is to focus on the notion that thought is abstract by nature, so that events in reality0 have
already made a transformation when they are processed in reality2 even at the lowest Van
Hiele level. As Van Hiele explains, the jump from one level to the next one is made by
classifying, sorting, ordering and abstracting on what has been achieved at that lower level.
The student can be given activities that imply this kind of processing and once the ground is
fertile the required abstract notions can be given (with that flash of insight).

The true problem in mathematics education is rather that mathematicians are trained for
theory while when they meet students in class then these are real life students, which
requires an empirical mind set. They try to solve their problems by resorting to tradition in
what they teach, but this causes mathematical concepts and notations that are quite
cumbersome. EWS advises national parliaments to investigate their national education in
mathematics, and COTP provides a primer for mathematical education and an existence
proof how it could be done.

Once these awkward confusions are resolved, a reason to link up mathematics education
and brain research is that mathematical concepts are abstract and provide mental events,
as the mind can be defined as the flux of mental events. Looking at both angles at the same
time may give results.

EWS for example refers to Gladwell (2008:228): “we store digits in a memory loop that
runs for about two seconds”. English numbers are cumbersome to store. Gladwell then
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quotes Stanislas Dehaene: “(h) the prize for efficacy goes to the Cantonese dialect of
Chinese, whose brevity grants residents of Hong Kong a rocketing memory span of about
10 digits.” Apparently fractions in Chinese are clearer too. Instead of two-fifths it would use
two-from-five. First creating fifths indeed is an additional operation. Perhaps the West is too
prim on the distinction between the ratio 2:5 and the number 2/5. Perhaps it does really not
make a difference except in terms of pure theory – the verb of considering the ratio and the
noun of the result (called “number” when primly formalized in a number theory). In evidence
based education we can imagine experiments testing the various variants, with some
support in brain scanning. There is a great variety in children and how they learn but
perhaps that variety is a bit less when asked very specific operations under a scan.

Conclusions

The subject matter is brain research and the education in mathematics. Small comments
in this present paper are the following.

(1) This paper forwards a sharper distinction than Damasio (2010) between reality0, 1
and 2. Damasio of course uses these aspects. Reality2 is nothing but how our mind models
reality0. But by explicitly naming them we enhance clarity. For example, continuity might
exist in reality0 but still has to be created for reality2 (since neurons are discontinuous). The
Van Hiele levels of mathematical understanding are levels in reality2 itself (per
mathematical concept). Each level could have different degrees of Gardner’s multiple
intelligences (http://www.howardgardner.com/FAQ/faq.htm). We better understand the
language games and the multiple meanings of the ‘circle’, if we would want brain research
to assist us in teaching and learning about the circle.

(2) Damasio’s mind-body equivalence only seems to survive because of his use of the
qualifier ‘essential’. It is better to use the term ‘association’ so that various brain states may
associate with the same mental state e.g. as strictly defined by the thought about a
mathematical concept. It makes sense to refer to mental states in discussion of the
organisation of brain activity. For mathematics education it is important to create well-
defined concepts, as a useful definition of mental states is that they contain well-defined
concepts.

(3) This discussion would provide a better base for the use of abstract notions in the
education of mathematics. Mathematical concepts like line and circle are abstract notions
(at some Van Hiele level) and made of the same stuff as the mind itself. Education can use
this to its advantage. The approach by Freudenthal with ‘realistic math’ seems to cause too
much distraction from the intended abstraction.
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Conclusions

This book proposes a neoclassical approach to mathematics that combines constructive
methods with a better appreciation and place for abstraction. Infinity is the quintessential
case for this because of the clear opposition of on the one hand creation of parts and
construction via repetition or recursion or the successor function and on the other hand
completion into some whole with a clear role for abstraction. There are more examples –
see page 25 – but infinity takes pride of place.

Traditional mathematics in the 140 years since Cantor 1874 lost a balanced view and ran
astray on infinity. The road to recovery and a clearer view on that neoclassical approach
came about in steps.

(1) The origin lies in a review of the Liar paradox and Russell's paradox, which in 1980-81
caused a rediscovery of an idea by Paul of Venice (1369-1429) to impose consistency. This
was followed in 2007 by an application of this idea to Cantor's conjecture on the power set,
see ALOE:239 or page 82 above. This argument was originally given in semi-formal
manner within the intended interpretation, and this book brings it formally within ZFC.

(2) A next realisation was that abstraction is involved in �[n] @ � and �[d] @ �. These
abstractions are basic to the development of these number systems, and trivial to observe.
However, it remains crucial to recognise that these basics exist, for jointly they generate the
notion of a bijection by abstraction – see page 43. This bijection is a clear counterexample
to Cantor's argument. This became Part 2 of the book.

(3) The following step was a look at the formal axiomatic system of ZFC, which resulted in
Part 3 and Part 4 of this book. These two parts on ZFC came about rather simultaneously.
Part 4 reasons at the level of the axioms themselves, which is what ZFC is about, after all.
But one also wonders whether an example can be given for some concrete set, and this
became the singleton and Part 3. The consistency condition inspired by Paul of Venice
allowed the discovery of tautologies T1 and T2. Inconsistency of ZFC then follows from first
order logic in Part 3. Inconsistency can also be determined at the level of the axioms in Part
4. These deductions are within ZFC, and the conclusions are on page 90.

(4) All this caused a greater awareness of the distinction between nominalism and
realism, and how this applies to the defining predicate of the strictly Cantorian set. The
latter appears to be an inferential property that cannot be used as an independent base for
further development, but it can be used to deprove the system that allows it – see page 76.

The result is sobering. Mathematicians are trained on abstraction by definition. Many
cases already showed how mathematical abstraction can wreak havoc in application to the
real world, see EWS. Now however we can observe that the training on abstraction also
caused that mathematicians lost their intuition for good mathematics itself. The cause lies in
the willful neglect of the intended interpretation, so that nonsense apparently doesn't ring
alarm bells – see page 83. This would change when the neoclassical approach gets a
chance.

Overall the greatest relevance of these findings is for mathematics education research. It
becomes feasible to introduce set theory and number theory within highschool without the
burden of the transfinites – as ALOE already relieved logic from the burden of the Liar,
Russell's paradox and the Gödeliar. The next step will be the R&D of course materials, and
the integration within the existing programme. Hopefully the other innovations suggested by
EWS and COTP are considered then too.
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Appendix A. Versions of ALOE

(1) Colignatus (1981, 2007, 2011) (ALOE) existed first unpublished in 1981 as In
memoriam Philetas of Cos, then in 2007 rebaptised and self-published. It was both retyped
and programmed in the computer-algebra environment of Mathematica to allow ease of use
of three-valued logic. In 2011 it was marginally adapted with a new version of Mathematica.

(2) Gill (2008) reviewed the 1st edition of ALOE of 2007. That edition refers to Cantor's
standard set-theoretic argument of the power set and rejects it.

(3) Gill (2008) did not review the 2nd edition of ALOE of 2011. This edition also refers to
Cantor's original argument on the natural and real numbers in particular. This edition
mentions the suggestion that � ~ �.The discussion itself is not in ALOE but is in CCPO-
PCWA, with both the rejection of the diagonal argument and the introduction of the notion of
bijection by abstraction.

