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A primer with objectives

This book is a primer, and thus not a textbook, but it has a textbook format. It has

different functions for different groups: students, teachers and the professions that

apply mathematics.

Aims of this book when you are new to the subject

When you finish this book:

† You will  better  understand the major  topics  in  analytic  geometry  and calculus

of the Euclidean plane.

† You can better check whether inferences in those subjects are valid or not, and

tell why.

† You can better understand arguments supported by geometry and analysis.

† You have had a fast track course and can oversee the landscape. It is not likely

that  you  can  construct  proofs  yet  but  you  know  better  in  what  area  to

specialize. 

† You  can  read  this  book  as  it  is,  thus  also  without  Mathematica.  Without  ever

running a program, you will  still  benefit  from the discussion. However,  if  you

have a computer and practice with the programs, then you end up being able to

run the routines in this book and interprete their results. 

Note  that  the  software  can  be  downloaded  freely  from  the  internet  and  be

inspected; however, if you want to run it then you need a licence.

Aims of this book when you are an advanced reader

When you finish this book:

† You will  even better  understand what  the  key  assumptions  are  and how it  all

fits together.

† You will refocus your research towards issues that matter more.

† You will  be  an advanced reader  but  you might  lack  in balance  between either

the math or the history and philosophy: you will have enhanced the balance.

† One of the aims of this book concerns new readers. You will  be able to discuss

and teach the subject in this manner for students as well.

† You will better appreciate Elegance with Substance by the same author (2009).
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Abstract

† The book is  primer on analytic  geometry and calculus.  A primer  is  not  a  textbook

but  this  is  a  primer  in  textbook  format.  It  works  from  the  novice  level  up  to

where you could proceed with n-dimensionality.  The first four parts have been

written with students  in mind.  The fifth part  explains the didactics  to teachers

and students in didactics of mathematics.

† New is the integral attention on didactics, the logical order, the didactic naming

of  lines,  the  notion  of  the  dynamic  quotient  and  the  development  of  calculus

from  algebra,  the  definition  of  angles  on  the  unit  circumference  circle,  xur  and

yur  on  the  unit  radius  circle,  the  integrated  use  of  Q  =  2  p,  the  recovered

exponent rex as a better term for the logarithm. (See Chapter 16 for The News.)

† The  chapters  have  a  direct  hands-on  approach  so  that  you  can  directly  learn

from  applying  routines.  This,  and  the  sense  of  achievement,  should  stimulate

you  to  continue,  while  it  also  provides  a  basis  to  reflect  on  what  already  has

been learned.

† The  chapters  build  up  in  logical  order  and  provide  theory  on  the  way.  When

something  is  introduced  it  directly  makes  sense,  there  is  no  waiting  for  some

unfulfilled promise.

† There are many formulas but there is no formal axiomatic development.

† The  didactics  are  guided  by  the  Van  Hiele  levels  (Chapter  15)  and  we  reject

Freudenthal’s  “realistic  math”.  You  have  sufficient  experience  with  the  plane

since making drawings in kindergarten. When you think about a triangle it is as

abstract  as  it  can  get  because  such  thought  is  abstract  by  nature.  What  counts

are the lingering notions in this abstract  imagination that have to be activated.

It  can  distract  and  confuse  when  mental  clarification  is  mixed  with  the

application  to  reality.  In  this  book,  geometry  is  treated  at  the  Van  Hiele  base

level and from there we proceed to analytic geometry.

† Application  is  relevant  but  should  be  dosed  wisely.  Examples  are  given  from

physics, economics and statistics.

† Discussed are co-ordinates, lines, circles, vectors, complex numbers, projection,

systems of  equations,  trigonometry,  parabola,  the  exponential  number,  Euler’s

form,  calculus  and a short  section on non-Euclidean geometry.  When required

the routines in Mathematica are explained.
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† This  is  a  textbook  without  exercises.  The  idea  is  that  Mathematica  provides  an

interactive  environment,  that  such exercises can be found in abundance on the

internet and that Mathematica can help to solve those. What you learn here helps

you to find those exercises elsewhere.

† Programs  in  the  environment  and  language  of  Mathematica  support  the

discussion. Download The Economics Pack from http://thomascool.eu, install and

evaluate:

Needs["Economics`Pack`"]

ResetAll

Economics[Math`AnalyticGeometry, Math`Trigonometry, Math`Geometry, Math`Pythagoras, 

Calculus, Physics, Taxes, Survival]

Note:  On  the  palette  for  The  Economics  Pack  there  is  a  button  for  the  User  Guide.

Click  there  and  you  will  find  the  entire  text  of  this  book  available  there,  also  for

evaluation in Mathematica.

Note:  You  can  read  this  book  as  it  is,  thus  also  without  Mathematica.  Without  ever

running a program, you will still benefit from the discussion.

Note: See the internet for other programs in analytic geometry and calculus.

        See D. L. Vossler “Exploring Analytic Geometry with Mathematica" at http://www.descarta2d.com/

† For  the  professions  that  apply  mathematics  like  physics,  engineering,  biology,

economics and evidence based medicine,  this book provides  documentation to

judge  on  the  proposal  that  national  parliaments  look  into  mathematics

education, as explained in the book Elegance with Substance  by the same author

(2009).  This  very  discussion is  not  mentioned in  the  body of  this  present  book

except in the Preface and the Conclusion at the end.

 

Keywords

Analytic  geometry,  analytical  geometry,  calculus,  dynamic  quotient,

trigonometry,  Q,  Xur,  Yur,  UMA,  foundations  of  mathematics,  mathematics

education,  didactics  of  mathematics,  teaching  of  mathematics,  epistemology,

methodology of science, general philosophy, general economics
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Preface

Aims and intentions

Mathematics  can  be  liberating,  fun,  enlightening  and empowering.  A population

well educated in mathematics will prosper and will have a bedrock foundation for

democracy. Mathematics can also be taught badly, as strict, arcane and depending

upon  authority,  and  when  you  do  not  understand  something  then  you  do  not

belong  to  the  class  of  the  initiated  and those  who do  understand.  Egypt  with  its

pyramids  had a  class  of  geometers  who closely  guarded  their  secrets  and Sumer

with its astronomers likewise. Since the Greeks mankind does much better. Euclid

codifies geometry as a lawmaker but there is also the spirit of research in the laws

of  nature.  The  crucial  idea  that  mathematics  is  respectful  engagement  in  mutual

discussion  still  has  to  sink  in  though.  Current  courses  in  mathematics  are

needlessly  cumbersome  and  a  barrier  towards  understanding,  with  rote  training

substituting for better didactics. With a better didactic approach more people will

understand math and more people will see its fun. It will be greatly beneficial for

society when more people - and even mathematicians - can take mathematics as it

really is. This essentially means a need for re-engineering math and its education.

My book Elegance with Substance of 2009 explains that the mathematical discipline

is  not  up  to  the  challenge  so  that  society,  parents,  the  applied  sciences  and

teachers of  physics,  engineering,  economics,  biology,  but also English  and music,

should take the lead and put the matter to institutes of government. EwS contains

a shopping list  of many points but a reader may wonder what it  adds up to. The

best way to show that improvement is possible is by actually doing it. Conquest of

the Plane  does so and fills in the blanks. It has the layout of a textbook for a math

course. It has been written with students in mind so that they can directly benefit.

Exercises  are  lacking  though.  The  fifth  part  gives  the  didactic  foundation  for

teachers. This book thus is a primer. A primer is not a textbook but this is a primer

in textbook format. When students and teachers all over the world start using the

course much of the mission will be accomplished. Yet, will this happen, with math

teachers locked in tradition ? Not likely.  Eventually this book can indeed be used

as  the  example  textbook  that  it  is  but  for  the  first  years  it  will  primarily  be  a

companion  to  Elegance  with  Substance.  Readers  interested  in  how  mathematics

could be re-engineered both as a subject and as a discipline are referred to Elegance

with Substance -  and see also the Conclusion at  the very end.  Then Conquest of the

Plane is an existence proof that math can be improved indeed.

Intended readership

Given what is currently taught at the 3rd year of advanced highschool the course

in this book might be started there ... However, the use of language is not adapted

to that 3rd year yet, and exercises at that level are much lacking. It might succeed

though if  the teachers  put  effort  into  the experiment.  Careful  as  I  am myself,  my
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though if  the teachers  put  effort  into  the experiment.  Careful  as  I  am myself,  my

intended readership has been as follows.

If you are a student then this book shows you what you should have been taught

from 3rd year  onwards. The book then provides a  fast track (refresher) course. If

you  are  a  parent  helping  your  kid  with  math  then  this  book  wil  provide

invaluable  support.  If  you  are  a  teacher  then  there  are  new  insights  both  in

didactics  and  mathematics  itself.  The  book  provides  material  to  discuss  with

colleagues and ideas for in class and you might use the book as a textbook indeed

for some classes like Summer school or a refresher course. If you are a student of

the didactics of mathematics then you will  see key ideas and see those presented

and built up in textbook fashion so that there will be no confusion as to what they

mean in practice. 

Readership Student Teacher

Mathematics

itself

H1LA course from 3 rd year of

advanced highschool up to

and including college freshmen

H2L Support for parents

New insights like the

definition of an angle,

trigonometry and the

derivation of calculus

Didactics of

mathematics

H1LKey ideas on didactics

H2L Built up in textbook manner

H1LKey ideas on didactics

H2L Ideas for in class

H3LA textbook for some.

This book is written in Mathematica  which reduces the tedium of calculation.  The

routines for this book have been included in Cool (1999, 2001), The Economics Pack,

that is, the update is in the software but not in the manual since that is given here.

You can  use  this  present  book  without  running  those  programs.  But  if  you have

these  programs  available,  then  you  can  have  a  hands-on  experience,  verify  the

conclusions, try your own cases, and, write your higher-level programs. 

My background

As  a  student  in  econometrics  I  participated  in  the  mathematics  courses  for

students  of  mathematics,  physics  and  astronomy.  Graduation  in  1982  in

Groningen gave only a teaching certificate for economics but this was resolved in

2008 with a MSc Teacher of mathematics in Leiden. The book on logic that I wrote

as a student was eventually published as A Logic of Exceptions in 2007. The didactic

study  on  mathematics  resulted  in  Elegance  with  Substance  in  2009.  I  am  keenly

interested in economics but for teaching I prefer mathematics. I have not used the

new ideas here in class since they are not in the official program. Though I should

be  writing  about  the  current  economic  crisis  there  is  ample  reason  to  compose  a

book on analytic geometry and calculus. A somewhat awkward point is that I am

tempted  to  use  the  logic  routines  of  A  Logic  of  Exceptions  as  well.  However,  this

presumes  that  you  have  consumed  that  other  book  and  this  will  not  do.  Even
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presumes  that  you  have  consumed  that  other  book  and  this  will  not  do.  Even

more  awkward  is  that  A  Logic  of  Exceptions  presumes  “some  decent  highschool

mathematics”  while  the  very  purpose  of  this  present  book  is  to  provide  that.

Therefor  I  have  decided  to  reduce  formal  deduction  to  the  minimum  and  to

explain  logic  when  it  arises.  In  a  future  there  would  have  to  be  a  better  tuning.

The  book  on  logic  already  explains  that  the  subject  better  be  taught  already  at

elementary  school  so  there  is  still  some  way  to  go.  (It  is  a  bit  curious  that  The

Economics  Pack  while  embedded  within  Mathematica  has  its  own  subdirectories

Logic` and Math` again.)

Logical constants

form full name aliases 

fl î[And] Ç&&�, Çand�

fi î[Or] Ç||�, Çor�

¬ î[Not] Ç!�, Çnot�

œ î[Element] Çel�

" î[ForAll] Çfa�

$ î[Exists] Çex�

± î[NotExists] Ç!ex�

� î[Xor] Çxor�

� î[Nand] Çnand�

� î[Nor] Çnor�

form full name alias 

fl î[Implies] Ç=>�

V î[RoundImplies]
\ î[Therefore] Çtf�

‹ î[Because]
¢ î[RightTee]
¤ î[LeftTee]
£ î[DoubleRightTee]
¥ î[DoubleLeftTee]
' î[SuchThat] Çst�

» î[VerticalSeparator] Ç|�

: î[Colon] Ç:�

In Mathematica, Ç is the Esc symbol.

These symbols are hardly used in this book. But you will recognize terms that abound in logical argumentation.

Consider two trains running on a round track. Each train has two options: run clockwise or counterclockwise. There are four 

combinations and only two work. This is equivalence or “if and only if”. It is expressed as (P fl Q) fl (Q fl P) or, one train 
runs clockwise if and only if the other does too. 

For a link to Logicomix: http://thomascool.eu/Papers/ALOE/2010-02-14-Russell-Logicomix.pdf
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Greek alphabet

form full name aliases 

a î[Alpha] Ça�

b î[Beta] Çb�

g î[Gamma] Çg�

d î[Delta] Çd�

e î[Epsilon] Çe�

z î[Zeta] Çz�

h î[Eta] Çh�

q î[Theta] Çth�

i î[Iota] Çi�

k î[Kappa] Çk�

l î[Lambda] Çl�

m î[Mu] Çm�

n î[Nu] Çn�

k î[Xi] Çx�

o î[Omicron] Çom�

p î[Pi] Çp�

r î[Rho] Çr�

s î[Sigma] Çs�

t î[Tau] Çt�

u î[Upsilon] Çu�

f î[Phi] Çph�

c î[Chi] Çc�

y î[Psi] Çps�

w î[Omega] Ço�

form full name alias 

A î[CapitalAlpha] ÇA�

B î[CapitalBeta] ÇB�

G î[CapitalGamma] ÇG�

D î[CapitalDelta] ÇD�

E î[CapitalEpsilon] ÇE�

Z î[CapitalZeta] ÇZ�

H î[CapitalEta] ÇH�

Q î[CapitalTheta] ÇTh�

I î[CapitalIota] ÇI�

K î[CapitalKappa] ÇK�

L î[CapitalLambda] ÇL�

M î[CapitalMu] ÇM�

N î[CapitalNu] ÇN�

X î[CapitalXi] ÇX�

O î[CapitalOmicron] ÇOm�

P î[CapitalPi] ÇP�

R î[CapitalRho] ÇR�

S î[CapitalSigma] ÇS�

T î[CapitalTau] ÇT�

U î[CapitalUpsilon] ÇU�

F î[CapitalPhi] ÇPh�

C î[CapitalChi] ÇC�

Y î[CapitalPsi] ÇPs�

W î[CapitalOmega] ÇO�

In Mathematica, Ç is the Esc symbol. See for curly variants ∑, j, J: tutorial/EnteringGreekLetters
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Part I.  Introduction

 

 

 

For  some  curious  reasons  that  apparently  cannot  be  avoided,  this  part  has  a

Chapter 0 with a long introductory discussion. When you are a student and want

to begin you better jump to the Chapter 1 on geometry. If you get stuck then you

could return to this introduction to see whether it helps out.

0.1  Conditions for using this book

The basic requirement for using this book is that you have at least a decent junior

highschool  level  of  understanding  of  mathematics  or  are  willing  to  work  up  to

that  level  along  the  way.  We  assume  that  this  book  could  be  used  in  advanced

highschool or the first year of a college or university education.

You  can  read  this  book  as  it  is,  thus  also  if  you  do  not  have  Mathematica.  Even

without ever running a program, you will still benefit from the discussion.

Readers  new  to  the  specific  formats  of  Mathematica  are  advised  to  check  the

appropriate subsections on those, since those notations will be used.

Yet,  if  you  have  Mathematica  and  want  to  run  the  programs,  then  this  book

assumes that  you have  been introduced  to  Mathematica.  You must  be  able  to  run

Mathematica,  understand  its  handling  of  input  and  output,  and  its  other  basic

rules.  Note  that  Mathematica  closely  follows  standard  mathematical  notation.

There  are  some  differences  with  common  notation  though  since  the  computer

requires  strict  instructions.  Mathematica  comes  with  an  excellent  Help  function

that  starts  from  the  basics  and  works  up  to  the  most  advanced  levels.  There  are

also many books that give an introduction.

When  you  want  to  run  the  Math`AnalyticGeometry`  programs,  you  should

also  have  a  working  copy  of  The  Economics  Pack,  Applications  for  Mathematica,  by

the  same  author,  as  Cool  (1999,  2001),  with  the  software  downloadable  from  the

internet.

0.2  Structure of the book

This  book  is  for  both  beginners  and  advanced  readers.  They  are  guided  by  the
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This  book  is  for  both  beginners  and  advanced  readers.  They  are  guided  by  the

respective sections below.

The book basically has:

  1.  The basic ingredients: geometry, arithmetic and algebra, co-ordinates. 

Analytic geometry took off when Oresmus, Fermat and Descartes combined 

formulas with numbers and graphs on the plane.

  2.  The basic objects: line, circle and vector.

  3.  The consequences: trigonometry, the complex plane, linear algebra.

  4.  The news: “trig rerigged” and calculus developed fully from algebra.

  5.  Applications from physics, economics and statistics.

  6.  An extensive discussion of the didactics.

0.3  Using Mathematica

0.3.1  Axiomatics and other ways of proof

In their age-old civilisation, say 5000 years ago, the Egyptians developed a system

for remarkably  precise  measurements.  Complex constructions needed to be built,

of which the pyramids  were the largest  ones. The stars needed to be traced.  And

when the Nile had flooded again and had destroyed some lands and created some

new  grounds,  new  lots  had  to  be  measured  out  for  the  displaced.  When  the

Greeks  came  to  visit,  they  noted  this  big  body  of  geometric  knowledge,  and,

perhaps  not  trusting  all  of  it,  they  wondered:  “Can  you  prove  any  of  this  ?”

Eventually  Euclid  posed his  axioms,  and his  book has been in use for  a  bit  more

than 2200 years now, see Struik (1977).

A  long  and  wonderful  story  has  been  simplified  here  in  perhaps  too  mundane

terms. The discoveries of the notion of proof and of the axiomatic method are key

events  in  human  history.  It  is  impossible  to  do  them  justice  in  just  a  few  lines.

Perhaps  we  should  not  look  only  to  mathematics  but  look  also  for  the  source  in

codes  of  law,  with  that  notion  of  proof.  The  subject  of  logic  and  proof  has  been

developed  in  A  Logic  of  Exceptions  but  will  get   attention  below  too,  since

Euclidean  geometry  has  been  a  standard  for  strict  reasoning  and  since  this

tradition is extended in analytic geometry.  In logic,  a main distinction is between

(1) on one hand the axiomatic  method that relies on substituting expressions into

expressions, and (2) on the other hand the pure enumeration and investigation of

all  possible  cases,  which  enumeration  implies  some  notion  of  arithmetic  and

combinatorics.

In  all  cases  a  proof  requires  an  understanding  intellect  that  is  willing  to  see,

understand and accept  “Yes,  this  convinces  me”.  Perhaps  harder  is  the “No,  this
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understand and accept  “Yes,  this  convinces  me”.  Perhaps  harder  is  the “No,  this

does  not  convince  me”  in  case  that  the  proof  fails.  Often  the  voice  of  authority

forces  people  to  accept  all  kinds  of  statements  even though  the  proof  is  weak or

non-existent. See Aronson (1992ab) on how peer pressure can get a person to say

that three lines are equal that aren’t.

That  being  said,  the  second  thing  to  say  is  that  this  book  does  not  follow  an

axiomatic  method,  and  we  hardly  prove  anything.  Our  focus  is  on  clarification

and introduction in the subject, which at this level is complex enough. But there is

a huge logical machinery behind it all.

0.3.2  Mathematica - also as a decision support environment

Mathematica is a language or system for doing mathematics on the computer. Note

that  mathematics  itself  is  a  language  that  generations  of  geniusses  have  been

designing to  state  their  theorems and proofs.  This elegant  and compact  language

is  now  being  implemented  on  the  computer,  and  this  creates  an  incredible

powerhouse  that  will  likely  grow  into  one  of  the  revolutions  of  mankind  -

something that can be compared to the invention of the wheel or the alphabet;  at

least,  it  registers  with  me  like  that.  Note  that,  actually,  it  is  not  the  invention  of

precisely  the  wheel  that  mattered,  since  everybody  can  see  roundness  like  in

irisses,  apples  or  in  the  Moon;  it  was  the  axle  that  was the  real  invention.  In  the

same  way  next  generations  are  likely  to  speak  about  the  ‘computer  revolution’,

but the proper revolution would be this implementation of mathematics.

Mathematica  already  is  a  decision  engine  of  a  kind.  If  you  run  some  algebraic

solution  routine  then  there  is  a  lot  of  deduction  before  the  answer  pops  up.

However,  that  answer  does  not  come  as  a  neat  English  expression  and  does  not

read as a conclusion in the way that a good speaker would summarize his or her

speech. The idea of this book is to learn how to interprete input and output in this

language for analytic geometry and calculus.

Human  mental  processes  are  very  sensitive  to  pictures.  Mathematica  is  an

enormous powerhouse for creating graphics. Thus, geometry could be developed

using  an  abundance  of  pictures.  Euclid’s  method  partly  relied  on  constructions

that could be visualized, even though in proofs visualization was eliminated. The

use of  the power of  Mathematica  might  cause a  revival  of  The Elements.  However,

we arrive at a paradox now. While the present book uses pictures it also has a lot

of text, formula’s and numbers. The reason is that an abundance on pictures may

also  be  an  overabundance  when  the  proper  objective  is  exact  determination  and

algebraic  evaluation  of  solutions.  Hence  we  use  graphs  but  hopefully  in  a  wise

dose.  We  take  geometry  as  a  base  area  where  proofs  are  not  really  required  and

then  proceed  to  analytical  geometry.  We  use  a  lot  of  concepts  that  you  have

actually  some  familiarity  with.  The  objective  is  to  create  a  deeper  and  more

systematic understanding of those concepts. 
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The  general  format  that  people  require  for  understanding  contains  four

components  and  we  try  to  provide  these  per  topic  -  including  active  routines  to

move from the one to the other:

Text Formula

Table Picture

A  good  way  of  teaching  is  to  present  a  paradox,  have  students  think  about  it,

present  a  punch  line,  and then all  enjoy  the  moment  when they  get  it  in  a  flash.

Alas,  the  presentation  in  this  book  is  too  new  to  follow  that  track.  It  is  already

quite a feat that  we can tell  the story as it  develops below. (But it  is  an advice to

you: to keep your mind in the active state of looking for questions that guide you

through it  all.  And be aware of  your learning style:  active  vs passive,  abstract  vs

concrete.)

0.3.3  A guide

Since  Mathematica  is  such  an  easy  language  to  program  in,  it  also  represents

something like a pitfall. It is rather easy to prototype the solution to a problem, or

to write a notebook on a subject.  But it  still  appears to  be hard work to maintain

conciseness, to enhance user friendliness and to document the whole. 

Keep in mind the distinction between (a) issues in analytic geometry and calculus,

(b)  how  a  solution  routine  has  been  programmed,  (c)  the  way  how  to  use  the

routines.

This book focusses on (a). It however also provides a guide on (c) but neglects (b).

Thus, the proper focus is on the why, i.e. the content of issues in analytic geometry

and  calculus,  for  which  we  want  to  apply  these  routines.  But  this  also  requires

that  we  explain  how  to  use  them.  If  you  want  to  know  more  about  how  the

routines  have  been  programmed,  then  you  might  use  the  routine

ShowPrivate[name].

0.4  Getting started

When you want to run the programs then you must do the following.
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The  Economics  Pack  becomes  fully  available  by  the  single  command

<<Economics`All`. It is good practice however to use a few separate command

lines  to  better  control  the  working  environment.  Three  lines  can  be  advised  in

particular.

0.4.1  The first line

You start by evaluating:

Needs["Economics`Pack`"]

This makes the Economics[]  command available  by which you can call  specific

packages  and  display  their  contents.  Before  you  use  this,  read  the  following

paragraphs first.

0.4.2  The second line

CleanSlate`  is  a  package  provided  with  Mathematica  that  allows  you  to  reset

the system. You thus can delete some or all of the packages that you have loaded

and  remove  other  declarations  that  you  have  made.  The  only  condition  is  that

CleanSlate` resets to the situation that it encounters when it is first loaded. You

would  normally  load  CleanSlate`  after  you  have  loaded  some  key  packages

that you would not want to delete.  The ResetAll  command is an easy way to call

CleanSlate`. Your advised second line is:

ResetAll

ResetAll ResetAll calls CleanSlate, or if necessary loads it.

This means that your notebook does not have to distinguish

between calling CleanSlate` and evaluating CleanSlate@D
Note that if you first load CleanSlate` and then the Economics Pack, then the ResetAll will clear the Pack from your working 

environment, and thus also remove ResetAll. If you would happen to call ResetAll again after that, then the symbol will be 

regarded as a Global` symbol.

0.4.3  The third line

After the above, you could evaluate EconomicsPack to find the list of packages.

EconomicsPack

Select  the  package  of  your  interest,  load  it,  and  investigate  what  it  can  do.  For

example:

Economics[Math`AnalyticGeometry, Math`Trigonometry, Math`Geometry, Math`Pythagoras, 

Calculus, Physics, Survival, Taxes]

You can suppress printing by an option Print → False. You can call more than

one package in one call. If you want to work on another package and you want to
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one package in one call. If you want to work on another package and you want to

clear the memory of earlier packages, simply call ResetAll first. This also resets the

In[] and Out[] labels.

Economics@xi,…D shows the contents of xi` and if needed loads the package HsL.
Input xi can be Symbol or String with or without back-

apostrophe. To prevent name conflicts,

Symbols are first removed. Economics@ D does not need the Cool`,

Varianed` etc. prefixes

Economics@AllD assigns the Stub-

attribute to all routines in the Pack Hexcept some packagesL
EconomicsPack gives the list 8directory Ø packages<

Note: Economics[x, Out Ø True] puts out the full name of the context loaded. 

0.4.4  Using the palettes

The Pack comes with some palettes. These palettes have names and structures that

correspond to the chapters in The Economics Pack itself.

† The  master  palette  is  “TheEconomicsPack.nb”  and  it  provides  the  commands

above  and  allows  you  to  quickly  call  the  other  palettes  or  to  go  to  the  guide

under the help function.

† The other palettes have “TEP_” as part of their name, so that they can easily be

recognised  as  belonging  to  the  Pack.  These  “TEP_”  palettes  contain  coloured

buttons  for  loading  the  relevant  packages  and  text  buttons  for  pasting

commands.

† The exception here is “TEP_Arrowise.nb” that only deals with the package for

making arrow diagrams.

An analytic geometry palette may at some time in the future be included.

0.4.5  All in one line

You can also load the Pack by the following single line.

<<Economics`All`

This  evaluates  Needs["Economics`Pack`"]  and  Economics[All],  and  opens  the

palettes. It does not call ResetAll, however.
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0.5  Working environment 

0.5.1  Language and evaluator

This book has been written in Mathematica,  a system for doing mathematics.  That

program  is  both  a  text  editor  and  an  evaluator  at  the  same  time.  Input  in

Mathematica  are  not just  numbers  but  can be structured objects.  That’s  why users

of Mathematica rather don’t speak about mere calculation but about evaluation. The

text  produced  here  is  not  only  what  the  author  has  typed  but  also  what  the

programs  have  generated.  Those  programs  have  been  written  to  produce  that

output. You can change the input in Mathematica and generate different results.

0.5.2  Notation and help

One consequence of using Mathematica is that we will use its notation so that it can

understand  our  formulas.  The  program  has  an  extensive  Help  function.  The  full

text  of  this  book  is  available  in  The  Economics  Pack,  and  thus  can  be  found as  an

Add-On Application  in  the Help function of  Mathematica.  See TheEconomicsPack

palette for the Guide.

0.5.3  Input and evaluation

Next  to  plain  text  of  the  text  editor  there  are  also  “input”  and “output”  cells  for

the  evaluator.  You  enter  commands  in  input  cells  (shown  in  bold  type)  and  the

result of the computer evaluation is printed below it (shown in “traditional form”).

† This shows an input and output cell.

1 + 1

2

0.5.4  Full form and display

For pattern recognition, objects need to have a fixed format, called their FullForm.

This form reads easier for computer programs but less easy for the human reader.

Hence, the output cells can be displayed in a different form. When working with

Mathematica you should always have the FullForm in mind. 
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† Operators  can  have  various  input  formats.  For  example  for  division:  (1)  the

FullForm, (2) the infix form, (3) the function call. When you type Â divÂ  then

Mathematica creates a neat ÷ that also stands for division.

See@y ê x, Divide@y , xD, y ~Divide~ x , y ∏ x, FullForm@yêxDD
y

x

y

x

y

x

y

x
Times@Power@x, -1D, yD

0.5.5  Getting used to Mathematica 

Crucial notations to know are:

† x == a means the logical statement that x and a are identical

† In a body of text x = a will mean that x == a

† In a line of input x = a means that variable x gets the value a

† Result or Out[ ] refers to the result of the former evaluation. 

† A function call can be entered as f[x] or as x // f

† x /. r  means that substitution rules r are applied to x

† Lists are put in curly brackets  like {a,  b, c,  ...}.  The order within the list  may or

may not  be relevant,  depending upon context.  The default  situation is  that the

order does matter. Then {a, b, c, ...} can be a program with executable statements.

The above only gives the basic necessities that you require for understanding the

notation,  texts  and  programs  below.  If  you  encounter  problems  below  on  how

issues are implemented in Mathematica then it is advisable to dwell a bit longer on

them, since discovering more about Mathematica  is an investment that can pay off

in various subjects.  One key advantage is that you can write your own programs

once  you  become  comfortable  with  the  language.  A  good  way  to  look  at

Mathematica  is  to  regard  it  as  a  language  indeed  (and  not  just  a  computer

program).
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0.6  For teachers

When  you  are  a  teacher  (or  a  student  of  the  didactics  of  mathematics)  then  this

section is merely to draw your attention to Part V in the back of the book with the

didactic deliberations.  As a teacher you have these options: (1) first read the book

as a student, to see how it would come to them, without the deliberations in Part

V,  or  (2)  first  read  these  didactics  so  that  you  are  better  informed  but  less

equipped  to  trace  the  fresh  student,  or  (3)  jump  to  places  as  you  are  guided  by

curiosity.  The advice  is to do (1),  make notes,  and later  compare  your notes with

Part V. Before you decide be sure to read the Preface first.

Two small  examples  of  the  approach  in  this  book  may  be  given  so  that  you  can

make  a  better  informed  choice.  (1)  Traditionally  we  have  2½  for  two-and-a-half

and 2 a for two-times-a, such as 2 2  for twice the square root of two. A student

may  write  2½  as  2  ½  because  fixed  positions  are  hard  in  handwriting;  and  later

conclude 2 ½  = 1.  Where do we go wrong and what is  the solution ? We should

write 2 + ½ and accept that addition does not always simplify. In the same way 2 ×

2  =  4  simplifies  but  2 2 does  not.  The  notation  2½  may  not  be  a  problem  for

textbooks  with  fixed  positions  but  for  the  handwriting  by  students  it  is  a

minefield,  and  the  whole  problem  is  essentially  caused  by  a  mathematical

unawareness of the active or passive meaning of the plus-sign. (2) The traditional

definition of the cosine is Cos = a / h as the ratio of the adjacent to the hypotenuse.

Subsequently  Cos  is  treated  as  a  function  of  the  angle  and  transformed  into  a

formal definition Cos[j] = a / h. The standard format for defining a function like x-

squared however is f[x] = x2. In the traditional definition of Cos[j] there is no j on

the right hand side. It  is an inverse definition without the explanation that things

are taken inversely. It actually is an equation a = h Cos[j] and the issue is equation

solving  and not  defining  a  function.  If  you have  an angle  then you can calculate

the a / h ratio from the cosine. Also, textbooks fear Greek letters and write Cos[x] =

a / h with x for the angle or arc but in the standard setup on the unit circle a is on

the horizontal axis and is a value of x too, so that Cos[x] = x ? The better way is to

present  j  =  ArcX[x  /  h]  so  that  when  you  have  the  ratio  then  you  use  that  ArcX

function to find the arc - and the X in the name helps the identification. These are

just two examples of a longer list and some of the more accessible ones.
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1.  Geometry

 

 

1.1  Learning by doing 

You  are  now  out  on  a  conquest  of  the  plane.  You  have  been  familiar  with  the

plane  ever  since  someone  gave  you  a  pencil  and  a  piece  of  paper  to  draw  on.  It

can be exciting to look at it in a new way. The systematic way. This will give you a

jolt that can startle you. The idea of this part is that you first grasp the basics. The

best introduction to geometry is to do it.

The  name  geometry  derives  from  Greek  gaia  or  ge  for  land  and  metrein  for

measurement.  With  orgein  for  work  we  see  that  George  is  a  farmer  and  Georgia  a

region with farmers.

1.2  Lines

1.2.1  Intersecting lines and their angles

Regard the following two intersecting lines. They cut out four angles that we have

labeled  with  the  Greek  lowercase  letters  alpha,  beta,  gamma  and  delta  (see  the

beginning of the book).  An angle is the section of the plane between the two half

lines  from the point  of  intersection.  The angles  add up to  1,  standing for  the full

plane as our unit of measurement. Thus we have the equation a + b + g + d = 1.

a

b

g

d

When  we  fold  the  paper  through  the  point  of  intersection  we  can  let  the  lines

overlap,  so  that  we  conclude  that  a  =  g  and  b  =  d.  A  bit  more  involved  is  this

calculation  that  also  generates  the  insight  of  the  value  1/2.  Since  the  lines  are

straight and since straightness is not affected by the intersection, we have:

  1.  a + b = g + d = 1/2 since these are halves on the side of one line.

  2.  b + g = a + d = 1/2 since these are halves on the side of the other line.
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  3.  Subtraction gives a - g = g - a = 0, or a = g.

  4.  Thus also b = d.

Conclusion: when two lines intersect then the opposing angles are equal. 

NB. Where lines intersect is a point. Overlapping lines are the same one. A point is

location without size. A line is length without width. Two points define a line.

NB. When all angles are equal then a = b = 1/4 and these we call right angles. The

lines then are said to be perpendicular. A fun way to create perpendicular lines is

this:  Put  a  piece  of  paper  on  a  flat  surface.  Place  two  dots  on  it.  Fold  the  paper

such that the fold is exactly over the two dots. Then open the paper again and fold

the paper such that the lines of the first fold are neatly overlapping. There is your

perpendicular cross. (This uses 3D.)

1.2.2  Parallel lines and their angles

If  two  lines  do  not  intersect  then  they  are  parallel.  Take  two  parallel  lines

intersected by a third line. We label the angles, using the knowledge of opposing

angles.

a b

ab

g
d

gd

Since the lines are straight we have:

  1.  a + b = g + d = 1/2 since these are halves on the side of one line.

  2.  We see that a = g and b = d. For example if we cut the paper at halfway the 

intersecting line-section and move the two partial sheets over each other, then 

the lines overlap. (Seeing subsitutes for axioms or complex reasoning.)

  3.  Since a + b = 1/2 we also get a + d = b + g = 1/2. If this were not the case then the 

lines would eventually cross, and we have assumed that they are parallel. 

(Euclids fifth postulate.)

Conclusion: when parallel lines intersect with a third one then there are only two

angles, that add up to 1/2.

NB.  In  the  intersection  we  see  Z  and  F  shapes  that  help  identify  equal  angles.