(4) ALOE is a book on logic and not a book on set theory. It presents the standard notions
of naive set theory (membership, intersection, union) and the standard axioms for first order
predicate logic that of course are relevant for set theory. I have always felt that discussing
axiomatic set theory (with ZFC) was beyond the scope of ALOE and my actual interest and
developed expertise. This present book is in my sentiment rather exploratory, apart from
certainty in the theorems provided.
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Appendix B. The traditional view, in Hart (2015)

The article on Paul of Venice and ZFC (PV-RP-CDA-ZFC) was basically written in
November 2014 and was updated in the first part of 2015 with some clarifications, also
following some comments from others. Only on May 27 I decided to look at ZFC in detail
myself.

It so happens that Hart (2015) recently reviews "Cantor's diagonal argument" too, giving
the traditional view after Hilbert. He starts with Cantor's orginal arguments on non-
denumerability and the diagonal. For foreign readers a discussion of this Dutch article will
be difficult to follow, but let me still give my comments now that I am dealing with the
subject.

Hart replied to these comments and the text below has been adapted a bit for further
clarity. Hart also looked at Appendix C and some earlier arguments, and this is discussed
in point (6) below and Colignatus (2015de). It must be mentioned that Hart apparently
neglected ALOE, Gill (2008) and CCPO-PCWA about which I informed him at the time.

(1) Hart (2015:43) holds correctly that a bijection doesn't have to be used, but only the
surjection (i.e. in the mode of thought that the proof would be valid). He however holds
incorrectly that the common short proof with the bijection would rely on a 'spurious
contradiction' – referring here to Gillman 1987. This would be incorrect if we rely on the
common meaning of 'spurious': (a) there is a real contradiction: the assumption of the
bijection implies the assumption of the surjection, which causes the contradiction, (b) the
context of discussion is infinity, for which we use isomorphisms, and thus injections, and in
that case the properties of surjection and bijection are equivalent: and then the shortness of
the proof must be appreciated. Indeed Hart (2015:41) explains that Cantor himself also
used 'eindeutig' (column 1) and injection (column 3 – below the photograph of 'Georde
Cantor'). Overall: the open 'reductio ad absurdum' form and the 'direct' form that Hart
suggests are equivalent, and the reference to 'spurious contradiction' is incorrect. PM. Hart
(2015:42 first column) suggests that the power set version of Cantor's Theorem was given
by Bertrand Russell 1907, also using a 'supposition' and basically using a bijection.

(2) On page 42, third column, Hart agrees that Cantor's distinction between proper sets
and improper sets ('classes'), or the distinction between all and any, still is used informally.
Thus mathematics uses both a formal ZFC and an informal naive set system. It is useful to
see this confirmed. It remains curious that Hart as a mathematician is happy to live with this
incongruity. Hart then discusses the Axiom of Separation, but it gives a wrong impression,
because its main weaknesses and alternatives are not discussed. One may write a book or
syllabus on 'set theory' but if this only discusses ZFC and its ZFC-sets then this is a biased
presentation.

(3) On page 43 Hart mentions the argument concerning � ~ � that uses decimal
expressions. He states that this particular form does not occur in Cantor's work. This is not
quite true. Cantor's proof of 1890/91 uses a binary representation - see Hart (2015:41) –
which, for these purposes, is equivalent to using decimals. Hart traces the proof with
decimals to Young & Young in 1906, who explicitly refer to Cantor 1890/91, and who
explicitly call it his 'second proof'. Thus mathematicians were aware already in 1906 that
binaries and decimals are equivalent here. It is curious that Hart in 2015 does not express
that awareness. His review of what Cantor originally did thus is biased. (3a) For this proof
structure, binaries and decimals are equivalent. (3b) The binaries are mathematically more
elegant, since changing an element has only one alternative. The decimals are didactically
more useful, since students are more used to decimal expression of the real numbers -
which is the representation of the continuum. It would be improper to criticize the decimal
form of the proof for being didactic. (3c) It is correct that Cantor claimed that the proof
structure was "independent from looking at irrationals" but the proof does implicitly use
irrationals.
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(4) We may wonder why Hart's paper might be biased. It is a good hypothesis that he
wants to emphasize that some authors still have questions about Cantor's argument.

(4a) On page 43 Hart refers to Wilfrid Hodges (1998) who discusses "hopeless papers".
Hart does not mention Hodges's email to me that I cited in CCPO-PCWA that I informed
him about.

(4b) Hart accuses those "hopeless papers" of that they don't check what Cantor did
himself originally. This is an improper accusation since such authors discuss a particular
argument, that so happens to go by the name of "Cantor's diagonal argument", while it is
not always at issue what Cantor himself did – who indeed wrote before ZFC.

(4c) Just to be sure: My own first contact with Hart – in 2011 – was about Cantor 1874.
CCPO-PCWA wanted to know whether there were more proofs, and thus also looked at
Cantor 1874, and found it inadequate. Hart's page 40 with Cantor 1874 finds a refutation in
the appendix of CCPO-PCWA – reproduced above page 51 – but he knows about the latter
and does not refer to that refutation.

(4d) Hart suggests that the proof with decimals causes most "hopeless papers", but that
this proof can be "thrown in the trash can", because Cantor's original proof from 1874 and
his second and more general proof of 1890/91 would be more attractive.

(4d1) This is improper, since it evades the question whether the argument with the
decimals is a good deduction or not. Mathematics should not ditch arguments because they
cause questions but should answer the questions.

(4d2) It also is an inconsistent argument, see (3): the proofs are equivalent, differ only in
binaries versus decimals. Thus Hart suggests to throw Cantor's own proof into the trash can
– but doesn't do so.

(4d3) In a personal communication, Hart acknowledges that the binary and decimal
proofs are equivalent (without drawing the inference on (3)) but that he only expressed his
preference for the aesthetics of the binary form. He is free to state his preference, but the
decimal form is the most didactic one, and thus the form cannot be ditched.

(4e) Hart holds that such "hopeless papers" and/or internet discussions quickly replace
mathematics by ad hominem fallacies. An ad hominem would be: "You have no
mathematics degree and hence I will not listen to your arguments." Obviously Hart presents
himself as not falling into that trap. My problem however is that he applies an 'ad gentem
fallacy', by reducing critique on Cantor's Theorem into "hopeless papers" and/or internet ad
hominem fallacies. This is a racket or ballyhoo to induce a sentiment amongst his
readership to no longer look at critique on Cantor's Theorem, and to join in the putting down
of such critics. We thus may understand why Hart (2015) is a biased presentation, unworthy
of mathematics that wants to claim to be scientific.

(5) Hart (2015:42, last column): "The best known impossibility theorems in mathematical
logic all use a version of Cantor's idea to flip all elements on a diagonal" - and then he
refers to Gödel's first incompleteness theorem. This is not quite true. Gödel's theorem uses
self-reference. This property was already known in antiquity in the Liar Paradox. Gödel's
use of number-coding has historical explanations, like the trust in arithmetic in a period of a
foundations crisis in mathematical logic. Gödel's numerical listing is not crucial to the
argument. The influence of Cantor should not be made greater than it is. Hart could have
known about this, reading both ALOE and Gill (2008) in the same Dutch journal for
mathematics, with my refutation of Gödel's two theorems.

(6) Hart does not refer to ALOE or CCPO-PCWA that he knows about, thus misinforms
his readership. He reproduces Cantor's 'proofs' of 1874 and 1890/91 without mentioning
their refutations. He states the common misconceptions and adds some new ones.