Parallel lines can be denoted as k // m. 
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1.3  Angular shapes

1.3.1  The sum of angles in a triangle

A triangle  arises when there are three points not on a single line.  The connecting

line  sections  are  called  sides.  The  area  of  the  triangle  is  enclosed  by  those  sides.

We label the corners by upper case A, B and C, the opposing sides by lower case a,

b and c, and the angles with a, b and g. The triangle itself is identified by ABC. The

layout is shown on the left hand side.

A

B

a

b

c

a g

b

C A

B

a

b

c

a g

b
a g

C

When  we  draw  a  line  through  B  that  is  parallel  to  b  then  we  see  (inverted)  Z

shapes that allow us to identify angles of sizes a and g around b. We conclude that

a + b + g = 1/2. The angles within a triangle add up to half a plane.

A corollary is that when all angles are equal then each is 1/2 * 1/3 = 1/6. The sides

then  must  be  the  same  since  when  you  flip  it  around  the  results  neatly  overlap.

This is an equilateral triangle.

An isosceles triangle  has at  least  two equal sides, and then has at  least  two equal

angles  and  conversely.  For  example,  a   =  c  iff  a  =  g.  Iff  means  if  and  only  if  and

expresses an equivalence. Both necessary and sufficient conditions are satisfied. A

proof is to flip an isosceles triangle around and fit it onto itself: if the sides are the

same then the  angles  are  the  same,  and if  the  angles  are  the  same then the  sides

are the same.

NB.  An  angle  can  also  be  written  —A.  Or,  when  A  is  in  the  middle  of  more

intersecting  lines  as  —BAC  where  the  middle  letter  identifies  the  corner  point.  A

side can also be named by its corner points, for example AB = c.

1.3.2  Proportionality

If  line  sections  AB  and  BC  are  extended  to  BD  and  BE,  and  DE  //  AC  then  the

following sections are in proportion: BA : BD = BC : BE = AC : DE. 
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a g
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This is  rather  difficult  to prove.  A shortcut  is  to simply  define proportional  sides

as  such  that  all  sides  are  multiplied  with  the  same  factor.  But  then  we  have  to

prove that those triangles indeed exist (for the definition might be nonsense). For

now we rely  on our intuition  that  if  the proportionality  would not  hold then the

lines would cross somewhere. (If you think that is sloppy then you are right.)

TrianglePlot@α:1.2D gives the basic layout of the triangle, with names for corners,

angles HaL and sides. Option Projection Ø 1 shows 1 projection,

All shows all. Option Add Ø

True shows the proof that the angles add up to 1ê2
ProportionalTriangle-

Plot@D
shows proportionality

1.3.3  Polygons

Angular shapes are called polygons - from the Greek poly  for many and gonon for

angle, corner, vertex. Regular polygons are such that the vertices lie on a circle and

that the angles are equal. The triangle is actually a trigonon.

Taken from Mathematica’s documentation.

1.3.4  Calculation of circumference and area

Geometric  questions  can  be  about  circumference  Cir  and  area  or  surface  Sur.

Circumference has to do with addition. Area has to do with multiplication. 

† The surfaces of the separate rectangles add up to the grand total.

Ha + bL Hc + dL êê Expand
a c + a d + b c + b d
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For a rectangle with sides h and w the circumference is Cir = h + w + h + w = 2 (h +

w)  and  the  area  is  Sur  =  h  w.  When  we  multiply  height  and  width  by  a

proportionality factor p then the circumference rises with the same factor to 2 (h +

w) p, but the area rises by its square to h w p2.

An area is generally measured by rectangular shapes, unless we find other tricks.

For example, to find the area of a triangle we try to fit it into a rectangle. You may

try to do so yourself.  As a start,  take the diagonal  in the rectangle above and see

the two triangles. Then generalize. OK, the area of a triangle is Sur = h b / 2, where

h is the height of the triangle and b its base.

APlusBTimesCPlusDGO@a, b, c, d , optsD

is a graphics object that displays the multiplication of

Ha + bL Hc + dL as the surface of a rectangle with those sides
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1.4  The Pythagorean Theorem

1.4.1  The theorem

For a triangle  with a right angle at C  (a right triangle)  we find c2 = a2 + b2.  This

theorem is named after Pythagoras.

† Prove  the theorem.  Use the  triangle  to  complement  c2  to  a  larger  square.  Shift

the complementing triangles till the equality with the sum of squares is clear.

a2

b2
c2

a2

b2
c2

a2

b2

Pythagoras@a, b, optsD

gives a graphical proof of the Pythagorean Theorem for a right angled

triangle with short sides a and b, i.e. the theorem that the square of

the hypotenusa equals the sum of squares of the sides Ic2 = a2 + b2M.

1.4.2  Pythagoras and ratios

The historical link between Pythagoras and the theorem is a bit vague. But there is

a  good  link  to  Pythagoras  and  his  harmonies  and  theory  of  numbers.  This

concerns the idea that numbers could always be expressed as a ratio of integers, or

that  they  thus  are  “rational”.  With  the  theorem  we can  prove  that  this  is  not  so.

Hence next to the rational numbers there also are ir-rational numbers.

Note  what  is  involved.  We  take  a  particular  length  or  line  section  as  the  unit  of

measurement.  For  example  a  meter.  We  presume  that  we  can  measure  all  other

lengths as multiples or ratios of this unit of measurement. A ratio is n : d, with the
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lengths as multiples or ratios of this unit of measurement. A ratio is n : d, with the

numerator  and  denominator  taken  as  integer  numbers.  However,  such  ratios

appear to fail. Lengths can be expressed in lengths, but not in rational numbers.

Consider a square with sides 1. With the theorem we see that the diagonal is 2 .

The diagonal exists so this length must also exist. Suppose that it can be expressed

as  a  ratio  of  integers  in  the  numerator  and  denominator,  say  2 =  n  /  d.  When

both  n  and  d  would  be  even  then we  divide  both  by  2  to  simplify  and  we work

with the result. Hence we can assume that n and d cannot both be even. Squaring

gives 2 = n2/ d2  or n2  = 2 d2. Note that if p is an odd number then p2  is odd too. We

see that n2 is even (it is 2 times something) so that n cannot be odd. Thus it is even.

If n is even then there is some number z so that n = 2 z. Then n2  = 4 z2. We already

had n2  =  2 d2.  From this  it  follows that  d2  =  2  z2.  We conclude  that  d  is  even.  We

started  out  saying  that  n  and  d  cannot  both  be  even  but  now  we  have  deduced

that they are. Contradiction. The only exit route is that 2 cannot be expressed as

a ratio of two integer numbers.

The  ancient  Greeks  did  not  develop  a  theory  of  arithmetic  that  allowed  them  to

deal with this. They used the letters of their alphabet to denote their numbers and

this  is  rather  a  drawback.  Instead,  they  focussed  on  geometry  where  it  is  no

problem  to  work  with  lengths  like  2 .  The  core  of  Euclid’s  Elements  consists  of

the  theory  of  proportions  that  allows  him  to  measure  what  is  needed.  Euclids

“number”  then  is  a  ratio  of  line  sections  in  geometry.  For  us,  2 still  presents  a

challenge  when  you  consider  the  decimal  expansion.  The  mathematical

description of the continuum still  assumes a basic notion of what a continuum is,

as distinct from what we call “number sense”.
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1.5  The circle

1.5.1  The circle

A circle is a curved line such that all points are at the same distance to a common

center. The common distance is called the radius, here r. Practical  examples come

from a compass or from swinging something around an axle.

A diameter is a line section from one point on the circle passing through the center

onwards  to  the  other  side  of  the  circle.  This  graph  has  two  diameters  that  are

perpendicular,  i.e.  they create  four  equal  angles  each of  1/4.  We know that  those

exist,  creating  them  is  another  issue.  The  surface  of  the  circle  is  contained  in  the

encompassing square with sides 2r, thus 4 times the r2 squares. A lower boundary,

by eye, is 3 of those. Thus 3 r2 § surface § 4 r2.

r y

x

a

j

This  book  is  essentially  a  rewriting  of  this  short  paragraph  into  a  better

understanding of what we say here.

1.5.2  Two independent factors in a two dimensional plane

A first step is to put symbols at the elements in the graph. Consider an angle a in

the circle between the horizontal diameter and the drawn radius. Associated with

that angle is an arc j on the circle. Where the drawn radius meets the arc we take

a line parallel to the vertical diameter, and then see a triangle with sides r, y and x.

Properties are:

  1.  Angle a and arc j are directly dependent and related proportionally.

  2.  Given the right angle we have x2 + y2 = r2. PM. We use the word “projection” 

for the procedure of mapping some point perpendicular onto a line. 

  3.  We call s = y / x = s[a] the slope caused by a. The slope is the rise divided by the 

run. For example a 50% slope means that you have to climb 50 centimeter for 

every meter that you progress sideways. A mountain can have the same slope 
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every meter that you progress sideways. A mountain can have the same slope 

for a long while. If we divide x and y by r then the ratio (y / r) / (x / r) = y / x 

again. Due to proportionality r drops out.

  4.  When a and r change then j, x and y change. 

  5.  When x and y change then j, a and r change. 

It  appears  that  the  circle  has  only  two  independent  factors.  Since  there  are  two

independent  factors  we  say  that  the  plane  is  two-dimensional.  We  will  not  do

much  with  this  observation  until  a  later  chapter.  This  is  however  the  place  to

become aware of it and to record it for later reference.

We can express the dependencies in functions and their inverses. These are called

the  trigonometric  functions  (simply  because  there  is  a  triangle  involved:  tri,

gonon,  measurement).  We  will  discuss  these  functions  later.  We  now  proceed

with some geometric insights that use the circle.

PM. Elements of a circle are at http://demonstrations.wolfram.com/GeometricElementsOfACircle/

UnitCirclePlot@D

displays a unit circle, with radius r = 1, co-ordinates 8x, y<,
angle j in radian as the arc from 81, 0< to 8x, y<,
an inner circle with circumference 1,

and an angle a as the inner arc measured in Unit Turn or Unit Measure Around

HUMAL. Here x = Xur@aD = Cos@jD and y = Yur@aD = Sin@jD. Opts affect display

1.5.3  Using ruler and compass

Some handicraft is to use a compass to draw a circle. You can find a perpendicular

line by drawing two circles with centers on a base line. The line through the points

of  intersection  of  the  circles  is  perpendicular  to  that  base  line.  Normally  you

would  not  draw  full  circles  but  just  some  small  arcs  around  the  points  of

intersection. (Using a compass is 3D too but more in line with geometric tradition.)

Check http://demonstrations.wolfram.com/IndestructiblePerpendicularLines/
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1.5.4  The theorem by Thales

The theorem by Thales is on record as officially the first theorem in geometry. On

a  circle  we  take  two  points  on  a  diameter  and  one  not  so.  The  latter  has  a  right

angle.

A

B

r
a g

b

C
D

d

b'

a'

The  recipe  for  finding  a  proof  is:  write  down  all  that  you  know  and  with  some

thought  the  answer  pops  up.  The  proposition  is  depicted  in  the  left  graph.  The

right graph puts in all what we know, including the crucial radius. Then we find:

  1.  a + b + g = 1/2,    d + a' + b' = 1/2,     d + g + b + b' = 1/2   for all triangles

  2.  a + a' = 1/2 

  3.  ABC is isosceles because of the radius and thus b = g

  4.  ABD similary and thus b' = d

  5.  d + g + b + b’ = b + b' + b + b' = 1/2 gives b + b' = 1/4

ThalesTheoremPlot@
HNone, AllL ϕ:1.2D

with or without labels for angle j Hdefault 1.2L

1.5.5  Halving an angle

When two lines are given, how would you draw the line that bisects their angle ?

The  graph  to  the  left  is  pretty  empty  and  daunting  while  the  proof  on  the  right

may require some thought.
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D

B

C

A

Take the intersection of  the lines  as the center A  of a  circle  with arbitrary  radius.

We find points B and C. Thus ABC is an isosceles triangle. Take B as the center of a

circle with arbitrary radius (say the same). Take C as the center of a circle with the

same radius. Their intersection is at D. The line AD bisects the angle at A.

BisectionPlot@
None, a, bD

shows just two lines from the origin to a and b,

that form an angle that needs to be bisected

BisectionPlot@
Label, a, b, rD

shows the labelled solution by drawing arcs with radius

BisectionPlot@
All, a, b, rD

shows both in a GraphicsRow

1.5.6  Circumference and area of the circle

Calculation  of  circumference  and area  of  the  circle  is  a  bit  of  a  conundrum since

how can we find a rectangle to multiply the sides ?

Regarding  circles  with  the  same  center  but  different  radii  we  see  that  they  are

proportional.  If  you  do  not  believe  that  then  take  the  regular  polygons  that  fit

within, and use the proportions on the triangles within those (§1.3.2). Thus we can

use a proportionality  constant Q  such that the Cir =  r Q.  We use the Greek capital

theta  to  reflect  the  shape  of  a  circle.  A  circle  with  radius  r  =  1  thus  has  a

circumference that is precisely that proportionality constant Q.

If we want to measure Q empirically then we take a circle with radius 1 and cycle

it along a ruler. We find a value of approximately 6.28. Thus Q º 6.28.

Adapted from Stephen Wolfram http://demonstrations.wolfram.com/CircumferenceOfACircle/
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For  the  area  we  find  Sur  =  ½  r2  Q.  See  Chapter  9  for  the  proof.  Again:

circumference  is  proportional,  and  area  depends  upon  the  square  of  the

proportionality factor, in this case the radius.

In  geometry  we  frequently  do  not  specify  a  unit  of  measurement.  This  only

becomes relevant  for practical  application when the engineers take over from the

mathematicians.  Circumference  and  radius  can  then  be  measured  in  any  unit

(meters,  feet).  When  we  take  the  ratio  then  that  unit  or  measurement  drops  out

again  (Meter  /  Meter  =  1).  Thus  Q  can  be  taken  as  a  dimensionless  number.  Just

like everything in geometry tends to  be taken without  a unit  of  measurement.  In

another respect it is not dimensionless since ‘going around’ is a phenomenon of its

own. The issue is similar to the rate of interest. You put $100 in a bank and a year

later you get $105. The dimension seems Dollar / Dollar = 1 but actually there is a

time  difference  so  that  the  unit  of  measurement  of  the  5%  rate  of  interest  is  Per

Year = (1 / Year). The unit of Q can be Per Turn.

1.6  Measurement of angles and arcs

1.6.1  Angle and arc

Geometry is not  just  about lines but a  lot  of analysis concerns angles and arcs.  A

key contribution  of analytic  geometry is  that it  has found a precise measurement

of the latter.

In above diagram the circle turned only once. The depicted radius cycled over the

whole plane. We have been measuring angles as ray sections of the plane,  taking

the plane itself as the unit of measurement 1. This is equivalent to taking a turn of

the circle. It is conceptually more agreeable to do the latter. 

Thus  our  angles  a,  b,  ...  can  be  expressed  in  the  number  of  turns  of  a  circle.  For

example a half turn, a quarter turn, etcetera. 

Measuring turns is not so simple. Halving angles and halving again and again like

we have shown to be possible will get us far but we should be able to do better. A

neat approach is to regard a circle with radius · = 1 / Q. Then its circumference is

Cir = · Q = (1 / Q) Q = 1. That means that the fractions that we have been using for

the angles can also be located on this special  circle.  We now redefine angle  as the

arc  on  this  inner  circle.  Our  newly  defined  angle  is  an  arc  too,  but  at  a  special

location and with the neat property that a full turn has length 1.

Regard the circle diagram in subsection 1.5.1. For the outer circle we take r = 1. We

call  this the Unit Radius Circle,  or Unit Circle for short. Within this circle there is

drawn  another  much  smaller  circle,  with  a  radius  of  1  /  Q.  This  is  the  Unit

Circumference Circle, or the Angular Circle for short.  Note why this circle seems
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Circumference Circle, or the Angular Circle for short.  Note why this circle seems

so  small:  a  circle  with  a  circumference  of  about  1  meter  must  have  a  radius  of

about 16 cm.

Thus these definitions apply:

Definitions Angular Circle Unit Circle

Radius 1 ê Q 1

Circumference 1 Q

Arc a j = a Q

Angle a a

Q º 6.2831853071795 º 6.28 and r = 1 / Q º 0.1591549430918953 º 0.16 º 1/ 6.

Unit Circle = Unit Radius Circle. Angular Circle = Unit Circumference Circle.

1.6.2  Numerical values

Let us consider  the numerical  values  of the angle a  on the angular  circle  and the

arc j on the unit circle a bit closer. 

† Take the decimal fractions of the angle and compute the distance rolled.
a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Distance 0 0.63 1.26 1.88 2.51 3.14 3.77 4.4 5.03 5.65 6.28

† Take the distance rolled and compute the a. The distance steps are multiples of

r = 1. Included are the quarters of Q too.
Distance 0 1 1.57 2 3 3.14 4 4.71 5 6 6.28

a 0 0.16 0.25 0.32 0.48 0.5 0.64 0.75 0.8 0.95 1.

When we are interested in the distance rolled when r  = 1 then the data presented

in  the  second  table  are  relevant  and  then  the  distance  j  gives  the  relevant

information.  But  if  we  are  interested  in  distance  cycled  and  there  is  another

radius,  say  r  =  25,  then  a  and  j  remain  the  same  but  the  distance  now  is  25  j.

These tables thus are only relevant for the angular and unit circles.

AngleDistanceTable@
b:0, f:1, n:2D

uses the angles ranging from b to

factor f He.g. 1ê2L times 10 and rounds to n

DistanceAngleTable@
b:0, f:1, n:2D

uses the distances ranging from b to factor f He.g. 1ê2L
times 10 and quarters of Q = 2 p, and rounds to n

1.6.3  Traditional transforms of Q: degrees and radians

Relevant are the following traditional transforms of Q.

  1.  Sumerian astronomers divided the sky, a year and the circle in 360 parts, in 

days or degrees denoted as 360°. Turning around is 180° and a right turn is 
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days or degrees denoted as 360°. Turning around is 180° and a right turn is 

90°. The advantage is that common angles like the 24 hours of a day or the 12 

months per year or the 8 corners of the wind have integer values. Many 

typical values come from regular polygons, with regular steps in the cycle. A 

historical estimate of p = Q / 2 º 3 º 22/7 is used.

  2.  Modernity adopted the definition of radians or Rad, and calculates p to ever 

greater precision (it is not entirely clear when they have the courage to stop).

The following plot shows how radians are defined. One radian is the arc of length

1 on the unit circle. Just length but on an arc, and specifically on the unit circle so

that  there  are  Q  =  2p  radians  to  go  around.  Since  circles  are  proportional,  the

number of radians is given by the ratio of arc to radius. Regard a circle with r1 and

arc  d1  and  another  circle  with  r2  and  d2.  When  the  angles  are  the  same  then  the

radian measure is j  = d1/ r1  = d2/ r2. When r1  = 1 then j  = d1  is the arc on the unit

circle.  (Special  is  j  =  d1=  r1=  1.  The  graph  uses  d1=  r1  so  that  d2=  r2,  and  we  can

choose either as our unit of measurement.)

j
r1 r2

d1
d2

Below  we  will  give  a  deeper  comparison  between  the  various  standards  of

measurement.  Before  we  draw  a  conclusion  it  is  useful  to  better  know  what  is

involved. 

A quick comment now is that j in the circle above should rather be drawn on the

arc at r = 1 where it really is. For a = j / Q the ratio d[r] / r is also constant but the

angle a  is  then defined as a standard fraction 1 /  Q  of that ratio.  Users of radians

and p  commonly express results not only in radians but also as fractions of a full

turn around the circle and then divide by 2p too; but curiously this is not done for

the  unit  of  measurement.  Instead  of  dividing  each  time  it  seems  better  to  do  it

only once at the definition of the unit of measurement.

Let us  compare the measures numerically.  Above tables were for angle a  on the

angular circle and arc j on the unit circle, i.e. the distance around or rolling when

r  =  1.  Now  we  can  say  that  those  distance  values  are  also  radians.  Commonly

those  radian  values  are  expressed  as  multiples  or  fractions  of  p  rad.  Those

coefficients  still  have  only  meaning  in  terms  of  how  many  turns  are  made.  The

Sumerian  degrees  are  handy  since  they  use  integer  values,  where  we  would  use
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Sumerian  degrees  are  handy  since  they  use  integer  values,  where  we  would  use

percentages.

StandardAnglesTable@ TrueD

a 0
1

10

1

5

3

10

2

5

1

2

3

5

7

10

4

5

9

10
1

N@aD 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

N@aD % 0 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.

Deg 0 36 72 108 144 180 216 252 288 324 360

Rad j 0
p

5

2 p

5

3 p

5

4 p

5
p

6 p

5

7 p

5

8 p

5

9 p

5
2 p

N@RadD 0 0.63 1.26 1.88 2.51 3.14 3.77 4.4 5.03 5.65 6.28

Let us use the angles for months and corners of the wind as those are commonly

used  in  textbooks.  Not  all  fit  in  this  table  so  we  only  consider  a  half  plane.  The

choice for p  = Q  /  2 relates to the property that we may use half  of the values:  an

angle  above  the  horizontal  is  positive  while  an  angle  below  the  horizontal  is

negative.

a 0
1

12

1

8

1

6

1

4

1

3

3

8

5

12

1

2

N@aD 0 0.08 0.12 0.17 0.25 0.33 0.38 0.42 0.5

N@aD % 0 8.33 12.5 16.67 25. 33.33 37.5 41.67 50.

Deg 0 30 45 60 90 120 135 150 180

Rad j 0
p

6

p

4

p

3

p

2

2 p

3

3 p

4

5 p

6
p

N@RadD 0 0.52 0.79 1.05 1.57 2.09 2.36 2.62 3.14

The  different  measures  can  be  fully  translated  into  each  other.  There  is  no  issue

about  what  we  know  about  measuring  angles  (seen  as  sections  of  the  plane

between  intersecting  lines).  There  is  an  issue  though  on  what  is  agreeable  to  the

human mind and effective in education. The approach adopted here is to use a on

the angular circle as the angle.

StandardAnglesTable@decimalq:False, b:0, f:1, n:2D

gives the angles ranging from b to factor f He.g. 1ê2L
and rounds to n. If decimalq is True then decimal steps

DefinitionRadians@phi, rD

shows how radians are defined: phi is the arc, the radius of the first circle is 1,

and r > 1 is the radius of the second circle. phi =

d1êr1 = d2êr2 Hin this case r1 = 1 and r2 = rL, or the ratio of the section

of the circle with the radius. Since this ratio is constant for phi,

for whatever radius, we define phi as that ratio. With r1 = 1,

d1 are the radians. The whole circle has Q = 2 Pi radians
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1.7  Review and looking ahead

Above  gives  only  a  tiny  fraction  of  geometry  in  standard  course  books.  But

presently we are concerned with just the basics in order to continue with analytic

geometry. The key aspects of an introduction to geometry have been covered:

  1.  There are point and line but also length (line section) and area.

  2.  Proportionality.

  3.  Angles arise in angular shapes but there are also curved shapes.

  4.  The circle combines notions of both distance (points at equal distance) and 

angle and arc. 

  5.  There is the notion of proof: definitions, theorems and proofs. Understanding 

the reason why something is as it is removes the tedium of mere memorizing.

  6.  There is arithmetic with calculation. We may prove that something like an 

intersection exists but calculating where it actually is is a different issue. It is 

unclear how we got the value of Q º 6.28.

The next step is to introduce more involved calculation and algebra.
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2.  Arithmetic and algebra

 

 

2.1  Numbers and symbols

Arithmetic and algebra are linked since (1) algebra is an abstraction of arithmetic

calculation, and (2) calculation can be seen as elementary algebra.  The basic steps

are  all  the  same,  with  numbers  or  with  unknowns  or  variables.  A  good

educational foundation in arithmetic helps doing algebra later.

† Examples of addition and multiplication.

Ha + bL Hc + dL == e êê Expand
a c + a d + b c + b d � e

H2 x + 1L Hx + 4L == 25 êê Expand

2 x2 + 9 x + 4 � 25

2.2  Approximation and rounding off

2.2.1  Different formats cause choice

The  number  1/3  is  a  pure  number  that  can  be  approximated  in  a  decimal

expansion  as  0.33333...  Putting  the  dots  there  indicates  that  the  3’s  continue

forever.  Since  we  cannot  easily  work  with  those  dots  we  round  off  to  some

accuracy.  The  accuracy  is  the  number  of  digits  behind  the  decimal  dot.  For

example  0.3333  is  an  approximation  of  1/3  with  an  accuracy  of  4.  A  number  is

called pure when it has infinite accuracy.

When the true number is 0.3333 then we can also say that 1/3 is an approximation

of  the  latter.  What  is  an  approximation  depends  upon  the  target,  and  it  is  not

correct  to  identify  decimal  numbers  with  approximation  itself.  It  is  immaterial

whether we write 1/4 = 25/100 = 0.25 since these are all equivalent expressions of a

pure  number  (a  quarter).  For  an  approximation  we use  other  indicators  than the

decimal dot.

This  differs  from  conventions  in  computer  science  where  decimal  numbers  are

45



This  differs  from  conventions  in  computer  science  where  decimal  numbers  are

considered to be approximate by definition.

† Mathematica distinguishes between equality in approximate numerical form and

identity in terms of form.

See@ 0.4 == 2 ê5, 0.4 === 2 ê5D
True False

† Mathematica  assumes  infinite  accuracy  for  quotients  and  state  dependent

accuracy for decimals (e.g. computer precision).

See@Accuracy@2 ê5D, Accuracy@0.4D D
¶ 16.3525

In education it is better however to accept 0.4 as an expression of infinite accuracy

too  and  just  4/10  written  in  decimal  form.  We  need  a  separate  notation  for  an

approximate number. To understand the issue let us first look at computers. There

is  a  whole  science  on  how  to  implement  numbers  on  a  computer.  Students  use

calculators  and must  understand essentials,  and our overal  use of  numbers  must

be consistent.

2.2.2  On the computer

In computer  calculations errors in accuracy can multiply  faster than the numbers

themselves. For example, 0.2 * 11 - 2 clearly must be 0.2 again. When we write this

as a function and use the result upon itself again in another step on the computer,

then this may seem to go well for a decent number of steps but at some point the

numerical inaccuracy takes over.

† Nestlist uses a startvalue and then applies the function to its former results.

f@x_D := x * 11 - 2; NestList@f, 0.2, 20D
80.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.200005, 0.200051,
0.200557, 0.206132, 0.267457, 0.942028, 8.36231, 89.9854, 987.84, 10 864.2<

Mathematica allows to include the accuracy in a number, for example 0.2`20 means

that there are 19 zeros included. This works OK for a while but eventually we still

land at 0. Working with pure number 1/5 remains best. 

f@x_D := x * 11 - 2; NestList@f, 0.2`20, 20D
90.20000000000000000000 , 0.2000000000000000000 , 0.200000000000000000 ,
0.20000000000000000 , 0.2000000000000000 , 0.200000000000000 , 0.20000000000000,

0.2000000000000, 0.200000000000, 0.20000000000, 0.2000000000, 0.200000000,

0.20000000, 0.2000000, 0.200000, 0.20000, 0.2000, 0.20, 0.2, 0.µ10-1, 0.=
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f@x_D := x * 11 - 2; NestList@f, 1 ê5, 20D
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Thus  importantly:  computer  languages  use  decimal  numbers  as  indicators  of

approximate  numbers,  and  even  Mathematica  follows  that  convention.  When  for

us 0.2 is a pure number and a convenient manner of writing 2/10 then for accurate

computing  we  must  make  sure  that  the  computer  input  is  not  0.2  but  2/10.  In

Mathematica  we can use Rationalize,  in  Excel we better  use 2  * 11 - 20 and divide

those results by 10 to 0.2 if needed.

The example about 0.2 * 11 - 2 was presented by Jon McLoone of WRI.

See the computer arithmetic package tutorial in Mathematica's help function.

2.2.3  Denoting an approximation

What  is  generally  missing  from  mathematical  textbooks  and  computers  is  a

standard  way  to  express  how  a  pure  number  like  0.25  differs  from  a  decimal

approximate number 0.25...  where we have rounded off to 2 digits.  The lingering

dots are not deemed acceptable.

A solution suggestion here is to use a tilde (~) on the last digit to indicate that the

number concerns an approximation. Thus we write x = 0.25è  when 0.25 is the pure

number  and  x  only  an  approximation.  We  can  also  use  the  position  under  or

above to indicate the kind of approximation. 

† Put a tilde (~) over (under) the last digit if the true value lies above (below) the

approximation. NB. These are Strings and not Numeric.

8NTilde@0.254591, 2D, NTilde@0.2494591, 2D<

90.25è , 0.25è=

In  some  European  nations,  exams  are  graded  on  a  scale  from  0  to  10.  You  pass

when the grade is at least 5.5 and this is rounded to 6. Some students like to round

5.48  to  5.5  and  then  to  6.  The  tilde  helps  to  remind  us  that  one  5.5  is  not  quite

another 5.5.

5.48 5.5è 5

5.49 5.5è 5

5.5 5.5 6

5.51 5.5
è
6

5.52 5.5
è
6

A  drawback  is  that  many  tildes  can  be  written  since  a  lot  of  numbers  are

approximations.  This  must  be  balanced  with  the  use  of  fractions  when those  are

awkward.  In  general  we  write  the  easiest  form  as  long  as  we  are  certain  that

people will get what we mean.
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PM. This  is  not  just  a  mathematical  issue:  when we measure  the  length  of  7  cars

and arrive  at  an average of 3.15 meters  then it  is  clear that  rounding off to  3.2 m

also  involves  measurement  error.  In  physics  there  are  rules  for  handling  the

interval but we neglect those here.

PM.  A common way to  try  to  express  approximation  is  to  say  that  x  =  0.25  is  an

identity and that x  º  0.25 is an approximation.  This is  confusing however.  Is 0.25

now a pure number 1/4 and only x  the approximation,  or  is  it  intended that  both

are approximations (as in the computer) ? This traditional notation puts emphasis

on x  and the equality  sign while  the  issue actually  lies  with  the number  that  has

been  rounded  off.  However,  when  we  thus  establish  and  adopt  the  rule  that  a

decimal  number  always  is  pure,  at  least  in  text  and  not  for  computers,  then

writing x º 0.25 is no longer confusing since we then know that the approximation

lies with x and not in 0.25. The tilde then comes in handy only in case of doubt or

possibly when translating to and from a computer.  When x º  0.25 then x = 0.25 =

1/4 is not excluded, while in x = 0.25è  it no longer can be the case that x = 0.25 = 1/4.

NRoundAt@x, n:0D rounds number x to n decimal places

NRoundAt@expr, n:0D rounds numbers in expr to n decimal places

NTilde@expr, n:0D is like NRoundAt and puts a tilde H~L over HunderL
the last digit if the true value lies above HbelowL the

approximation. Output is a String and not Numeric.

Repeated application NRoundAtTilde[NRoundAtTilde[x, 2]] does not work since input must be Numeric and not a String. If 

Mathematica does not show the number of digits, use N[x, n].

2.3  Verb and noun

2.3.1  Active versus passive

English  distinguishes  between  verbs  and  nouns,  like  riding  and  a  ride.

Mathematical  discourse  does  so  too  but  mathematical  language  tends  to  use  the

same word, leaving the interpretation to context. An operator can be used both as

an  instruction  (a  verb,  an  activity)  to  do  something,  or  as  a  result  (a  noun,

something passive).

2.3.2  The square root and approximation

In  this  book  we  tend  to  use  integers  with  few  digits  for  mental  calculations  and

use the computer  for more involved numbers.  It  still  is  an issue how we will  use

the different operators. 
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† Evaluating  2.  gives  a  decimal  number.  The  square  root  here  is  a  verb,  an

activity  of calculation and the result  is  an approximation up to some accuracy.

This result is again a noun.

† Evaluating 2  again gives 2 . It is a pure number, with infinite accuracy. It is

a noun since no activity has been performed (except checking that none will be

performed).

SeeB 2. , 2 , NB 2 F F

1.41421 2 1.41421

Students new to the issue tend to regard 1.41421 as more accurate than 2 . When

they see 2  then they become restless and want to compute it  on the calculator,

and  only  when it  has  been  calculated  and  replaced  with  a  decimal  number  then

they have a  sense of  accomplishment.  Engineers  have  the  same habit.  They have

to  build  things  and thus  have  to  know where  the  number  is  located  on  the  axis.

Mathematicians  tend  to  be  more  comfortable  with  2  since  it  is  infinitely

accurate. When squared it precisely gives 2, while 1.41421 squared gives an error. 

1.41421^2

1.99999

This  book  has  a  mathematical  inclination  but  uses  decimals  when  they  support

understanding.

2.3.3  Proportion, ratio, division, quotient, fraction and decimal number

2.3.3.1  Principle

The  distinction  between  verb  and  noun  also  arises  with  respect  to  proportion,

ratio,  division,  quotient,  fraction  and  number.  (1)  Number  is  one-dimensional,

ratio  is  two-dimensional.  (2)  Number  is  a  result  and  division  is  a  process.  The

number line is written as �, the set of real numbers. The objective of division is to

associate a ratio with a location on the number line.

This  section  gives  much  attention  to  this  subject  because  of  its  importance  for

calculus  later  on.  How to deal  with  seeming divisions  by zero  ?  This  section  can

best be read as a review of what you learned in elementary school.  The idea and

technique will  have  become automatic  but  now we rekindle  awareness.  Division

is  a  process,  with  ratio  as  input,  number  as  output,  and  a  whole  technique

inbetween, with all kinds of terms for the intermediate steps. The decimal number

2.5 or the mixed number  2½ have an integer part  and a fractional  part.  A proper

fraction is less than one, which is the fraction used in the mixed number. But once

you  create  that  concept  of  fraction  then  there  arises  the  notion  of  an  improper
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you  create  that  concept  of  fraction  then  there  arises  the  notion  of  an  improper

fraction like 5/2, which causes some duplicity in terms with ratio.

The  ratio  1  :  7  associates  with  the  number  and  fraction  1/7.  Apparently  in  some

Asian systems of  arithmetic  the fraction does not  appear altogether  since there is

no value added in going from “one-to-seven” to “one-seventh”. That is, the value

added is in pure number theory as mathematicians discovered but not in daily life

for  mental  arithmetic.  That  Asian  system  is  Euclid’s  two-dimensional  ratio,  but

without  his  complex  Theory  of  Proportions.  It  may  be  more  efficient  to  use  only

ratio  and  decimal  number  (and  drop  fractions)  (but  this  conflicts  with  how

computers treat decimals).

Van  Hiele  (1973:196-204)  suggests  that  fractions  are  overrated  in  elementary

school  (and  vectors  underrated).  Exercises  like  adding  11/56  and  31/41  would

have  little  value  both  for  mathematical  insight  and  daily  life  so  that  it  does  not

come  as  a  surprise  that  what  is  learned  is  quickly  forgotten.  Instead  of  a  /  b  it

might  be  better  to  consider  a  *  b-1.   The  latter  would  not  be  a  mere  step  for

example  in  the  transformation  to  a  decimal  notation  but  would  amount  to  an

entire  elimination  of  the  fractional  sign.  Interestingly,  within  Mathematica,  the

FullForm of a / b already is a * b-1. My suggestion here is to employ a / b as an easy

notation and indeed with that kind of interpretation, and thus without the need of

immediate calculation (like long division).