In a personal communication, Hart now has looked at my criticism. It leads too far to look
into this here. Colignatus (2015b) reviews the email exchange with K.P. Hart (TU Delft) in
2011 – May 2015. Colignatus (2015c) reviews Hart's response on this Appendix B as
above. The reader can check that the criticism still stands. Colignatus (2015d) reviews
Hart's new combined criticism of May 18 2015 on (i) that version of the paper, (ii) Appendix
C, and (iii) earlier refutations in CCPO-PCWA – which should cover point (6). There is now
also the issue on scientific integrity, see Colignatus (2015e).
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Appendix C. Deproving Conjecture W

Conjecture W on page 64 plays a key role in this book. It has the advantages: (1) it would
be constructive and avoids the reductio ad absurdum, (2) it avoids using concepts like
surjection, injection and bijection, (3) it still causes that there can be no surjection and
hence no bijection – those are relevant for infinity – and (4) it puts the paradoxical self-
reference in center place, as it is essentially a rewrite of the definition (α∈ Ψ) ⇔ (α ∉ f[α]).
The conjecture was presented to me by K.P. Hart (TU Delft) in a personal communication in
2012. If no one else presented this conjecture earlier it may be called the Cantor-Hart
Conjecture but for now I label it for what it does: it is the weakest conjecture. In 2012 my
reply was asking Hart whether he understood the refutation in ALOE of the proof of Cantor's
Conjecture that uses the power set and bijection, but I did not receive a response on that. If
he had understood, he could have given below refutation of this weakest conjecture himself.

Despite its advantages there is something fishy about the 'proof' for Conjecture W. It has
a 'spurious non-contradiction': the 'proof' looks without contradiction but in fact relies on a
hidden assumption that causes a contradiction, but which is not mentioned. When there is
an open contradiction then one can infer that something is wrong with any assumption, but
when there is no contradiction shown then it seems that all is well. The contradiction
however surfaces once we presume a bijection between the natural numbers and the reals.
Since Conjecture W looks innocent and speaks about any function without being particular
about bijections, it seems that we indeed should cancel that idea of having a bijection.
However, the refutation of the reductio ad absurdum proof of Cantor's Conjecture on page
82 shows what is actually the problem with the 'proof' for Conjecture W too.

Refutation: While the 'proof' in cases 1 and 2 assumes any f, it ought to distinguish
between kinds of functions: the surjections versus the non-surjections. Thus redo the proof.

If f is not surjective, then continue like the 'proof' of Conjecture W on page 64.
If f is surjective, then the definition of Ψ causes a contradiction, so it is no useful Ψ. The

closest analogue requires the condition to prevent reliance on hidden contradictions. This
gives us Φ. Let us split the subcases on the risk of infinite regress (ad hoc, no '↑'):

Define Φ = ]}[|Φ][{ xxxAx ff ∉≠∧∈ }Φ][|Φ][{ ∈∧∉=∧∈ xxxxAx ffU .

Given the surjection there is a φ  such that f[ φ ] = Φ . Distinguish cases α = φ and α ≠ φ.
Case A. α ≠ φ. All is like the 'proof' of Conjecture W on page 64. Thus:

Case 1: α∈ Φ. In that case α ∉ f[α]. Thus Φ ≠ f[α].
Case 2: α∉ Φ. In that case α∈ f[α]. Thus Φ ≠ f[α].

Case B. α = φ.
Case 3: φ∈ Φ. Then (φ ∉ Φ ∧ φ ∈ Φ): contradiction. This case cannot occur.
Case 4: φ∉ Φ. Then (φ ∉ Φ ∨ φ∈ Φ): no contradiction.
It is false that Φ ≠ f[α] since we have α = φ such that f[ φ ] = Φ.

Ergo: The 'proof' fails.
Remarks.
(1) The 'proof' of Conjecture W on page 64 thus holds for ZFC, that allows Ψ. One must

explain why one uses a system that allows ill-defined-ness.
(2) For well-defined systems the conjecture cannot stand with the proof that uses Ψ.

When we look for something useful that matches Ψ then we find Φ. For some f, namely
surjections, this Φ has an element in A, namely α = φ such that f[φ] = Φ. This holds without
contradiction, so that one cannot hold that f cannot exist.

(3) This refutation does not preclude another and real proof for Conjecture W. This may
be doubted however.

(4) We have neither shown how such a surjection can be created. We have merely shown
that the assumption of a surjection invalidates the 'proof'. It is a fair question: can one
actually show a surjection between infinite sets, like the natural numbers and the reals ? For
this I refer to the bijection by abstraction.
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Appendix D. What a mathematician might wish to know about
my work

March 26 2013 58 - edited 2015

Abstract

Mathematicians have contributed to confusions in the areas of logic, voting theory and the
education of mathematics itself. While mankind may mistake abstract ideas for reality,
mathematicians are not immune for this either. Part of my work has been to correct such
mistakes. It would be useful when mathematicians study those corrections with an open
mind, so that we can get better logic, more democracy and proper education in
mathematics.

Introduction

Mathematics per se is not my target. Over the years I have written some texts that
nevertheless may be of interest to mathematicians, like reformulations of logic, voting
theory and calculus. These texts are not presented in ways that mathematicians may be
used to. My work might be called applied mathematics, as it is not developed in an
axiomatic context but is in the intended interpretation of some axiomatics that may still need
to be developed. Hence some explanation is useful for mathematicians about what to
expect about my work, since I would like them to study these books too. Without the
explanation below we may expect neglect and misunderstandings from mathematicians,
and this would be unfortunate.

I refer to my books ALOE, VTFD, EWS, COTP, EKWAGGG, SMOJ / EWVJ, see the
references.

Who is interested in logical paradoxes, will benefit from ALOE. Who is interested in
democracy and voting theory, will benefit from VTFD. Who is interested in the impact of
ancient mathematics and astronomy on religion, will benefit from SMOJ / EWVJ. Who is
interested in the didactics of geometry and calculus, will benefit from COTP. Who is
interested in education of mathematics, will benefit from EWS and EKWAGGG. The latter
books also rely on economics, when they discuss the mathematics industry and advise to a
parliamentary enquiry.

I am an econometrician (Groningen 1982) and teacher of mathematics (Leiden 2008). As
a student I chose econometrics because I wanted to find decent solutions for world
problems, and I considered the mathematical base as a conditio sine qua non. At the
interfaculty of econometrics in the 1970s, we as students had our courses in mathematics
jointly with students of mathematics, physics and astronomy. Clearly I consider
mathematics important but I rather apply it. The didactics of mathematics is an empirical
issue as well.

A context of quality

An indication of quality are two favourable reviews by Richard Gill (2008 and 2012) in
Nieuw Archief voor Wiskunde with respect to ALOE and EWS & COTP. The European
Mathematical Society website has two favourable reviews of ALOE and COTP too.
Recently, Christiaan Boudri (2013) at the website of the Dutch Association of Teachers of
Mathematics NVVW calls for having an open mind here too. Koolstra and Groeneveld
(2013) mention it in the Dutch math email newsletter.

A standard textbook is TSOM with ir. Karel Drenth (TUD, sadly deceased) (2000), as
perhaps additional confirmation that I would be able to walk the standard path as well.

A point is that Gill is not specialised in logic and didactics as research fields. This also
holds for me, though I did study the subjects that I write about. My subjects are elementary,

                                                          
58 http://thomascool.eu/Papers/Math/2013-03-26-WAMMWTKAMW.pdf
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so a specialisation to higher levels is not required. Still, the specialists in logic and didactics
will tend to defend their specialisms. Everyone can check elementary errors, but will the
specialists acknowledge those ?