PM.  Henry  Gurr:  “The  semester  long  effort  to  move  the  students  toward  a

generalized  and  expanded  understanding  of  proportion,  exposes/reveals  those

students  who for  a  variety  of  reasons can  not  or  will  not  move  in  that  direction.

There  appears  to  be  a  “Barrier”.  There  is,  however,  a  successful  way  to

“penetrate”  the  barrier  and  move  students  toward  “deeper”  understanding  of

proportion,  a  topic  to  which  we  now  turn.  Increasing  Student  Understanding  of

Proportion  and  Proportionality  Constants  Through  the  Table  of  Proportional

Quantities.”

http://www.usca.edu/math/~mathdept/hsg/ProportionPaperV03.html

http://www.usca.edu/math/~mathdept/hsg/FallSemesterTableProportionQuantityFig3.html

There however is a linguistic soup to be digested before facing up that barrier.

2.3.3.2  Watch the dimensions, the order and the whole

If  the  dimensions  (e.g.  gram,  meter)  in  a  ratio  are  the  same  then  the  result  of

division is a dimensionless number; if they differ then the result is a rate.

When  we  take  5  minutes  to  fill  2  buckets  with  water  then  the  process  has  2/5

buckets  per  minute  and  if  the  cause  is  time  T  and  the  effect  is  the  number  of

buckets B, then the relation is B = 2/5 T.

Simply  saying  that  2  :  5  can  be  written  as  2/5  is  uninformative  as  to  what  is  at

hand  and  what  the  relation  between  cause  and  effect  is.  Here  2  units  of  effect
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hand  and  what  the  relation  between  cause  and  effect  is.  Here  2  units  of  effect

require 5 units of cause, but we discussed it in a 5 : 2 ratio.

When  we  make  bread  and  mix  5  parts  flour,  the  main  ingredient,  with  2  parts

water,  the  parts  or  shares  are  2/7  and  5/7.  Mixing  is  a  different  kind  of  process,

with ambiguous cause and effect.

An odds  ratio  gives  probability  of  winning versus probability  of  losing.  It  is  like

mixing.

Let us exchange 5 apples for 2 bananas on the market.  The quantities are qa  = 5 a

and qb  = 2 b where the a and b give the dimensions of the numbers. The prices are

pa  =  x  $/a  and  pb  =  y  $/b  in  dollars  per  unit.  The  transaction  equation  in  money

values is pa  qa  =  pb  qb.  The latter  gives 5 x $ = 2 y $ or x  /  y  = 2 /  5.  If  we set the

price  of  apples  at  $1  then  x  =  1  and  y  =  5/2  or  pb=  2½  $/b.  The  exchange  ratio  is

expressed in output (receiving) versus input (sending) or output/input = 2 b / (5 a)

= 2/5 (b/a). The input/output price ratio is pa / pb = x $/a / (y $/b) = (x / y) * (b / a) = (2

b)  /  (5 a), or the exchange ratio again.  It  is  a bit  ambiguous what cause and effect

are: the desire to sell or the desire to buy.

2.3.3.3  Input and output of the process of division

Ratio is the input of division. Number is the result of division, if it succeeds. When

variables  like  length  and  width  of  a  rectangle  are  in  proportion  then  their

numerical values are divided, not the concepts themselves. 

† A  number  is  a  one-dimensional  concept.  2/5  is  identically  equal  to  4/10;  and

depending  upon  definition  also  to  0.4.  Rational  numbers  can  be  found from  a

ratio of integers. Irrational numbers cannot be found from such ratio.

† A  ratio  is  a  two-dimensional  concept,  with  numerator  and  denominator  as

separate and independent phenomena. A ratio of 2 to 5 is equivalent to a ratio

of 4 to 10: equivalence rather than equality by identity. The elements in the ratio

are still separately relevant and accessible for discussion.

Consider a  van and a bus with passengers going to Amsterdam or  Rotterdam.  A

ratio of 2 to 5 in the van is seen as different from the ratio of  4 to 10 in the larger

bus,  see  the  tickets  that  have  to  be  checked  and  note  that  the  numbers  involved

are  only  discovered  along  the  way  while  checking.  A  ratio  may  however  be

simplified  to  find  the  equivalence.  Two  equivalent  ratios  are  said  to  be

proportional. If it takes 10 minutes to fill 4 buckets then this is proportional to the

5 minutes that it took for 2 buckets. At first it may seem a bit curious to make such

a fuss about 2/5 versus 4/10 but when it  is accepted that these are really different

points of data then it starts making some sense.

The  term  ratio  is  the  Latin  translation  of  Euclid’s  logos,  meaning  reason  but  also

reckoning or computation. A computer used to be a person doing calculations but
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reckoning or computation. A computer used to be a person doing calculations but

that  job  and  name  have  been  transferrd  to  machines  nowadays.  Calculation  can

also be seen as algebra  and reasoning indeed.  Ratios  are  Euclid’s  numbers,  as  he

did not have our methods available. Expressed a bit crude and unrespectful: for a

right triangle with short sides 1 and long side 2  and another triangle scaled up

with  factor  2,  Euclid  rather  states  that  they  are  in  proportion,  instead  of  that  its

long  side  is  2 2  which  might  be  found  on  the  calculator.  When  you  are  a

geometer  and  only  know  rational  numbers  then  those  irrational  numbers  are

difficult to handle. Education is still struggling with this legacy of always looking

for  proportions.  Mathematicians  will  define  radians  as  the  ratio  of  arc  to  radius,

while  an  engineer  will  normalize  to  one  radian  as  one  unit  length  on  the  unit

circle.

2.3.3.4  Technical terms for division itself

The operational terms describe the process of going from a ratio to an equivalence

and  then  normalize  to  a  number.  These  operational  terms  show  up  in  teaching;

and teaching tends to create names for all the small steps.

† Division is an active process. For example: long division.

4 ê 500 \ 125

4

10

8

20

20

0

See Beck http://library.wolfram.com/infocenter/Courseware/140/

† A  quotient  in  elementary  school:  the  result  of  dividing  dividend  by  divisor,

especially when that result is an integer. In 30 ÷ 3 the quotient is 10. A quotient

is  a  noun  and  a  one-dimensional  number.  Quotient  can  be  different  from

fraction  if  it  is  rounded down to  the  nearest  integer.  Mathematica's Quotient  is

equivalent  to  Floor@m ê nD  and  thus  always  takes  the  integer  part,  rounding

down. Fitting people into a bus, you round down. Buying cans of paint for your

wall you round up however.

† Fraction  =  numerator  /  denominator.  A  fraction  is  a  noun  and  a  one-

dimensional number. 

† There  is  duplicity  of  terms  for  quotient  and  fraction  except  for  (a)  the

distinction between proper and improper fractions, (b) proper fractions occur in

the  mixed  number  2½,  (c)  simplification  in  division:  If  division  may  also  be

written as n / d then a fraction is a quotient not rounded down and left standing
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written as n / d then a fraction is a quotient not rounded down and left standing

when it can no longer be simplified. 

† A proper  fraction is intended for  values  below 1.  As it  says:  part  of  a  whole.  A

number is split  in the integer part  and the fractional  part.  An improper fraction

has  denominator  larger  than  numerator,  like  5  /  2.  The  form  2½  is  a  mixed

number  and  consists  of  integer  and  fraction,  and  equals  the  improper  fraction

5/2.

† A division  of  4  by  10  can  be  simplified  into  2  by  5,  still  two-dimensional,  but

then into one-dimensional noun and fraction 2/5. Here 1/2 can also be expressed

in small letters as ½ or as a decimal number 0.5 (see above on approximation).

NB. The step of rounding down the quotient is not adopted universally so there is

duplicity  with fraction.  Given this  duplicity  there is  a shift  in  meaning.  Speaking

about the quotient 4/25 we tend to mean the form and speaking about the fraction

4/25 we tend to mean the number. This only happens when the form a / b is present

so that both aspects indeed can be identified. This book hence regards quotient as

the form of the formula.

NB.  The  exercise  to  teach  kids  at  elementary  school  to  write  mixed  numbers

breaks down a bit  when they at a later age learn about irrational  numbers like Q.

The accurate number 2 + Q/4 is hardly expressible in a mixed number with proper

fraction.

2.3.3.5  Notation of a mixed number

The situation is complicated by the notation. Convention has that “two and a half”

is denoted as 2½  and not as 2 + ½ (what the linguistic  expression says). When we

compare with 2 2 then we expect to multiply, but 2½ =
?

 2 * ½ = 1. A computer has

fixed positions and in typescript the expression 2½ seems recognizable enough, so

that we can learn the two different codings.  Handwriting can be sloppy however

and  we  might  leave  a  small  space  between  the  2  and  the  ½.  Hence  this  book

adopts this notation:

† 5 / 2 = 2 + ½ so that addition can be a noun and a verb (like the square root). It

may be called a fractional number form (and it still is a rational number).

† 2 + Q/4 is adequate as well even though Q/4 is not a proper fraction.

† The Mathematica standard notation of 5/2 that does not simplify. 

a Hb + 5 ê2 L

a b +
5

2
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† Integer part and fractional part.

8num = 5 ê2, IntegerPart@numD, FractionalPart@numD<

:5
2
, 2,

1

2
>

Mathematica  has  the  symbol  \[ImplicitPlus]  that  allows  the  formatting  of  mixed

fractions in input; however, output is a ratio again.

2
1

2

5

2

New included routines are RationalHold and Fraction. RationalHold puts a mixed

number addition into Hold, and Fraction puts it into a String.

RationalHold@exprD puts all Rational@x, yD in expr into

HoldForm@IntegerPart@exprD + FractionalPart@exprDD
Fraction@exprD Fraction@xD = ToFraction@FromFraction@xDD
ToFraction@numberD solves into fractional notation,

e.g. 9ê2 = 4 1ê2, and puts this into a String

ToFraction@exprD turns all rational expressions into fractional notation. Use

Rationalize first if you want to turn Reals into Rationals

FromFraction@stringD assumes a string with only fractional notation,

e.g. 4 1ê2 instead of 9ê2, and solves into Mathematica standard

notation. The fractions must be denoted using the \! notation

FromFraction@exprD applies FromFraction to any String in expr

RationalHold and ReleaseHold are the better formats. Division[x, y] can be used when Indeterminate stands for missing 

data. 

† Routine  RationalHold  keeps  the  fractional  part  intact  so  that  addition  is  not

only a verb but also a noun.

a Hb + 5 ê2 L êê RationalHold

a b + 2 +
1

2

Result êê FullForm
Times@a, Plus@b, HoldForm@Plus@2, Rational@1, 2DDDDD
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† This  is  the  standard  confusing  notation  where  addition  seems  like

multiplication.  The mixed number is put in a string so that it does not actually

multiply (whence we read that it should be a mixed number).

Fraction@a Hb + 5 ê2 LD

a 2
1

2
+ b

Result êê FullForm
Times@a, Plus@" 2\!\H1\ê2\L", bDD

2.3.3.6  Proportion

Merriam-Webster on proportion has:

  1.  harmonious relation of parts to each other or to the whole (see balance, symmetry)

  2.  proper or equal share <each did her proportion of the work> (see also quota, percentage)

  3.  the relation of one part to another or to the whole with respect to magnitude, quantity or 

degree: Ratio

  4.  see size, dimension

  5.  a statement of equality between two ratios in which the first of four terms divided by the 

second equals the third divided by the fourth (as in 4/2 = 10/5) - (...)

Some hold that in mathematics  only the last holds but this is  not quite true since

proportion can be used as share and ratio.

Thus, in case 3: If P and Q are in proportion, expressed as P to Q  or P ∂ Q or P ›

Q,  then P :  Q  is  their ratio.  The ratio  then has numerical  value P / Q  which is the

proportionality constant. 

Thus,  in  case  5:  (a)  it  is  not  equality  of  ratios  but  equivalence,  (b)  two rectangles

are in  proportion  when L1  :  W1  ›  L2  :  W2.  This  can be  reduced to  a  single  ratio

again.

Proportions are important for dealing with reality. They can be handled easily but

it requires some training. There are two reasons why proportions feature strongly

in science and mathematics education:

† Students appear to have difficulty in manipulating the terms:

a

b
==

c

d
ñ a ==

b c

d
ñ a d == b c ñ

a

c
==

b

d
ñ

d

b
==

c

a

† There  is  Euclid’s  Theory  of  Proportions  as  a  more  primitive  theory  and

precursor  to  modern  arithmetic.  It  is  geometry  before  analytic  geometry.  Our

culture  and  language  is  infused  with  this  traditional  geometrical  approach  of
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culture  and  language  is  infused  with  this  traditional  geometrical  approach  of

always  looking  for  proportions.  We  are  not  adapted  yet  to  our  advance  in

numerical capabilities.

Fortunately,  there  is  much  equivalence  between  proportion,  ratio,  division,

quotient,  and  fraction,  and  thus  we  can  often  exploit  these  terms  for  linguistic

variation in text editing  just  to create more appealing  texts.  Henceforth this book

uses ratio as a more beautiful word than fraction or quotient, and we write a / b. If

we intend the Greek Theory of Proportions then we support this by writing a : b. 

NB. This chapter gives much attention to this subject because of its importance for

calculus later on. How to deal with seeming divisions by zero ?

2.3.4  Active division and the dynamic quotient

2.3.4.1  Going from arithmetic to algebra

There  is  a  difference  between  numeric  2  /  2  =  1  and  algebraic  a  /  a  =  1  when

possibly  a   =  0:  but  curiously  the  same  slash  is  used.  Division  is  a  verb  and  an

active process while a fraction is a noun and passive result, but with algebra there

is  a  small  but  important  difference  in  situation,  since  algebra  might  leave  the

process incomplete  since no number  is  specified.  Let  us extend division  with the

handling of algebra: 

† a // b will be the dynamic quotient. The process of division forks out into the two

suboperations, either for numbers or for variables. 

Thus  5/2  is  a  result  and  improper  fraction,  and  may  still  be  simplified  into  the

fractional number form, but when we want to express that the focus should be on

activity then we use 5 // 2, and then we do not know yet of any result and we still

have to find out whether it indeed is an improper fraction or not. Since division is

a dynamic or active process by itself this new procedure cannot be called dynamic

division.  It  may  be  ambiguous  for  the  term  quotient  whether  the  result  must  be

rounded down but in this book we don’t do so. Hence we can use the term. Note

that we might use the term ratio again but given the historical  burden we do not

do  so.  A  ratio  is  not  necessarily  expressed  as  a  fraction  while  with  the  dynamic

quotient we try to do so.

PM.  In Mathematica  f @xD  can also  be written  as  x  //  f  but  in  this  case we presume

that  it  is  clear  that  f  is  a  function  so that  the confusion does not  arise  or  is  easily

resolved.

PM.  In  Mathematica  we  do  not  need  a  special  symbol  for  the  dynamic  quotient

since it is merely simplification:
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a ê a êê Simplify
1

2.3.4.2  Division by zero ?

What about the danger of dividing by zero ? When 3 x = 5 x then the solution is x =

0. If we divide both sides by x then we get 3 x / x = 5 x / x or 3 = 5. Such problems

arise  easily  with  more  complicated  formulas  when  the  horrors  of  simplification

are not easily seen.

To make it strict, let y / x be as commonly used and the dynamic quotient y // x be

the following process or program:

 y  //  x  ª  {  y  /  x,  unless  x  is  a  variable  and  then:  assume  x  ∫  0,  simplify  the

expression y / x, declare the result valid also for the domain extension x = 0 }. 

As  always:  it  depends  upon  the  application  whether  this  operation  is  valid.  We

cannot just simply assume that we can always do this but have to check whether it

applies.

For example: From 3 x = 5 x we still cannot go to 3 x // x = 5 x // x since again 3 = 5.

The  reason  is  that  3  x  =  5  x  implies  that  x  =  0  or  that  x  is  a  constant  and  not  a

variable.  Hence  we  would  have  3  x  //  0  =  5  x  //  0  which  still  is  the  standard

division,  and division by zero is undefined. The acute distinction is between true

variables and seeming variables. 

For  example:  The  expression  
x y

x2 + y2
 is  undefined  for  x  =  0  and  y  =  0.  When  we

consider y = a x for the case of proportional  dependence then however a nonzero

expression arises.

x y

x2 + y2
Ø

a x2

a2 x2 + x2
Ø

a

a2 + 1

This  simplification  however  assumes  that  there  really  is  such  dependence.  For  a

value at x = 0 and y = 0 we also would need a particular value of a for, as it stands

now, any a would do.

2.3.4.3  Handling the domain

Regard the quotient Q = I1 - x2M ë H1 - xL. Since 1 – x2  = (1 + x)(1 - x) we find that

Q  simplifies  to  1  +  x.   We  namely  eliminate  1  -  x  from  both  numerator  and

denominator.  This  does  not  necessarily  mean  a  division,  since  there  can  be

simplification in the two separate terms, and actually a revision of what we really

divide.  It  may  also  mean  that  we  indeed  adjust  the  domain:  then  simplification

becomes an alternative to limit theory in finding a value where division by zero is
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becomes an alternative to limit theory in finding a value where division by zero is

undefined.

† Standard simplification.

I1 - x2M ë H1 - xL êê Simplify
x + 1

Of course,  dividing  by 1 -  x  is  tricky  when x = 1  since then we divide by zero.  It

thus depends what we want with this Q. After the simplification, x = 1 gives Q = 2.

The  traditional  approach  requires  us  to  specify  the  two  separate  cases.  The

dynamic quotient is faster.

Traditional definition overload With the dynamic quotient

I1 - x2M ë H1 - xL = 1 + x if x ∫ 1 I1 - x2M êê H1 - xL = 1 + x

2 if x = 1

In the traditional approach we also would use limit theory (not explained here) to

determine  that  Q Ø  2  in  the  limit  for  xØ  1,  while  with  the  dynamic  quotient  we

simply extend the domain. The crux is that we rely on the algebraic form to find a

value  where  the  domain  used  to  be  undefined.  We  will  use  this  property  in

calculus later on.

2.4  Multiplication again

2.4.1  Multiplication of terms

Say  that  you  want  to  multiply  (1  +  1/2)  with  (2  +  3/4).  Our  strategy  is  to  let

Mathematica take the tedium of calculation.

† This is how Mathematica does it.

8term@1D = H1 + 1 ê2L, term@2D = H2 + 3 ê4L, term@1D * term@2D<

:3
2
,
11

4
,
33

8
>

Mathematica’s strategy on 1 + 1/2 is to use the same denominator,  so that 2/2 + 1/2

becomes 3/2.  In  the  same way 2 +  3/4 =  8/4 +  3/4 =  11/4.  For  multiplication  it  is  a

fast method indeed.

† The  conventional  way  of  writing  fractions  is  dangerous  for  handwriting  and

does not fit the development of algebra (a + b)(c+ d) later on.

Fraction@term@1DD Fraction@term@2DD

1
1

2
2
3

4
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† This seems clearer, see also the graph we already presented in §1.3.4.

RationalHold@term@1DD RationalHold@term@2DD

1 +
1

2
2 +

3

4

† PM. This should not be a surprise. Complex numbers (above) use it a lot.

Ha + bL Ha - bL êê Expand

a2 - b2

2.4.2  The solution of squares

Suppose  that  we  have  a  square  with  a  surface  of  2  square  meters.  What  are  the

sides of this square ? This is  an inverse question. A square has equal sides,  let us

call one side x, thus x2 = 2. Finding x is inverse to surface calculation.

† The routine Solve gives the answer. NSolve would give numbers.

SolveAx2 == 2, xE

::xØ - 2 >, :xØ 2 >>

There is  again  the distinction  between verb  versus noun.  2  is  a  result,  a  noun.

Solving an equation is an active process, a verb, and now generates two solutions. 

New students tend to think in this way: Seeing x2 = 2 they conclude that x must be

the  square  root  of  2,  and  then  they  proceed  accordingly  (entering  it  in  the

calculator).  They use É  as a verb. They get positive feedback since for a square

and  its  sides  the  negative  part  of  the  solution  drops  out.  However,  this  is

mathematically  incorrect.  Later  when we consider  co-ordinates  the two solutions

appear  to  be  relevant.  Given  the  confusion  amongst  new  students  it  is  useful  to

distinguish between Sqrt[ ] as the passive result and DoSqrt[ ] as the active solver.

Using DoSqrt as a stepping stone they soon will write Solve.

† DoSqrt[y] generates the solution of x2 = y.

DoSqrt@2D

:- 2 , 2 >
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2.5  Recovered exponents

When  103  is  calculated  to  be  1000  then  the  exponent  3  disappears  into  the

resulting  number.  When  we  have  1000  and  we  use  base  10  and  if  we  want  to

recover  the  exponent  then  it  appears  to  be  3.  The  name  of  this  operation  can  be

“recovered  exponent”,  or  “rex”  in  short,  with  3  =  rex[10,  1000].  This  name of  the

operation  expresses  that  we  are  only  recovering  the  exponent.  Currently

mathematics uses Napier’s word “logarithm” but this is rather opaque for what is

just a recovered exponent. It may not matter whether your wife is called Mary or

Nicole but try it out. Hence, rex[b, x] = p if and only if x  = bp.

When the input is numerical. Rex[10, 1000]

3

Rex is purely another name. 

When the input is not 

numerical then Log still 

appears in output. The default 

base is ‰ = 2.71828...

Rex[x^a  y^b]    // PowerExpand

a log HxL + b log IyM

$Rex can be used as a name 

that does not further evaluate. 

In TraditionalForm it displays 

as lower case rex. 

$Rex[x^a  y^b]    ==  (Rex[x^a  y^b]   // 
PowerExpand // To$Rex)

rexAxa ybE� a rex@xD + b rexAyE

An advantage is that pure 

numerical input does not 

evaluate either.

 Result /. {a Æ 2, x Æ „, b Æ 10, y Æ „^2}

rexA‰22E� 2 rex@‰D + 10 rexA‰2E

$Rex also displays the base as a 

suffix.

$Rex[10, 1000]

rex10H1000L
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3.  Co-ordinates

 

 

3.1  Two axes

3.1.1  What co-ordinates are

Co-ordinates  give  information  to  locate  something.  For  a  person  it  might  be  a

telephone  number  or  an  address.  When  you  meet  people  and  want  to  contact

them  later  then  you  can  ask  for  their  co-ordinates  and  they  will  give  you  their

business card.  In the same way for  the plane:  we use a  system of co-ordinates so

that every point on the plane can be identified.

A chess board is a familiar  system of co-ordinates. The columns are labelled with

the first eight letters of the alphabet (lower case makes for better reading) and the

rows are just counted. White starts at the bottom and black at the top. The square

at  the  bottom right  hand at  h8  will  be  white.  The  queen of  white  will  start  at  d1

and the queen of black will be opposite at d8. 

a b c d e f g h

1

2

3

4

5

6

7

8

a b c d e f g h

1

2

3

4

5

6

7

8

3.1.2  X and Y

With a ruler on a piece of paper we draw a horizontal line and we call it the x-axis.

Perpendicular  to it  we draw a vertical  line  and call  it  the y-axis.  To identify  what

axis is what, we label the axes x and y.
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Where  the  lines  cross  will  be  called  the  point  of  origin.  From  there  we  can  step

right, left, up or down.

We can put numbers on the axes. We copy numbers from the ruler to the axes. The

origin will get the number 0. On the horizontal axis we count positive numbers to

the right and negative numbers to the left.  On the vertical  axis we count positive

numbers up and negative numbers down. When we go along an axis from 1 to 2,

or from 2 to 3, etcetera, then we will call this a full step. 

We can use  curly  brackets  around two numbers  to  identify  a  point  on the plane.

To  start  with,  {0,  0}  will  denote  the  point  of  origin.  Then,  for  example,  {2,  3}  will

mean  the  point  that  we  can  find  by  moving  from  the  origin,  first  stepping  to

number 2 on the horizontal axis and then making 3 steps up. 

When you have copied this then you would get a graph like the one below. In this

present graph we have put thick dots at {0, 0} and {2, 3}.

-4 -2 2 4
x

-4

-2

2

4

y

3.1.3  Practice makes perfect

It  can  be  good  practice  to  step  through  this  maze  using  integer  points  only  and

without hitting a square. Start at {1, 2} and try to get to {-4, -3}. 
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-4 -2 2 4
x

-4

-2

2

4

y

A path is {1, 2} to {2, 2} to {2, -3} to {-4, -3}.

Another  exercise  is  to  assign  letters  to  points  and  translate  a  word  into  a  list  of

numbers, so that we get a coded message. Try to code FINE using F = {0, 0}, I = {-3,

4}, N = {4, -2} and E = {-4, -3}.

3.2  A major discovery

Now that we have assigned numbers to the plane we can directly  link arithmetic

and algebra to points on the plane. This is a major discovery. This is what analytic

geometry is about.

The  core  idea  of  analytic  geometry  is  to  combine  spatial  issues  with  formulas

(algebra)  including  numbers  (arithmetic),  and  indeed  copy  those  onto  a  piece  of

paper  or  our  mental  image  of  such  a  plane.  The  pheonomena  are  interlinked,  as

we saw that  the surface of  a  rectangle can be seen as deriving  from a calculation

that  again  relates  to  algebra.  It  took  mankind  some  millenia  to  grow  aware  of

these linkages but once the idea was developed by Nicole d’Oresme (1323 - 1382),

Pierre  de  Fermat  (1601/8  -  1665)  and  René  Descartes  (1596  -  1650),  progress  has

been great.
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Part II.  Line, circle and vector
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4.  Line

 

 

 

4.1  A map of the plane

4.1.1  Horizontal and vertical lines, and diagonals

Horizontal  lines  are  the  (zero,  main)  horizontal  line,  the  first  horizontal  line,  the

second  horizontal  line,  ...  There  are  also the  negative first  horizontal,  ...  etcetera.

Vertical lines can be named as the (zero, main) vertical line, the  first vertical line,

the second vertical line, .... 

There are also diagonals that are either rising or declining. Diagonals through the

origin  are  the (zero,  main)  diagonals.  The first rising or  declining  diagonals  pass

through {0, 1}. Negative first rising or declining diagonals pass through {0, -1}.

 In the graph below we see the following lines:

† The (zero, main) horizontal line or the x-axis and the third horizontal

† The (zero, main) veritical line or the y-axis and the first and second vertical

† The (zero, main) (rising) diagonal line

† The negative first declining diagonal line

-4 -2 2 4
x

-4

-2

2

4

y
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See if you can identify the point of intersection of the negative fourth vertical and

the second horizontal (not shown). Indeed, this is {-4, 2}. 

See  if  you  can  find  the  intersection  of  the  negative  first  rising  diagonal  and  the

third vertical. E.g. first take the intersection of the (zero) (rising) diagonal and the

third vertical, and then make a parallel shift downwards. The answer is {3, 2}.

What  is  the  intersection  of  the  tenth  declining  diagonal  with  the  sixth  vertical  ?

Here it is {6, 4}.

PM.  Diagonal  lines  cross  both  axes  so  there  is  a  choice  how  to  name  them.  It  is

best  to  do  so  as  we  just  have  done.   PM.  In  a  classroom  situation  we  can  ask

students  to  put  their  name  at  their  chosen  line  so  that  the  numerical  names  get

some flair. 

4.1.2  Properties of these lines

4.1.2.1  Properties without numbers

Properties of these lines are:

† Lines have  a  slope.  The  main  diagonal  is  upward sloping.  The main declining

diagonal is downward sloping. A horizontal line is flat: we can say that no slope

= zero slope.

† Lines may rise or fall.  A vertical  line does both. A horizontal line does neither.

There are only four options.

† Lines might be parallel. This happens if and only if their slopes are equal.

† Lines might intersect. That point is unique. Overlapping lines are the same.

† If we have a point and a slope then we have a line.

† If we have two points then we have a line (and thus a slope).

These  properties  cause  some  questions.  Can  we  determine  the  point  of

intersection? Can we calculate the slope ?

4.1.2.2  A slope can have a number assigned to it

Let us consider the slope of the diagonals.  For example the points {0, 0}, {3, 3}, {5,

5} and {10, 10} are all on the same line with the same slope. 

† The slope s is defined as: when x takes one step to the right then y changes by s.

Alternatively  said:  slope  s  is  the rise  divided by the run.  We can calculate  (and

check):
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† For a horizontal line the value of y does not change and thus the slope is 0. For

a  vertical  line  the  slope  is  indeterminate  (¶)  (since  we  cannot  take  a  step

sideways).

† For the main rising diagonal the step from {1, 1} to {2, 2} gives slope 1.

† For the main declining diagonal the step from {1, -1} to {2, -2} gives slope -1. 

† For the main diagonals (only) we find the slope as the ratio s =  y / x. 

† The other diagonals are parallel and thus have the same slopes.

4.1.2.3  Similarly for a starting height

Next to a slope there is also something that we can call the starting height. Regard

the third rising diagonal. We find two properties: 

† Its slope is 1 since it is parallel to the main diagonal. Every time that x rises by 1

then also y rises by 1. 

† The  vertical  difference  between  points  on  the  third  rising  diagonal  and points

on the main diagonal always is {0, 3} which is precisely the value on the vertical

axis. We call the latter point the starting point. 
Third rising diagonal 80, 3< 81, 4< 82, 5< 83, 6< 84, 7< 85, 8< 86, 9<
Main rising diagonal 80, 0< 81, 1< 82, 2< 83, 3< 84, 4< 85, 5< 86, 6<

Difference 80, 3< 80, 3< 80, 3< 80, 3< 80, 3< 80, 3< 80, 3<

4.1.2.4  Summary conclusion

We can generalize this result for all diagonals and horizontal lines. All those lines

have a starting point and a slope. Vertical lines are the exception however.

4.1.3  Exercise

Now  that  we  have  built  up  experience  with  lines  and  slopes  and  have  assigned

names and numbers,  we are  well-equipped to  wonder  about  arbitrary  lines.  Can

we use the notions of a starting height and a slope to say something about lines in

general ? An excellent applet for exploration is given by the following link:

http://www.fi.uu.nl/toepassingen/00065/toepassing_wisweb.en.html. 
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Shooting Balls at Wisweb.nl, authored by Michiel Doorman and programmed by Petra Oldengram.

Note:

† Two points always give a line. Thus it is possible to hit two balls with one shot

(except when the two balls are on a vertical line).

† You  can  direct  the  shot  by  guessing  visually  but  this  can  give  errors  and  the

result is more certain by entering numerical values. (When you play at a higher

level then the visual method of control also disappears.)

† The co-ordinates of the balls can be found from reading the axes or by clicking

on  the  balls.  How  can  that  information  be  transformed  into  a  shooting

instruction ?

Homework: Play the applet,  check that you can hit  two balls  by one shot indeed.

Make  a  table:  recording  the  co-ordinates  of  two  pairs  of  balls  and  the  shooting

instruction  (starting  value  and slope)  (shown by the  applet),  and your  success in

shooting  them  both.  When you  have  a  success  then  try  to  design  a  formula  that

describes  how  these  numbers  are  related,  so  that  you  can  calculate  the  shooting

instruction from what you know about the balls. Try the formula on a new pair of

balls. Hint: Try first to hit a single ball from {0, 0}.
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4.2  Algebraic formulas

4.2.1  Sorting and cataloguing and finding the formulas

When we compare two points, say {1, 2} and {1, 5}, then we compare the separate

entries  in  the  lists.  We find 1  =  1  and 2  ∫  5.  In  general  we  say that  {x,  y}  =  {3,  7}

when x = 3 and y = 7. 

Let us sort out what we have found and catalogue the different cases:

† For the  horizontal  line  with the points  {1,  5},  {20,  5}  and {whatever,  5}  we find

that y is always 5. A good formula for this line is y = 5.

† For the vertical line with the points {3, 1}, {3, 5} and {3, whatever} we find that x

is always 3. A good formula for this line is x = 3.

† For the main diagonal with the points {0, 0}, {1, 1} and {whatever, same} we find

that y is always x. A good formula for this line is y = x.

† For the main declining diagonal we find y = -x.

† For the two main diagonals we thus find y = s x for s = 1 or s = -1.

† For the third rising diagonal we found that y is always 3 higher than x. Thus a

good formula is y = x + 3.

† When we put x = 0 in the formula y = x + 3 then this gives y = 3. This thus gives

the point {0, 3}.

† The starting point {0, c} can be given by a value c on the y-axis. 

The expressions x = 3,  y = 5,  y = s x  and y = x  + 3 are equations.  A crucial  finding

thus is that these lines can also be identified by their equations.

Can  you  identify  the  line  with  the  formula  y  =  -x  -  5  ?  Indeed,  it  is  the  negative

fifth declining diagonal.

4.2.2  Notation

An umbrella formula for our lines is y = c + s x. Clearly we now allow all kinds of

values  of  s  other  than  1  and  -1.  The  starting  values  c  may  take  any  value  other

than integers too.

An example is a bucket that can contain 10 liters of water. It already contains one

liter.  The  bucket  is  filled  from  a  faucet  with  water  running  one  liter  per  minute.

How  long  does  it  take  to  fill  the  bucket  ?  Explain  that  this  process  is  only

approximately  linear.  These  two  questions  were  easy  but  try  to  identify  the
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approximately  linear.  These  two  questions  were  easy  but  try  to  identify  the

graphs now.

† This plot has x and y and two lines. What is time and what is the bucket, which

line represents the example ?
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8

10

x

y

Homework:  Try  the  applet  again.  Clarify  how  your  understanding  has  changed

compared  with  the  former  time.  PM.  Balls  are  allocated  at  random  so  scores  are

not quite comparable.

4.2.3  Definition of a functional relation

We say that  y  (the  effect)  is  a  function  of  x  (the  cause)  when each x  has  precisely

one value of y. We write y = f[x]. 

Above definition y = c + s x is the functional definition of the line. 

The drawback of the use of functions is that vertical lines are not covered. We say

that  there  is  a  correspondence  when  x  (the  cause)  can  be  associated  with  more

values for y. Thus x = 7 is a correspondence since it applies for all y.

Presumed cause and presumed effect may actually not be related. Namely in these

cases: (1) for any cause the effect remains the same: a horizontal line, (2) the cause

has one value and consequences are over the whole range.

For y = f[x] it is often useful to solve into x = g[y] for some g. When such a function

exists  then  it  is  called  the  inverse  function.  To  identify  that  a  function  and  its

inverse  belong  to  each  other  this  can  be  expressed  in  the  name  by  writing  x  =

f -1[y]. Lines generally have an inverse. For example, y = f[x] = 3 + 2 x has inverse

f -1[y] = (y - 3) / 2. When you make a graph of f[x] and flip the (transparent) paper

then you have the graph of f -1[y].

4.2.4  Construction of a line by means of a table

With  the  formula  for  a  line  we  can  calculate  some  points,  locate  these  on  the

graph,  and  then  use  a  ruler  to  draw  the  line  through  those  points.  It  takes  only
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graph,  and  then  use  a  ruler  to  draw  the  line  through  those  points.  It  takes  only

two  points  to  find  a  line.  However,  we  might  add  some  more  just  for  checking.

The calculations can best be put in a table for easy overview.

† For the line y = 3 x - 1 and arbitrary points.
Effect -1 2 5 29

Cause 0 1 2 10

2 4 6 8 10
x

5

10

15

20

25

30

y

CauseEffectTableA
expr, x, lisE

for functional expr with cause x and lis of causes

CauseEffectTable@
f , lisD

for function f and lis of causes

The table gives the effect in the top row. This fits the general layout that the cause is on the horizontal axis and the effect is 

on the vertical axis. Use text, formula, table and graph to discuss topics.