Standard ways versus re-engineering

The point is now to explain the path into uncharted territory. There are plenty of cranks in
the world, and standard mathematicians might tend to catalogue me as one of those, but if
they would walk along with me along these new paths, then they might start to wonder
whether the standard ways aren’t a bit cranky themselves. An option is that they develop
the required axiomatics, if that is required to make the new approach acceptable in the
mathematics community.

Some mathematicians advise me: ‘Present your proposals in various neat articles,
phrased in the language that mathematicians like to read, and be done with it.’ I am afraid
that it doesn’t work like that.

Above books re-engineer their subjects. In my analysis, standard views in those subjects
are misguided in subtle ways. The best approach towards clarity is to reorganise the subject
matter, start from scratch, and build on from there with an open mind.

Mathematicians contribute to confusion

A key point is that much confusion in these areas has been caused by mathematicians,
who neglect the world and who focus on some if-then relationships, where perhaps the logic
might be right in some respects, but where the assumptions are (subtly) confused about
what the discussion is about.

My books intend to set the record straight, and to invite the mathematicians to reconsider
their work, so that this fits in the whole, and thus to stop their contribution to confusion.

This observation is only a rephrasing of the earlier statement: my work is in the intended
interpretation, the world of application. Thus mathematicians who consider such
applications ought to benefit from this effort at re-engineering. Mathematicians are not my
target, but the areas of application. Mathematicians interested in those fields better avoid
confusion.

Hopefully, you see the problem. Once we enter the world of application, one must study
reality and not just mathematics. Selecting only bits and pieces to find if-then relationships
can contribute to confusion. A mathematician better be precise what the contribution is, and
help to clarify what the application really is. Read my books and see how mathematicians
have gone astray. They provide lessons on how to communicate on real issues, partly using
the language of mathematics, but still focussed on the real issues.

Modesty

My books are modest. They are only what they are about, and not something else. It
might sound curious to speak about ‘re-engineering logic, calculus and voting theory’ but
the purpose of this description is not to sound curious but to indicate what the books do.

An editor at the journal Euclides of NVVW worried that this description of re-organising
subjects uses ‘big words’ but agreed with various points and did not specify what would be
wrong, so it is not clear why that description would not be correct. I do not claim that I know
everything. I do not claim that am infallible. I just explain where mathematicians go astray at
key points in key applications.

My books explain where Hans Freudenthal was in error, and suggest a better alternative,
without returning to the old ways of teaching Euclid. Many other authors have promising
suggestions too. Let parliament abolish the Freudenthal Institute in Utrecht and create the
Simon Stevin Institute, where researchers from various fields can test what works for pupils
and students. I am amazed that ICMI has a “Freudenthal Medal” while he has been
disastrous for the education in mathematics, with his abstract mind in conflict with empirical
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reality. He rightly said that education is engineering, thus involves reality, but he was no
engineer himself. It actually appears that integrity is at issue, see Colignatus (2014c).

My position is not that my books explain how things must be, and that Parliament must
impose this on the mathematics community. That would be a gross misunderstanding. What
works in education is up to the pupils and students themselves. Parliament must step in to
make the funds available for research.

Little contact with mathematicians

As a writer, I have hardly any contact with mathematicians. It is my great regret that these
books have been written mostly in a context where mathematicians were not willing to
discuss the issues. The book on logic was written in my student days, at first in some
interaction with some teachers in logic, but fairly soon in bitter antagonism from their side
and with their unwillingness to listen to criticism. The book on voting theory first had some
interaction with some mathematicians, but fairly soon in bitter antagonism again. For the
book on calculus I have assumed neglect, perhaps I was wrong, and in reality there would
have been keen interest. However, one so-called "review" confirms bitter antagonism again.

The books on the education of mathematics EWS, COTP and EKWAGGG have been
written with little interaction on these with my colleagues teachers of mathematics. My
colleagues have all been fine and capable teachers and pleasant to work with. The focus of
our work was on teaching the established programme. My ideas developed over time in
notes, but I had little reason to discuss them, since this would distract from the overall focus
on the established programme. For the same reason the books were written outside of
school, and have not been presented at school. Clearly I want to avoid that colleagues
might get the wrong impression that I would teach something else than the established
programme. The discussion is best done in a context where improvement of the programme
is on the agenda. Clearly, I haven’t found that environment yet, given the neglect by such
commissions (in Holland: cTWO and NOCW).

The books essentially are invitations to be read and discussed, and if someone has a
good counterargument, I will be the first to correct.

In the journal Euclides two reviewers of EWS and COTP have selected to start
slandering. I have filed a protest with the editors. See my website for the slander and my
reply. The reply was not published in the journal. They have decided not to review any book
of me anymore. This now holds for EKWAGGG and SMOJ / EWVJ. Slander and now
censorship. And these people teach mathematics.

The book editors of Nieuw Archief voor Wiskunde recently rejected SMOJ / EWVJ for
review, with the argument that it would not fit the readership but that indicates that they
have not studied it.

I have submitted some short papers to journals. Editors respond by saying “I do not
understand it” and then reject the paper. It would help, and be more decent, to specify what
one doesn’t understand.

Some original contributions

My books also contain some bits of original contributions to mathematics, but these might
perhaps only be understood in the reconstructed framework of those books. They are
already available in those books, so there is little advantage in trying to extract them as
separate articles. The chance is slim that they might be understood without that
reconstructed environment.

Apparently when I want to relay a message A then I also want more internal consistency
in the mathematics M(A) that underlies that message, and then I find myself solving
problems in M(A). While a pure mathematician would focus on M(A) and think about a
possible message A only in a second stage or not at all. Perhaps pure mathematicians
might never discover M(A) since they don’t see A in the first place. This partly explains why
pure mathematicians may have a hard time to accept M(A) anyway. But I do not claim to
understand how pure mathematicians think. I can only say: the context and my manner of
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presentation in that context tend to differ from what (pure) mathematicians may be used to.
If they are inflexible then they miss out on some key findings.

Some abstracts

There is a risk in giving abstracts of these books since some subtleties might be lost. The
human mind however needs some anchors.

ALOE re-engineers elementary logic. It solves the Liar paradox after 2300 years, and
corrects Gödel by showing that his verbal statements and interpretation do not cover his
mathematics. VTFD re-engineers voting theory for democracy, and shows that Kenneth
Arrow on his Impossibility Theorem for collective decision making gives a verbal
interpretation that does not cover his mathematics. COTP re-engineers plane geometry,
and shows that derivative and integral are algebraic concepts. This is the fundamental
understanding that can be used for highschool and first year math for non-math majors,
while it remains an open question what Weierstraß and non-standard analysis add to this.
SMOJ / EWVJ suggests that religious concepts on the divine are as abstract as
mathematical concepts like line and circle, with similar epistemological questions for
existence and current research on mind and brain. It is conceivable that religious
differences and perhaps even religious wars relate to misconceptions about Van Hiele
levels of abstraction as in mathematics education. EWS and EKWAGGG also discuss the
mathematics industry and errors in didactics, with a proposal of a parliamentary enquiry to
resolve confusion and stagnation.

Parliament

In Holland, the Dijsselbloem Parliamentary Commission on Education made the
distinction between what and how. The government determines what will be in the
programme (say Dutch and math) and the teaching community will determine how the
subjects will be taught. It is fine that Parliament has decided that the school programme has
to include math. The problem is that “math teachers” present something as “math” which it
isn’t, see Colignatus (2013a). For example, two-and-a-half is written as two-times-a-half
(2½) while it is better to stick to 2 + ½, and learn to see that addition as an end-station, in
the same manner as exp[2] can be symbolic and doesn’t directly require the use of a
calculator. We can understand the use of 2½ from some historical development, but we
would all be silly if we were to accept it as decent mathematics. Jan van de Craats solves
the issue by mostly using 5 / 2, but this loses the useful feature of a mixed number. Hence,
re-engineer the subject. Hence, let Parliament investigate the mathematics industry.

To repair ages of wrong didactics will be a costly affair. Do we have to wait till the USA is
open to my analysis, or might Holland take the lead ? I see little other ways of resolution
than that members of Parliament look into mathematics education. It suffices that they have
had a highschool education with mathematics and then we can explain the current
curriculum and the improvements in my books. This will be fun but also necessary for the
improvement. I cannot see why mathematicians would be against teaching members of
Parliament more about mathematics. If they think that my suggestions for improvement are
silly then it should not be difficult to show this. The members of Parliament can also query
users of mathematics like economists, physicists and biologists. Finally, note that my target
is to establish doubt and to release funds for research. What is an improvement in didactics
is an empirical question, and cannot be established by my books only. The error of the
current math curriculum is that it relies on tradition and it is time that we see that didactics is
an empirical issue.

The economic and ecological crises

Econometrics is: to translate economic theories into mathematical format and test these
by statistical methods. Another word is “economic engineering”. As an econometrician I
have discussions with economists, mathematicians and statisticians. Misunderstandings in
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one realm may contaminate misunderstandings in another realm. This would not be logical,
but it is a human thing to happen. Mathematicians will not be able to judge details in
economic theory, but may still think dark thoughts about my economic analyses, given their
apprehensions about my books on the education of mathematics. Economists can get
insecure if they think that my mathematics would be improper. The best response is to ask
everyone to do their job and to be specific about what one can judge about. My position as
an econometrician suffers from maltreatment by the various subprofessions, and this better
stops. The world is in economic and ecological crises, my econometric analysis would help
a resolution, and it doesn’t help when the subprofessions malfunction.

Let me refer to Colignatus (2013b) on bottlenecks against science. Jos de Beus (1952-
2013) was a professor of politicology, student of professor or economics J. (Hans) van den
Doel (1937-2012), student of Jan Tinbergen (1903-1994), founder of econometrics and
winner of the Nobel Prize in Economics, who started as a student of Paul Ehrenfest (1880-
1933). Mathematicians have long stories about that Prize etcetera. Point is that Van den
Doel didn’t quite understand Kenneth Arrow’s Impossibility Theorem. 59 Jos de Beus was
misguided too. These misconceptions have influenced ideas in government circles. It would
be such a relief when mathematicians would accept that they contributed to the confusion
themselves too, since Arrow gave wrong verbal interpretations to his mathematical result,
and others have been copying that.

Conclusion

Mathematics as a profession is not my cup of tea. In my research on key topics in the real
world I noticed that mathematics was applied in a wrong manner at key steps in the
argumentation. It were especially the mathematicians who advanced such
miscomprehension. One might think that people using logic or voting, or the teachers of
calculus would be able to correct the misunderstandings of such confused mathematicians,
but alas, mathematics also has an aura of authority. If things get complex, follow the
specialist, and if a mathematician has a complex paper he or she might be that specialist.
However, when I as an econometrician and teacher of mathematics present corrections, I
find that mathematicians are not as open to criticism as one would wish. There are some
sparks of hope now, but will there be a follow up ?

Let us hope that mathematicians will study my books, learn about the real world, see how
important it is to communicate precisely. A sign of success will be when the confusions in
voting theory are corrected. A sign of success will be when mathematicians start signing the
petition for a parliamentary enquiry into mathematics education, and call on others to help
them to save our children from misguided “mathematicians”.

The petition is at http://www.ipetitions.com/petition/tk-onderzoek-wiskundeonderwijs.

Unfortunately there is now a breach of integrity of science, see Colignatus (2015e).

                                                          
59 In Dutch, see Dutch Colignatus & Hulst (2003, PDF page 85). Also Kennisnet.nl and booklets of
Epsilon Uitgaven still report inadequately, see Colignatus (2013c).
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Appendix E. With your undivided attention

April 9 2014 60

Both President Obama of the USA and President Putin of the Russian Federation have
somewhat illogical positions. Obama repeats the ritual article 5 “An attack on one is an
attack on all” but the Ukraine is not a fraction of NATO. So what is the USA going to do
about the Ukraine ? Putin holds that Russia defends all Russians everywhere but claims
that Russia is not involved with the combatants in the Ukraine. His proposed 7 point plan
contains a buffer zone so that he creates fractions in a country on the other side of the
border. Overall, we see the fractional division of the Ukraine starting, as already predicted in
an earlier entry in this weblog.

What is it with fractions, that Presidents find so hard, and what they apparently didn’t
master in elementary school, like so many other pupils ? There are two positions on this.
The first position is that mathematics teachers are right and that kids must learn fractions,
with candy or torture, whatever works best. The second position is that kids are right and
that fractions may as well be abolished as both useless and an infringement of the
Universal Declaration of Human Rights (article 1). 61 Let us see who is right.

An abolition of fractions

Could we get rid of fractions ? We can replace 1 / a or one-per-a by using the exponent of
-1, giving a¹ that can be pronounced as per-a. In the earlier weblog entry on subtraction 62

we found the Harremoës operator H = -1. 63 The clearest notation is aH = 1 / a. Before we
introduce the negative numbers we might consider to introduce the new notation for
fractions. The trick is that we do not say that. We just introduce kids to the operator with the
following algebraic properties:

0H = undefined

a aH = aH a = 1

( aH ) H = a

Getting rid of fractions in this manner is not my idea, but it was considered by Pierre van
Hiele (1909-2010), 64 a teacher of mathematics and a great analyst on didactics, in his book
Begrip en Inzicht (1973:196-204), thus more than 40 years ago. His discussion may
perhaps also be found in English in Structure and Insight (1986). Note that a

H = 1 / a
already had been considered before, certainly in axiomatics, but the Van Hiele step was to
consider it for didactics at elementary school.

From the above we can deduce some other properties.
Theorem 1:

(a b) H = a
H
 b

H

Proof. Take x = a b. From xH x = 1 we get (a b)
H (a b) = 1. Multiply both sides with aH

 b
H,

giving (a b)
H (a b) aH

 b
H = aH

 b
H, giving the desired. Q.E.D.

Theorem 2:
H

H
 = H

Proof. From addition and subtraction we already know that H H = 1. Take a a 
H
 = 1,

substitute a = H, get H H
H
 = 1, multiply both sides with H, get H H H

H
 = H, and thus HH

 = H.
Q.E.D.

                                                          
60 https://boycottholland.wordpress.com/2014/09/04/with-your-undivided-attention/
61 http://www.un.org/en/documents/udhr/
62 https://boycottholland.wordpress.com/2014/08/30/taking-a-loss/
63 It is one single symbol but still reminds of "-1". Pronounce the operator as "eta".
64 http://en.wikipedia.org/wiki/Van_Hiele_model
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It remains to be tested empirically whether kids can follow such proofs. But they ought to
be able to do the following.