Homework:  Try  the  applet  again.  Clarify  how  your  understanding  has  changed

compared with the former time. Explain how it is with cause and effect. Can you

use  a  line  to  determine  the  co-ordinates  or  can  you  use  the  co-ordinates  to

determine the line ? Explain what method the applet uses. (It does not allow you

to put balls there.)

4.2.5  The general formula for a line

The  general  formula  for  a  line  is:  p  x  +  q  y  =  r.  This  formula  is  better  than  the

functional  form  since  it  deals  with  s  =  ¶.  When  we  have  two  lines  then  we  get

three possibilities: (1) parallel, (2) intersect, (3) overlap. 

Special cases are (prove this):

† Vertical lines appear when we take p = 1 and q = 0, for these give x = r. 

† Horizontal lines appear when p = 0 and q = 1, for these give y = r. Show this for

two points.

† If q ∫ 0, then y = r / q - p / q x = c + s x.  

For the following two lines, can you say what is special about them ?
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2 x + 3 y = 5

4 x + 6 y = 10

We say that the lines associated with these formulas overlap or are the same line.

If  we multiply  the first  line  with 2  then we get  the second line.  We can multiply

both sides of the general formula with a constant c ∫ 0. Then we get c p x + c q y = c

r. We can write this as P x + Q y = R. If q ∫ 0, then Q ∫ 0. Then c = r / q = R / Q  and s 

= - p / q = - P / Q.  It appears that there is no difference between these lines though

the formulas seem to suggest that there might be a difference.

PM. A proof voor vertical lines is: Take arbitrary points {3, 1} and {3, 5}. Then

p 3 + q 5 = r

p 3 + q 1 = r.

Thus     0  + q 4 = 0 from subtraction, or q = 0. The first equation then gives  p 3 = r.

The equation of the line thus is p x = r = p 3 and that gives x = 3.

PM. When you draw a line you might say that you draw an infinity of lines all at

the same time, namely all overlapping; though it is more accurate that it still is the

same line in different shapes. 

4.3  Implications

Important implications are that:  (1) a point and a slope give a line, (2) two points

give a line, with constant and slope, (3) two lines may solve into a point, (4) a line

through the origin has slope only and gives proportionality.

4.3.1  A point and a slope give a line

Suppose that we want a line with slope -2 through {3, 4}. If {x, y} is on the line and

we take {3,  4}  as  the origin  then the line  goes through {x  -  3,  y -  4},  as a  ray with

slope -2:

 (y - 4) / (x - 3) = -2

y - 4 = -2 (x - 3)

 y = -2 x + 10.

Check that the point fits the line: 4 = -2 * 3 + 10.

Let us write Dx for “a step by x” and Dy for “a step by y”. D is Greek capital delta,

or  D,  and  stands  for  difference.  Then  numerically  Dy  =  s  Dx  and  this  can  be

transformed into s  = Dy / Dx.
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4.3.2  Two points give s and c

We  have  already  been  calculating  slopes  and  constants  in  the  applet  but  let  us

now make it  official:  how it  is  done and why it  works.  Let  us determine  the line

through {4, -3} and {10, 5}. The steps are as follows, also for the formal case. 

4.3.2.1  The basic algorithm

Explanation Example Theory

Two points are given 84, -3< and 810, 5< 8a, b< and 8u, v<
Select one as the origin 80, 0< and 810 - 4, 5 + 3< 80, 0< and 8u - a, v - b<

The slope of a ray s = H5 + 3L ê H10 - 4L = 4 ê 3 s = Hv - bL ê Hu - aL
8x, y< is also on the line 8x - 4, y + 3< 8x - a, y- b<
8x, y< gives a slope too s = Hy + 3L ê Hx - 4L s = Hy- bL ê Hx - aL

Solving the equal slopes y + 3 = s Hx - 4L = 4 ê 3 Hx- 4L y - b = s Hx- aL
Rewriting y = 4 ê 3 x- 16 ê 3 - 3 y = s x - s a + b

The constant c = -16 ê 3 - 3 = -25 ê 3 c = b - s a

The result y = 4 ê 3 x - 25 ê 3 y = s x+ c

Checking on 84, -3< -3 = 4 ê 3 * 4 - 25 ê 3

4.3.2.2  With a computer routine

† Above gives the explanation. PM. This routine breaks down for a vertical line.

TwoPointsToLine@x, 810, 5<, 84, -3<D
4 x

3
-
25

3

1 +
1

3
x + -8 -

1

3

4.3.2.3  With the functional form

The  above  is  not  the  only  method.  Another  algorithm  is  to  take  the  general

formula of the line y = c + s x and then substitute the two points {4, -3} and {10, 5}.

This gives a system of two equations with the two unknowns s and c:

K 5 � c + 10 s

-3 � c+ 4 s
O

Substracting  the  two  equations  gives  (5  +  3)  =  s  (10  -  4).  Again  s  =  4/3  and  then

either equation gives c. 

4.3.2.4  With a table

Above  procedure  can  be  put  into  a  table.  D  means  the  difference.  Put  y  above  x
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Above  procedure  can  be  put  into  a  table.   means  the  difference.  Put  y  above  x

both in the table and in Dy / Dx.

:
A B D

y 5 -3 8

x 10 4 6

,
s = Dy ê DxØ 4

3

c = yA - s * xAØ -
25

3

>

4.3.3  Two intersecting lines

We turn above problem upside down and consider the question how to calculate

the  point  of  intersection  of  two  lines.  If  at  least  one  of  the  lines  is  vertical  or

horizontal then the question is relatively easy.

† When  both  are  horizontal  or  both  are  vertical  and  they  do  not  overlap  then

there is no intersection. The equations are not consistent.

† If  one  line  is  horizontal  or  vertical  then  the  solution  is  straightforward:  we

substitute the particular value and solve for the unknown.

† When no line is horizontal  or vertical  then there is more algebra.  It  is  simplest

to  first  normalize  to  the  functional  form  so  that  y  =  c  +  s  x  now with  constant

and slope given.

4.3.3.1  The basic algorithm

Example lines are:

y � 4 - 2 x

y � -5 + 7 x
 

Subtraction gives 0 = (4 + 5) + (-2 - 7) x, thus x = 1. Then y = 2.

4.3.3.2  Something worth of note

Suddenly,  though,  you  may  notice  something  peculiar.  Let  us  compare  with  the

problem in the former subsection. What do you see ?

y � 4 - 2 x

y � -5 + 7 x
     compared to    K 5 � c + 10 s

-3 � c+ 4 s
O

We reorder into the same form:

4 = y + 2 x

-5 = y- 7 x
  ~   

4 = c + 2 s

-5 = c- 7 s
     compared to     K 5 � c + 10 s

-3 � c + 4 s
O

There  are  two  lines  with  two  unknowns.  This  is  the  same  structure.  It  does  not

matter  how  the  variables  are  labelled.  The  conclusion  is  that  we  can  use  the

algorithm above ! In fact, we used it !

Why does  this  work ?  Well,  the  line  p x  +  q y  = r  holds  for  {x,  y}  but  also  for  the

coefficients  {p,  q}.  An  example  is  in  economics.  Your  income  Z  =  h  w  consists  of
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coefficients  {p,  q}.  An  example  is  in  economics.  Your  income  Z  =  h  w  consists  of

hours worked h and your wage w. You spend it on a quantity q consumed at price

p and some savings S.  Then S = h w - p q. We can describe this situation in terms of

prices  {p,  w}  or  quantities  {q,  h}.  If  we  know  the  prices  we  can  solve  for  the

quantities; if we know the quantities we can solve for the prices.

We  must  make  this  translation:  x  Ø  s,  y  Ø  c.  To  prevent  us  from  getting  really

confused  we  now  use  upper  case  letters.  The  coefficients  are  the  slope  S  and

constant C per line, and the  X and Y are proper {x, y} again.

:
A B D

C 4 -5 9

S 2 -7 9

,
X = DC ê DSØ 1

Y = CA - X * SAØ 2
>

Thus the same answer with x = 1 and y = 2.

When you are new to the subject then this is basically something to be only aware

of. For actual calculations you probably work best by using the terms that you are

familiar  with.  Gradually,  though,  the  structural  identity  becomes  a  subject  of

study itself.

4.3.4  Proportionality

A proportion (ratio) is a point in proportion space. Proportion is two-dimensional

while  a  fraction  is  a  one-dimensional  number.  We  already  discussed  ratio  or

proportion  above.  The  discussion  there  was  hindered  by  the  lack  of  a  graphical

display since we had not yet presented lines in the two-dimensional plane. 

Let numerator N and denominator D be in proportional ratio of 1 to 7, then N : D ›

1:7, and we can write the fraction  f = N / D = 1 / 7, or N = 1/7 D. Such proportional

relations always give rays through the origin.

Proportion space

N �
1

7
D

7 14 21
D

1

2

3

N

A  proportion  N  :  D  is  two-dimensional  {D,  N}  while  fraction  N  /  D  is  a  single

number,  namely  the slope  of  the  ray.  Proportion  space {D, N}  =  {D, f  D}  =  {1,  f}D

has a reverse writing order of fraction f = N / D. In the sense by Euclid, proportion
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has a reverse writing order of fraction f = N / D. In the sense by Euclid, proportion

would  be  the  equivalence  of  ratios,  and  thus  proportion  would  be  his  word  for

our ray as the collection of all  equivalent  points.  Instead we have found that it  is

more efficient to refer to number and function, within the context of numbers and

functions in general.

We  have  a  preference  to  express  a  ratio  in  a  unit  of  D  =  1.  A  ratio  of  apples  to

oranges of 1 : 7 is preferably expressed as oranges to apples of 7 : 1, inverting the

plane.  This  preference  may  conflict  with  the  modern  convention  on  the  cause  &

effect choice of co-ordinates. If N : D :: 1 : 7 stands for the effect : cause ratio and if

indeed  1  unit  of  effect  requires  7  units  of  cause,  then  we  may  say  this  in  the

reverse as 7 : 1 for cause to effect, but we would retain above diagram.

A  conventional  way  to  learn  about  fractions  is  from  cutting  up  pies  and  cakes.

Adding  up  fractions  can  become  an  intricate  matter  in  that  manner.  A  perhaps

simpler  and  clearer  way  but  requiring  2D  graphics  is  the  method  shown  in  the

figure below. Fraction ½ can be denoted by the slope of two steps to the right and

1 up. Fraction 1/3 is three steps to the right and one up. Adding them can be done

by taking a common multiple of steps, say 6. Extending the lines gives us 3/6 + 2/6

or 5/6 as the total. If we look at the vertical at 1 instead then we would get decimal

fractions. Note that the labels on the axes matter. 

Proportion space: Adding 1/2 and 1/3

1 2 3 4 5 6 7

Denom-

inator

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Numerator

PM. Given all this discussion about proportionality and linear relations it is useful

to  give  an example  that  is  not  linear.  A good example is  inverse  proportionality.

Let  the  product  of  x  and  y  result  into  a  fixed  number,  e.g.  x  y  =  6.  This  can  be

written as y = 6 / x so that y is proportional to 1 / x or the inverse of x.
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† When you want a room to have an area of 6 m2  then you have still some choice

as to length and width.

y = 6 ê x

1 3
x

2

6

y

4.4  Dynamic quotient

Above we defined the dynamic quotient y // x. In that discussion we could not yet

use  a  graph  since  the  system  of  co-ordinates  had  not  been  defined  yet.  The

dynamic  quotient  plays  a  key  rol  in  calculus  so  it  is  useful  to  return  to  it,  now

better equipped.

An  expression  like  (1  -  x2)  /  (1  -  x)  would  be  undefined  at  x  =  1  but  the  natural

tendency is to simplify  to 1 + x  and not to include a note that x ∫  1 since there is

nothing  in  the  context  that  suggests  that  we  would  need  to  be  so  pedantic.

Standard graphical  routines  also skip the  undefined point  (see  the graph below).

Traditional  teaching and math exam practice  is  to  use the division  g[x]  /  f[x]  as  a

hidden code that must be cracked to find where f[x]  = 0. Students fail the exam if

they do not crack that code. Rather the reverse applies: that such undefined points

must be explicitly provided if those values are germane to the discussion.

† A dynamic quotient assumes variables and domain flexibility. A warning and a

dot in the graph is required if we want x = 1 specifically be excluded.

SimplifyAI1 - x2Më H1 - xLE
x + 1

-2 -1 1 2
x

-1

1

2

3

y
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We  have  discussed  the  division  on  3  x  =  5  x.  A  classic  example  of  the

inappropriateness  of  division  by  zero  is  (x  -  x)  (x  +  x)  =  x2  -  x2  =  (x  -  x)  x,  where

division by (x -  x)  causes x +  x = x or 2  = 1.  This indeed is another good example

that, indeed, we should never divide by zero. Thus distinguish between:

   †  creation of a quotient such as putting “/” or “//” between “(x - x) (x + x)” and 

“(x - x)”; here quotes indicate the literal expressions and not their 

simplifications

   †  handling of a quotient such as (x - x) (x + x) (/ or //) (x - x) once it has been 

created.

The first is the great sin that creates such nonsense as 2 = 1, the second is only the

application of the rules of algebra. In this case, the algebraic rules tell us that x - x

=  0,  which  is  a  constant  and  not  a  variable.  Simplification  generates  a  value

Indeterminate,  and  this  would  hold  for  both  /  and  //.  In  comparison  the  static

quotient a (x + x) / a generates 2x for a ∫ 0 and is undefined for a = 0. However, the

dynamic quotient a (x + x) // a renders 2x, and we would be committed to it as our

working hypothesis, also if later in the deduction we would meet a value a = x - x

=  0:  at  such  a  point  in  the  deduction  we  can  re-evaluate  the  case  and  determine

whether  this  value  is  germane  to  the  discussion  and  whether  the  dynamic

quotient was wrongly applied or not.

Once the idea is clear, there is no need to be very strict  about always writing “//”

and we might simply keep on writing “/”.

4.5  What analytic geometry is about

4.5.1  Paper and mind

There  are  geometric  shapes  on  paper  and  those  conceptualized  by  you  in  your

mind. The following table distinguishes relevant aspects. We denoted the number

line  with  �.  This  also  gives  us  the  formal  definition  of  the  plane  as  the  two

dimensional  product  of  two real  axes �  ×  �  =  �2.  We include  Euclid’s  axiomatic

development of (synthetic) geometry. 

Drawing Mind The Elements Analytic formulas

Visible dot Point without size Axioms 8x, y<
Visible line Only length and no width ... p x + q y = r or �

Piece of paper Plane without thickness ... � µ� = �2

The distinctions can also be denoted as �0, �1, �2  (, ...). The formula for the line p

x  +  q  y  =  r  in  the  table  above  can  be  recognized  as  a  single  �  but  with  an

orientation  in  the  plane.  Though  we  can  find  points  on  a  line  it  is  not  quite
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orientation  in  the  plane.  Though  we  can  find  points  on  a  line  it  is  not  quite

accurate  to  say  that  the  line  “consists”  of  points:  since  there  is  a  change  in

dimension and the line introduces a new concept in the discussion: continuity.

Euclidean  geometry  consists  of  the  first  three  columns  (with  arithmetic)  while

analytic  geometric  concerns  all  columns.  Euclidean  geometry  regards  only  the

second  column  as  the  true  result.  Once  the  ladder  of  The  Elements  has  been

climbed  it  can be  thrown away.  Analytic  geometry  regards  the  first  column  as  a

useful stepping stone but no standard for proof.  The formal  developments  in the

last two columns differ from our imagination of space but have value of their own

- since the creation of a formal system is a fair achievement of mankind as well.

Euclid: http://aleph0.clarku.edu/~djoyce/java/elements/elements.html

4.5.2  Looking back and ahead

With  this  understanding  of  what  analytic  geometry  is  about,  it  can  be

enlightening  to  look  back  at  your  learning  process  in  this  chapter.  (1)  The

distinction  between  horizontal,  vertical  and  diagonal  lines  is  at  a  Level  0  of

understanding.  The  material  helps  you  to  grow  aware  of  what  you  actually

already know. You start linking lines to co-ordinates and numbers. (2) The second

step is description,  sorting and classification of the lines that we have found, and

this  generates  Level  1.  Your  understanding  is  helped  by  the  fact  that  we already

gave  names to  the  lines  at  Level  0.  (3)  The  third  step  consists  of  giving  formulas

for the separate lines. This is far removed from an abstract formal development so

this  is  rather  informal.  You  get  a  lot  of  help  from  the  book  since  otherwise  you

would  not  know  what  the  idea  is.  Writing  the  axes  as  y  =  0  and  x  =  0  is  not

something  that  students  conceive  of  naturally.  This  is  Level  2.  At  this  level  you

know  how  formulas  look  like,  you  proceed  in  trying  to  find  a  general  formula,

and you have a general notion of slope and constant. (4) The final level is Level 3

of  formal  deduction,  with  the  crown  in  p  x  +  q  y  =  r.  This  formula  is  again

presented  to  you  since  it  is  a  very  abstract  insight  that  hardly  anyone  will

conceive of by himself or herself. The key point is that you are able to understand

its generality and how it relates to the specific cases seen before.

These levels of understanding use the same words but in different meanings. Also

deduction  and  proof  have  different  functions.  These  are  sublanguages  within  a

language, and people speaking these sublanguages will not understand each other

(unless you are trained at a higher level to see whether someone is still at a lower

level).

The  introduction  of  p  x  +  q  y  =  r  at  this  stage  has  two  advantages:  (1)  You  are

aware that there is a single formula, and you are not lost in the curious distinction

between  the  function  y  =  s  x  +  c  and  the  vertical  x  =  r  that  does  not  satisfy  that

formula. (2) We have a foundation for the later discussion of systems of equations.