Simplification

The expression 10 * 5H or ten per five can be simplified into 10 * 5H = 2 * 5 * 5H = 2 or two
each.

Equivalent fractions

Observing that 6 / 12 is actually 1 / 2 becomes 6 * 12H = 6 * (2 * 6)H = 6 * 2H * 6H = 2H.
Alternatively all integers are factorised into the primes first. Note that equivalent fractions
are part of the methods of simplification.

Multiplication

a bH * c d 
H = (a c) (b d ) H

Comparing fractions

Determining whether a b
H > c d

H or conversely: this reduces by multiplication by b d,
giving the equivalent question whether a d > c b or conversely.

Rebasing

That (a / b = c)  ⇔  (a / c = b) may be shown in this manner:

a bH  = c

a bH  (b c
H) = c  (b c

H)

a cH  = b  

Addition

Van Hiele’s main worry was that we can calculate 2 / 7 + 3 / 5 = 31 / 35 but without much
clarity what we have achieved. Okay, the sum remains less than 1, but what else ?
Translating to percentages 2 / 7 ≈ 28.5714% and 3 / 5 = 60%, so the sum ≈ 88.5714%, is
more informative, certainly for pupils at elementary school. This however requires a new
convention that says that 0.6 is an exact number and not an approximate decimal, see
Conquest of the Plane (2011c). The argument would be that working with decimals causes
approximation error, and that first calculating 31 / 35 and then transferring to decimals
would give greater accuracy for the end result. On the other hand it is also informative to
see the decimal constituants, e.g. observe where the greatest contribution comes from.

Another argument is that 2 / 7 + 3 / 5 = 31 / 35 would provide practice for algebra. But
why practice a particular format if it is unhandy ? The weighted sum can also be written in
terms of multiplication. Compare these formats, and check what is less cluttered:

a / b + c / d = (a / b + c / d) (b d) / (b d) = (a d + c b) / (b d)

a bH + c d 
H  = (a bH + c d 

H) (b d) (b d) H = (a d + c b) (b d) H

Subtraction

In this case kids would have to see that H can occur at two levels, like any other symbol.

a bH + H c d 
H  = (a bH + H c d 

H) (b d) (b d) H = (a d + H c b) (b d) H

Mixed numbers

A number like two-and-a-half should not be written as two-times-a-half or 2½ . Elegance
with Substance (2009) already considers to leave it at 2 + ½. Now we get 2 + 2H .
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Division

Part of division we already saw in simplification. The major stumbling block is division by
another fraction. Compare:

a / b / {c / d} = (a / b)(d / c) / { (c / d) (d / c) } = (a / b)(d / c)  / { 1 } = (a d) / (b c)

a bH * (c d 
H)H =   = a bH  * c 

H d = (a d) (b c ) H

Supposedly, kids get to understand this by e.g. dividing 1/2 by 1/10 so that they can
observe that there are 5 pieces of 10H = 1/10 that go into 2H = 1/2. Once the inversion has
been established as a rule, it becomes a mere algorithm that can also be applied to
arbitrary numbers like 34H (127H)H = 1/34 / (1/127). The statement “divide per-two by per-
10″ becomes more general:

(divide by per-a) = (multiply by a)

Dynamic division

A crucial contribution of Elegance with Substance (2009:27) and Conquest of the Plane
(2011c:57) is the notion of dynamic division, that allows an algebraic redefinition of calculus.
65

With y xH
 = y / x as normal static division then dynamic division y xD

 = y // x becomes:

y xD ≡ { y xH, unless x is a variable and then: assume x ≠ 0, simplify the expression
y x

H, declare the result valid also for the domain extension x = 0 }.

A trick might be to redefine y / x as dynamic division. It would be somewhat inconsistent
however to train on xH

 and then switch back to the y / x format that has not been trained
upon. On the other hand, some training on the division slash and bar is useful since it are
formats that occur.

Van Hiele 1973

Van Hiele in 1973 includes a discussion of an axiomatic development of addition and
subtraction and an axiomatic development of multiplication and division. This means that
kids would be introduced to group theory. This axiomatic development for arithmetic is
much easier to do than for geometry. Since mathematics is targeted at “definition, theorem,
proof” it makes sense to have kids grow aware of the logical structure. He suggested this
for junior highschool rather than elementary school, however. It is indeed likely that many
kids at that age are already open to such an insight in the structure of arithmetic. This does
not mean a training in axiomatics but merely a discussion to kindle the awareness, which
would already be a great step forwards.

His 1973 conclusions are:

Advantages

1. In the abolition of fractions 1/a a part of mathematics is abolished that contains a
technique that stands on its own.

2. One will express theorems more often in the form of multiplication rather than in
the form of division, which will increase exactness. (See the problem of division by
zero.)

3. Group theory becomes a more central notion.
4. In determining derivatives and integrals, it no longer becomes necessary to

transform fractions by means of powers with negative exponents. (They are
already there.)

                                                          
65 https://boycottholland.wordpress.com/video/
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Disadvantages

1. Teachers will have to break with a tradition.
2. It will take a while before people in practice write 3 4H instead of 3 / 4.
3. Proponents will have to face up to people who don’t like change.
4. We haven’t studied yet the consequences for the whole of mathematics

(education).
His closing statement: “We do not need to adopt the new notation overnight. It seems to

me very useful however to consider the abolition of the algorithms involving fractions.”

Conclusion

Given the widespread use of 1 / a, we cannot avoid explaining that aH = 1 / a. The fraction
bar is obviously a good tool for simplication too, check 6 * (2 * 6)H .

Similarly, issues of continuity and limits x →1 for expressions like (1 + x) (1 – x²)H would
benefit from a bar format too. This would also hold alternatively for (1 + x) (1 – x²)D.

But, awareness of this, and the ability to transform, is something else than training in the
same format. If training is done in algorithms in terms of aH then this becomes the engine,
and the fraction slash and bar merely become input and output formats that are of no
significance for the actual algebraic competence.

Hence it indeed seems that fractions as we know them can be abolished without the loss
of mathematical insight and competence.
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Appendix F. Abstraction for the irrational numbers

The reasoning on abstraction makes one wonder when it can be applied to the irrational
numbers, for example the square root of 2. Rather than calling such a number ‘irrational’ it
is conceivable to say that it is ‘rational by abstraction’. In this case, however, this is merely a
play of words. The term ‘irrational’ is somewhat quaint, in comparison to ‘irrational people’,
but historically useful, because of the conceptual linkages of ‘proportion, ratio, logos,
calculation, reasoning’.

In the case of ‘bijection by abstraction’ there is also a shift of perspective because this
allows us to regard � and � as equally large and only ordered differently.

Let us discuss this issue on the choice of phrases in more detail.

Let us first copy the ancient proof sometimes ascribed to Hippasus that √2 is irrational,
i.e. cannot be expressed as a ratio of two integers. Take an isosceles right triangle, with
sides 1, then the hypothenuse is 1+1 = √2, so we have such a length indeed.

Theorem. There are no integer numerator n and denominator d such that √2 = n d 
H.

Proof. (Hippasus ?) Assume that n and d exist. Exclude multiples, and take the least
values. For example 2 10H reduces to 1 5H. Thus n and d cannot both be even numbers.

Use n = d √2. Squaring gives n
2 = 2 d

2. Thus n
2 is an even number. Note that the

square of an uneven number will always be uneven again. If n2 is even, it follows that n is
even, and hence d is uneven (since we have simplified).

If n is even then we get a new integer number m = n 2H or n = 2m. Hence, n2 = 2 d2

gives 4 m2 = 2 d2 or 2 m
2 = d2. It follows that d2 is even. From this it follows that d cannot be

uneven. But we had already derived that d is uneven. Contradiction. Hence, there are no
such numbers n and d such that √2= n d H. Q.E.D.

Our � concerned the interval [0, 1] and hence we now consider √2H. If √2H is regarded
as a process towards a numerical value then it belongs to S3 and if it is understood as a

completed number then it belongs to S4. (See page 41.) For �[d] we can find a best
approximation. Since @ has been used for sets, it may be wise to use @@ for numbers.
Then:

(1) x[d] = num[d] denom[d]H ≈ √2H

(2) (�[d] @ �)  ⇒  (x[d] @@ √2H)

(3) then √2H might be labelled as ‘rational by abstraction’.

The phrase ‘rational by abstraction’ only is a change of words from ‘irrational number’,
for there is no change in perspective. Changing the words does not add to anything. We still
need to specify the numerator and denominator in the steps, and develop notions of
convergence, for which Weierstraß is excellent.

Above proof that √2 is irrational uses that it is a completed number. If the number is only
in the process of being constructed then the proof collapses, since we cannot use yet that
the outcome of squaring is 2 (because of the approximation). Thus, there is scope for a
fallacy of composition, w.r.t. being completed or in construction.

In S3 we would have an argument in each �[d]. Assume that there are numerator and

denominator such that num[d] denom[d]H = √2H (with a factor 10d cancelling), etcetera, and
deduce a contradiction and decide that it is ‘irrational[d]’, also with the meaning that it would
not be present in the list (since we haven’t made the step towards completed �).
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In S4 we construct the whole � and then it is present. It is useful to distinguish two
cases.

(i) At issue is the label ‘rational by abstraction’. There is no reason for this. In each �[d]
we didn't have that √2H is rational[d] and thus there is no transfer by abstraction.

(ii) It can still be called ‘irrational by abstraction', which abstracts from particular values
of d. For each �[d] we have that √2H is irrational[d] and thus we can consider such transfer
by abstraction.

Thus we can agree that abstraction is involved, but it actually supports the term
'irrational by abstraction' rather than 'rational by abstraction'. This line of proof via �[d] is
much less elegant than the original ascribed to Hippasus.

Thus we find a parallel, on one hand the issue on the S3 - S4 frontier with respect to √2
on ‘(ir)rational by abstraction’, and on the other hand the issue on the S5 - S6 frontier on
‘bijection by abstraction’. The parallel is not only a phrase ‘by abstraction’ but also a scope
for a fallacy of composition.

There is a difference however. At the S3 - S4 frontier there is hardly a change of
perspective, only the "elimination of d", if it might be put like that, so that referring to
abstraction merely amounts to a different label for the same situation, without illumination.
For the issue at the S5 - S6 frontier there is a change of perspective. It makes a difference

to be able to hold that � and � are equally large and only ordered differently. (A key
consideration is of course that Cantor’s proofs collapse, so that, bearing other proofs, it
becomes a philosophical issue to regard � and � as different in cardinality. But this is a
consequence and not the prime change in perspective.)

The notion of ‘completion’ shows a similar but still different role in the two contexts.
Conventional reasoning is: (i) first construct �, (ii) consider √2 as a completed number, (iii)
then consider limiting processes around √2 and within � and its completed numbers.
Alternatively, we can imagine a limiting process that occurs simultaneously while � is
constructed – as is suggested as the proper approach on Cantor 1874, see page 51. The
distinction seems to be in the point that the definition of √2 doesn’t depend upon the
construction of �, while the definition of the diagonal is related to the construction of �.
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Appendix G. Cantor's Conjecture with surjection (standard)

While Conjecture B with the bijection on page 75 is common, it is useful to mention a form
that is rather standard and that only uses a surjection.

The following is from a matricola course at the universities of Leiden and Delft for
students majoring in mathematics. The online syllabus is by Coplakova et al. (2011), and
the issue concerns theorem I.4.9, pages 18-19. We translate Dutch into English.

Conjecture. (S), (Cantor's Conjecture for the power set, using a surjection, see
Coplakova et al. (2011:18), I.4.9, replacing their B by Ψ):

Let A be a set. There is no surjective function f : A → P[A].

Proof. Assume that there is a surjective function f : A → P[A]. Now consider the set Ψ =
]}[|{ xxAx f∉∈ . (*Addendum*, see below.) Since A⊆Ψ  we also have ][Ψ AP∈ .

Because of the assumption that f is surjective, there is a Aψ∈ with f[ψ] = Ψ. There are two

possibilities: (i) Ψ∈ψ  or (ii) Ψ∉ψ .

If (i) then Ψ∈ψ . From the definition of Ψ it follows that ][ψψ f∉  or Ψ∉ψ . Thus (i) gives

a contradiction. Thus Ψ∉ψ .

If (ii) then we know Ψ∉ψ  and thus also ][ψψ f∉ . With the definition of Ψ it follows that

Ψ∈ψ . Thus (ii) gives a contradiction. Thus Ψ∈ψ .

Cases (i) and (ii) cannot apply simultaneously, and hence we find a contradiction. Q.E.D.

Remarks.
(1) The *Addendum* is: This proof relies on existence Conjecture E and on the notion that

ZFC provides for well-defined sets anyway.
(2) From the contradiction in this proof, the proper conclusion is not that Cantor's

Conjecture is proven, but only that it is proven in ZFC. Either Cantor's Conjecture is true or
ZFC doesn't yet provide for well-defined sets. Given this addendum, it now should be
clearer that if ZFC allows a paradoxical construct then one may feel that ZFC needs
amendment.

(3) A refutation of the proof is on page 82.
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Appendix H. Marginal analysis and the re-occurrence of
Russell's paradox

H.1. Marginal analysis in general

The problem with Cantor's conjectures is not caused by infinity. The real question is how
one deals with self-reference. Constructive methods would allow for the notion of a fixed
point, i.e. p = f[p]. Thus we are not afraid of some kind of self-reference or circularity.

But we are working with ZFC now, so let us formulate some conjectures to test the
properties of ZFC. Perhaps ZFC allows the wrong kind of self-reference and disallows the
useful kind.

ZFC seems to block the use of a significant set of normal functions. The failure on a
single element ψ∈A such that f[ψ] = Ψ – Conjecture W – seems to have too many
consequences. The restriction only concerns a single element – though with consequences
on infinity – and this suggests the approach of a marginal analysis in constructive manner.
Looking at a single element at the margin would show more about the mechanism.

Let us first set up a marginal analysis that fails, so that we can better understand the
subsequent marginal analysis that generates the proofs that we desire.

This approach generated the analysis on the singleton in the body of the book. Thus,
marginal analysis does have some value. It is not guaranteed that the exploration below
has value.

In principle we should be able to take an arbitrary function and reserve a single element,
to map this element to a single new set. Let us see what happens when we extend g at the
margin with α, which gives function f: A → P[A], with f[α] defined at liberty. Let us distinguish
the disputable core in the 'proof idea' and the subsequent discussion about this 'proof idea'.

It seems that one can indeed take arbitrary functions and reserve a single element for Φ.
Some of the findings of the marginal analysis on Φ have found a place in the main body of
the book as well, notably in Theorem ESV on page 86. While the steps for Theorem ESV
are clearly within ZFC, the steps for Ψ below might not be. As said, while this book can
derive that ZFC is inconsistent, this author is no expert on ZFC – except that ZFC can
derive anything. The following on Ψ is still relevant enough for a place in this Appendix.

 The conjectures below are not in the overview table on page 11 since they don't play a
role in the book itself. A general point is that Ψ is inflexible and causes more questions, but
this issue is already dealt with in the body of the text, and this Appendix might only be
confusing by repeating that point.

Up to now such a marginal analysis was not very well possible, apparently, because there
arises a contradiction that reminds of Russell's Paradox. If the steps satisfy the formal
conditions of ZFC then we have another contradiction in ZFC. (This is reflected in Corollary
Not-ZFC-2. Such a contradiction can be resolved by the use of the Paul of Venice
consistency condition – but then in system ZFC-PV.)

H.2. Testing properties of ZFC at the margin

Conjecture W assumes an arbitrary function and then holds that Ψ exists. Call this h.
Conjecture H.2 then makes the first element available for mapping to a more relevant Ψ[f].
The re-map may cause that Ψ[h] ≠ Ψ[f], of course. Still, there is a problematic self-reference
that must be dealt with. One way to read Conjecture H.2 is as criticism: Conjecture W
assumes that ZFC would properly deal with self-reference but does not show that it does.

The following steps in H.2 are looked at more closely in H.3. While H.2 may go too fast
the real issue is with H.3. But H.2 gives a nice overview of the general 'proof idea'.
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Conjecture. (H.2) Let A be denumerable infinite, P[A] the power set.
(i) For any arbitrary non-trivial h: A → P[A] there are f: A → P[A] and ψ∈A with f[ψ] = Ψ =

}][|{ xxAx f∉∈ .

 (ii) There is a contradiction. (Note that h does not have to be a bijection.)

Proof idea. Consider an ordering of A = {a[1], ...} and let ψ = a[1].
(i) Let B = A \ { ψ } and g: B → P[A] as in Hilbert's Hotel g[a[n]] = h[a[n-1]] for n > 1.
Define f: A → P[A] as:

(a) x∈B :  f[x] = g[x]
(b) x = ψ :  f[ψ] = Ψ = }][|{ xxAx f∉∈ . (discussion)

(ii) The direct check on consistency gives: )Ψ()Ψ( ∉⇔∈ ψψ . Q.E.D.

Discussion.

Distinguish two very different issues:
(a) Test whether ZFC allows the definition of this self-referential f.
(b) There is a proper definition.

Given the contradiction it is obvious that f is not well-defined. At issue however is whether
ZFC allows the construction (if so, it becomes inconsistent), and how this relates to the Paul
of Venice consistency condition (since we might like self-reference for fixed points, even in
constructivism).

The standard answer is that ZFC first requires the definition of f and only then allows
Separation to create Ψ. Why this artificial sequence ? Why not simultaneously ? Requiring
this sequence prevents one to show that Ψ is actually nonsensical. Why put on blinders ?

H.3. Taking smaller steps

Let us look in more detail at the steps in conjecture H.2.

Conjecture. (H.3) Let A have at least one element α. P[A] is the power set.
Let B = A \ { α } not be empty. Consider arbitrary g: B → P[A].
(i) There are  f: A → P[A] and a ψ∈A with f[ψ] = Ψ = }][|{ xxAx f∉∈ .

(ii) There is a contradiction. (Note that g does not have to be a bijection.)

Proof idea.  (i) Ψ*[B] = ]}[|{ xxBx g∉∈ . (With P[A], instead of P[B], there is Ψ*[B].)

Define: f as: (a) x∈B:  f[x] = g[x]
(b) x = α:  f[α] = y, for some y ∈P[A] (e.g. in fixed point form).

Note: Ψ*[B] = ]}[|{ xxBx f∉∈  = ]}[|{ xxBx g∉∈ .

Let: M = ]}[|{ xxx f∉= α  (Margin, discussion)

Ergo: Ψ*[B] U M = ]}[|{ xxAx f∉∈  = Ψ[A]      

Observe that (Ψ*[B] ∈P[A]) and (M ∈P[A]), so that (Ψ*[B] U  M)∈P[A].
Take y = Ψ[A].
(ii) Take ψ = α. The direct check on consistency gives: )Ψ()Ψ( ∉⇔∈ αα .

Q.E.D.

Discussion.

 (1) Standardly, ZFC first requires the definition of f and only then allows Separation to
create Ψ. Theorem ESV solves this bottleneck by using M = Ø. Alternatively, Separation
can be done there as required and only afterwards it can be established that M = Ø.
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(2) If ZFC would allow this deduction, then ZFC is inconsistent. I am no expert on ZFC
and would like to hear the views. My guess is that some experts would hold that M would be
a necessary step for the creation of a surjective function, and that such would not exist in
ZFC. This is not the right answer. The question is which axiom has been applied wrongly.
Which axiom regulates order ?

The definition of M at the margin seems an acceptable application of the Axiom of
Separation, namely to set {α} and predicate γ[x] = (x – f[x]).

Why does one require that the function has been defined before ? Doesn't the general
allocation y∈P[A] allow us to treat f as some variable, f ? Wasn't the invention of algebra
with the flexible use of variables and formulas a great idea ? Aren't users of ZFC creating
artificial barriers to what ought to be natural flexibility in the use of variables and formulas ?
Yes, one can understand the hesitation, since this creates inconsistency here, but the
cause is not the flexibility but the not-well-defined-ness of Ψ.

(3) From (i) we find:
f[α] = Ψ[A] = ]}[|{ xxAx f∉∈ .

Even though the steps seem innocuous, we derive, using that α is an element of A:

])[Ψ(])[(])[Ψ( AfA ∉⇔∉⇔∈ αααα

The reason lies in the definition of M.

Here ])[*Ψ( B∉α  is true and can be dropped:

)())][*Ψ((])[()( MMBM ∉⇔∉⇔∉⇔∈ ααααα Uf       (key step)

M = }|{ Mxx ∉=α (Russell !)

We thus have an instance of Russell's paradox. We discussed this when introducing the
singleton and nutshell case, on page 65. A singleton, a set with one element, obviously
limits our freedom of definition. Now we have a large A, possibly infinite. What is crooked
here ?

While ZFC blocks Russell's paradox, see page 62, its occurrence here is not direct but
indirect by the (circular) steps M = M[f] and f = f[M] in (i), giving a fixed point M* = M[f[M*]].

One question is whether ZFC allows the break up into steps as shown.
Creating a ZFC* that blocks such steps and fixed points is not the answer. If ZFC is

already this ZFC*, then this is actually a problem. We might like some beneficial fixed point.
Now there is a contradiction, but not because of the flexibility of algebra but only because of
the paradoxical Ψ.

(4) On the more general issue:
(1) It is not an adequate conclusion that this g does not exist – it is arbitrary – or that it is

impossible to reserve an element for a newly created set.
(2) It is not so useful to look into the issue for finite sets, since such sets are smaller than

their power sets anyway. The issue remains relevant for infinity, for which the room to select
a single element is infinitely larger.

(3) The adequate response is to eliminate this occurrence of contradiction anyhow.
Whatever the formal properties of ZFC, we would want to be able to extend a function with
a single element while using elementary logic and algebra.

(4) Alternatives have been formulated: ZFC-PV in two-valued logic and BST in three-
valued logic. The only reason not to adopt the flexibility of algebra are the transfinites.
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