There is a small  disadvantage in that the general formula may not be used much
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There is a small  disadvantage in that the general formula may not be used much

at  this  stage.  For  practical  calculations  and  plotting  you  are  more  likely  to  make

separate use of x = r, y = c and y = s x + c. This might also be how the mind works,

since we try to imagine what a  formula stands for.  Accept this disadvantage and

await the rewards that come later.
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5.  Circle

 

 

 

5.1  Distance and radius

5.1.1  What defines the plane

Regard  a  point  v  =  {x,  y}  that  lies  at  some  distance  from  the  origin  {0,  0}.  For

example  the  point  {3,  4}.  The  plane  has  been  drawn  on  a  blackboard  and  the

teacher holds a coin at  that point {3,  4}. Letting go, the coin drops down to {3, 0}.

Then the teacher  picks  it  up and puts  it  on {0,  0},  and then pockets  it.  He invites

students  to  give  him  more  coins  so  that  he  can  show  more  examples  of  what  a

Manhattan  distance  is.  Streets  in  Manhattan  tend  to  form  a  perpendicular  grid

and you have to make corners to be able to go sideways. The distance travelled by

the coin then is x + y or in the example 3 + 4 = 7. However, when we regard a plane

without obstacles then we can go as the bird flies. We take this as the formula for

the distance in the geometric plane:

†v§� »8x, y<»� x2 + y2

This is called the Euclidean distance measure. For {3, 4} we get 9 + 16 = 25 = 5.

This |v| is also called the absolute value or modulus  of v. It is the length of the line

section from v to the origin.  Another example: Let P  = {5, y} and suppose that we

know that it lies at a distance of 10 from the origin. What is the value of y ? Well,

|P | = 10 thus 25 + y2  = 100 and y = ±5 3 . The abundance of the square root sign

in mathematics derives from this definition of distance.

The Euclidean distance measure and the circle are related. A circle was defined as

the  collection  of  all  points  that  are  at  the  same  (given)  distance  from  its  center.

This  given  distance  is  called  the  radius  of  that  circle.  The  distance  measure  thus

seems like nothing new. However, the news is the link of the distance measure to

the  system  of  co-ordinates.  We  already  divided  the  circle  in  quadrants  and  we

have discussed the unit circle. But this is the first time that we draw a graph with

a system of co-ordinates. This is really something else.
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A first consequence of using co-ordinates is that we get another formula when we

move the center to the point {a, b}.

† If we want a circle around a point {a, b} then this is similar to moving a point to

the origin. In this new formula, the point {x, y} = {a, b} gives r  = 0 and thus {a, b}

must be the center.

r � Hx - aL2 + Hy - bL2

A second consequence is that the distance between points v and u can be found as

|v - u|. Namely  |v - u| = |{x, y} - {a, b}| = |{x - a, y - b}| etcetera.

The following graphs explain more about the properties of the radius.

† Left |x|. On the right |x - |x - 3|| creates a square root sign.
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† The  mirror  image  of  x2  over  the  line  y  =  x  gives  the  two  root  solutions.  The

intersections are at 0 and 1.
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5.1.2  Euclid and Pythagoras

There  is  the  paradoxical  situation  that  we  may  take  great  pains  to  prove

something that from another point of view is merely a matter of definition. 

The Pythagorean Theorem is commonly expressed in terms of sides a, b and c. For

the circle c = r. Then we get:

   †  Pythagoras convinces us that we have to prove that c2 = a2 + b2

   †  For a distance we now define that c2 = a2 + b2

The solution to this paradox is that Euclid used other axioms than we now do for

the distance. Though Pythagoras (ca. 572 - 500 BC) lived before Euclid (around 300

BC), we can say in a figure of speech: Given the Euclidean axioms Pythagoras has

to  prove  his  Theorem.  Once he  got  the  proof  he  could  define  the  circle.  Without

the  proof  he  might  define  the  circle  but  then  would  have  to  prove  that  it  really

exists.  That  said,  in  analytic  geometry  it  is  easier  to  work the  other  way around.

Starting with formulas is a fast way to get up and running. Using distance we can

define  parallel  lines  as  lines  that  have  equal  distance.  With  distance  the  circle

arises  naturally.  The  notion  of  distance  is  crucial  for  the  Euclidean  plane.  We

surmise that Euclid relied on a notion of distance too by using the compass. 

† The Pythagorean Theorem holds by definition.

a

b
r

What remains in all this is our notion of Euclidean space: a notion of straightness

of lines and flatness of the plane that might derive from everyday experience but

that essentially is a concept of the mind, and essentially a definition.

CircleDefinedByPythagoras@a, b, optsD

the circle with center 80, 0< through 8a, b<. The radius

is given by the Pythagorean theorem r = SqrtA a2 + b2E.
For the angle a we have b = r Yur@aD and a = r Xur@aD ,
such that Yur@aD2 + Xur@aD2 = HbêrL2 + HaêrL2 = 1
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5.1.3  Do we not have a definition for the slope ?

In above plot of the Pythagorean Theorem: take a hard look at the sides a and b of

the triangle. Refresh what you know about the circle. With co-ordinates, the graph

above gets a new meaning. As r makes an angle, it is also a line with an angle. Do

we not have a definition for the slope ? Yes, it is s = b / a. We can write x = a and y =

b. Let us look closer what this means in a system of co-ordinates.

5.2  Functions X and Y

5.2.1  Points on the unit circle

The unit  radius circle,  thus with radius r = 1,  will  be called the unit  circle.  Points

on the unit circle better have the suffix that they are on the unit radius circle, thus

xur  and yur. For convenience they will be labelled {X, Y} as well, thus X = xur  and Y

=  yur.  We  use  these  capital  labels  throughout  this  book.  When one  co-ordinate  is

known then we know the other one. Note the two solutions Y = ± 1 - X 2 . 

A  point  v  =  {x,  y}  other  than  the  origin  always  has  a  partner  point  on  the  unit

circle. Two functions come into play. They are essentially one function because of

the  dependence,  but  with  the  double  (±)  solution  it  is  best  to  keep  track  of  them

both. 

Xv = X[v] = x / |v|             Yv = Y[v] = y / |v|   

The  X and Y procedure  is  called  “normalization”.  The meaning  is  a  move  to  the

unit circle along a ray to the origin.

† Normalizing from the point {4, 3} to the unit circle.

XandY@84, 3<D

:4
5
,
3

5
>
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Consider the following example question. For point R  on the unit circle we know

X = ½. Point Q  is at a distance of 10 from the origin and has the same direction as
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X = ½. Point Q  is at a distance of 10 from the origin and has the same direction as

R. What are the values of x and y ? Well, |Q| = 10 thus x2 + y2 = 100. We also know

that {x, y} = |Q| {X, Y} = 10 {X, Y}. We find Y 2 = 1 – X 2 = ¾ so that Y = ± ½ 3 . Dus

{x,  y}  =  {5,  ±  5 3 }.  (Thus  Q  =  P  from  the  earlier  example.)  (It  was  tricky  to  say

“Point R” when there must be two.)

5.2.2  A measure for slope and direction

Let us summarize what we have for a point {x, y}:

  1.  We had the notions of the angle a and the arc j for geometric shapes.

  2.  We had the notion of the Pythagorean Theorem r2 = a2 + b2.

  3.  Now we strictly define X and Y for the unit circle so that there is no confusion 

with other {x, y} on the plane. Because of the location of the unit circle at the 

center of the system of co-ordinates this gives a systematic treatment for all 

points in the plane.

  4.  In § 1.5.1 and 2 we defined various notions for the unit circle. These then hold 

only for X and Y, unless there is invariance due to proportionality.

  5. The slope is proportional: s = y / x = Y / X. We might set up a system on the 

slopes and forget about a and j. But if we want to know the circumference of 

the circle then this is equivalent to showing an interest in a and j since those 

are arcs by their very nature. Coffee cups and soda cans tend to be somewhat 

roundish for a reason.

  6.  When we focus on angle a and arc j then this leads us to the subject of 

trigonometry.

Before we proceed with trigonometry it is better to first consider vectors. For two

reasons: (1) it is conceptually easier to work in the system of co-ordinates with Xv
and Yv, (2) we can there prove the key theorem of analytic geometry.

PM.  We  proved  the  Pythagorean  Theorem  when  discussing  triangles.  Then  we

saw  it  again  when  discussing  the  circle.  Then  we  used  it  in  a  system  of  co-

ordinates  to  define  distance.  Now  we  are  going  to  re-use  it  in  a  system  with

vectors.  Don’t  think  that  our  creativity  in  using  the  theorem  in  some disguise  or

other stops there.
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6.  Vector

 

 

 

Vectors  aren’t that  difficult.  Pierre van Hiele  who was a  celebrated researcher  on

the  didactics  of  mathematics  was  a  strong  proponent  that  they  are  taught  in

elementary  school.  When we have a point  {a,  b}  and a point  {x,  y}  then the novel

idea is that we add these two and get {a + x, b + y}. That is basically it. It is addition

of more things at the same time. Let us count the numbers of pens and pencils that

each  kid  has,  but  separately.  That  Van  Hiele  did  not  succeed  in  getting  his

proposal accepted has more to do with the training of elementary school teachers

than  with  the  difficulty  of  the  subject.  The  discussion  below  will  be  a  bit  more

difficult  since  we  will  not  only  do  addition  but  also  multiplication  and  we  will

also develop why it works and why it is mathematically sound. We start out a bit

more complex than with points, namely with arrows.

6.1  Arrows have a direction

Walking  on  the  bumpy  grasslands  of  the  flat  plane,  Alice  met  The

Sulking  Arrow.  “Where  are  you  heading  ?”  she  asked  it.  “I  am  sorry,  I

don’t know,” it answered, indeed sulkingly. “I lost my head. If you really

want to know, you must go find it, and ask it yourself.” (Free after Lewis

Caroll.)

6.1.1  Definition

Consider a soda can on a deck of a ship. In 10 seconds it  rolls 7 meters from port

to starboard. In those 10 seconds the ship itself has sailed 67 meters. People on the

ship may see only the movement of the can on the ship. A landbased observer sees

a combined movement. The object of discussion now is how we could best handle

this kind of case.

Let  us  consider  two  points  P  =  {x,  y}  and  Q =  {a,  b}.  We  can  draw  an  arrow  that

starts  from  P  and  the  arrow  head  ending  in  Q.  We  shall  call  that  arrow  a  vector

and write v = {P, Q}.

For example the vector from {0, 1} to {3, 4} is v = {{0, 1}, {3, 4}}. 

The  ship  moves  along  the  horizontal  axis  from  {0,  0}  to  {67,  0},  and  this  will  be

vector v1. If the ship would be at  rest then the soda can moves along the vertical
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vector v1. If the ship would be at  rest then the soda can moves along the vertical

axis  across the deck from {0,  0}  to  {0,  7},  and this  will  be  vector v2.  The resultant

movement is R. After 10 seconds the can is at position {67, 7}.

† The ship moves a distance of v1, the soda can a distance of v2 on the ship, and

the soda can has a resulting movement of R seen by a landbased observer O. In

the  same  time,  those  10  seconds,  the  soda  can  moves  over  a  greater  distance,

and thus it must move faster than the ship.

O

v1 = ship

v2 ~ can R = can

While the earlier discussion used points, we now have arrows, as combinations of

points. The news is that we now have a model for motion. Co-ordinates are static,

vectors are dynamic. What are the properties of such arrows ?

TwoVectorsPlot@v, wD shows the vectors and their resultant

determined by adding the coordinates

Option Label controls the three labels. Option Select chooses from First, Last or All: for display with numbers and 

decomposition or not.

6.1.2  Properties of vectors in general

Vectors clearly have these properties:

† Length: The length of vector v = {Q ,P} is |v| = |P - Q|. This is just the distance

between the begin and end points.

† Direction:  We have a slope and {X, Y}  values.  The latter  are  given by X[P -  Q]

and Y[P - Q] and s = Y[P - Q] / X[P - Q].

Above  we  already  performed  an  addition  of  vectors.  In  our  example  the  vectors

were perpendicular but we can define in general:

† Addition: When vector v = {P, Q} and w = {Q, S} so that the end of the first is the

start of the other, then the resultant is r = {P, S}.

We now drop  the  notion  of  vectors  in  general  and switch  to  the  vectors  that  are

special since they all start at the origin - like actually in above example.

6.1.3  Vectors that originate from the origin

Apart  from vectors  in  general  there  are  the vectors  that  are  special  since  they all

start  at  the  origin.  There  are  four  key  vectors  that  can  be  reduced  to  two

independent ones - and we use capitals because of the unit circle:
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†  X  = {{0, 0}, {1, 0}} the unit vector to the right (forwards)

†  Y = {{0, 0}, {0, 1}}  the unit vector perpendicular up

†  -X  = {{0, 0}, {-1, 0}} the unit vector to the left (backwards, in reverse)

†  - Y ={{0, 0}, {0, -1}} the unit vector perpendicular down

We define addition such that v = {{0, 0}, {x, y}} can be written as v = x X  + y Y . 

This is the unit vector plot. E.g. locate {3, 2} =  3 X  + 2 Y.
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UnitVectorPlot@D shows the two unit vectors

UnitVectorRule@D for replacing the names with the actual unit vectors

It  appears  to  be  awkward  to  work  with  general  vectors  that  have  different

beginnings.  It  is  easier  to  work  with  vectors  from  the  origin.  This  also  allows  a

simplification.  We  only  record  the  endpoint,  e.g.  {{3,  4}}.  Even,  we  can  drop  the

additional brackets, as long as we clearly state vector v = {3, 4} and point p = {3, 4}. 

Though vectors  from the origin do not link up (i.e.  that  the end of  one is  not the

start  of  another)  we  can  still  define  addition.  The  key  example  is  the  case  of  the

ship  and  the  soda  can.  In  continuous  time  the  origin  keeps  shifting  so  that  the

vectors  are  linked  at  the  origin  indeed.  For  the  calculation  it  suffices  to  consider

the beginning and end of the process.

† When we have  vector  v  =  x  X  +  y  Y   and w  =  a  X  +  b  Y   then we  can define

addition as follows. Subtraction is adding the negative vector.

v + w == Jx X + y Y N + Ja X + b Y N;

v + w � Ha + xL X + Hb + yL Y
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† This substitutes the unit vectors {1, 0} and {0, 1}.
v + w � 8a + x, b + y<

It appears immaterial  whether we add vectors starting at the origin or have them

link at end and start. Both views give the parallellogram.

† On  the  left,  vectors  v  =  {2,  1}  and  w  =  {1,  3}  give  R  =  {3,  4}.  On  the  right,

subtracting  v = {2, 1} and w = {1, 3} is adding the negative, R = v - w = {1, -2}.
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See http://www.slu.edu./classes/maymk/SketchpadApplets/AddVectors.html.

6.1.4  A key formula

Using  the  earlier  normalization  for  the  co-ordinates  Xv  =  X[v]  =  x  /  |v|  and  Yv  =

Y[v] = y / |v| for points on the unit circle, we find:

v = {x, y} = |v| (Xv X   + Yv Y  )

This formula clarifies that Xv  and Yv  are values of co-ordinates but not quite the co-

ordinates  themselves.  The  co-ordinates  arise  from  the  application  to  the  unit

vectors.

Defining Xv = Xv X  and also for Y gives a somewhat shorter form :

v = {x, y} = |v| (Xv  +  Yv )

We can use either form depending upon what is handy.
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6.1.5  Multiplication gives counterclockwise rotation

Above we have defined addition. Can we also find something like multiplication ?

Looking  at  a  wheel  that  is  turning  we  can  count  how often it  turns  around.  The

unit of measurement then is a single turn.  Values are e.g. a half  turn or a quarter

turn. A positive turn is counterclockwise, a negative turn is clockwise. 

The  quarter  turn  is  special  since  a  point  that  originally  was  horizontally  aligned

with  X  now  becomes  vertically  aligned  with  Y .  We  use  this  property  to  define

multiplication of vectors.

Definition of multiplication:

Y  X  = X  Y  = Y    or  {0, 1} {1, 0} = {1, 0} {0, 1} = {0, 1} or a quarter turn upwards

Y  Y = -X             or  {0, 1} {0, 1} = {-1, 0}  or a quarter turn down to the left again

X  X = X             or no change.                                                                                  

When we turn an arbitrary point  {x, y} =  x X  + y Y  with Y  then we get (using the

two formats):

Y Ix X + y Y M = 80, 1< Hx 81, 0<+ y 80, 1<L =
x Y X + y Y Y = x 80, 1< 81, 0< + y 80, 1< 80, 1< =

x Y - y X = x 80, 1< + y 8-1, 0< =
8-y, x< 8-y, x<

When we multiply two arbitrary points, or turn {x, y} with {a, b}:

Ia X + b Y M Ix X + y Y M = 8a, b< 8x, y< =
a x X X + a y X Y + b x Y X + b y Y Y = Ha 81, 0<+ b 80, 1<L Hx 81, 0< + y 80, 1<L =

a x X + a y Y + b x Y - b y X = a x 81, 0< 81, 0< +… + b y 80, 1< 80, 1< =
Ha x - b yL X + Ha y + b xL Y = Ha x - b yL 81, 0< + Ha y + b xL 80, 1< =
8a x - b y, a y + b x< 8a x - b y, a y + b x<

Regard  a  triangle,  for  example,  with  corners  P  =  {2,  1},  Q  =  {4,  2}  and  R  =  {3,  3}.

When we turn this with {1, 2} then we get P’ = {0, 5}, Q’ = {0, 10}, R’ = {-3, 9}. We can

assume  that  the  sides  of  the  triangle  move  with  the  corners.  The  general  shape

remains the same but there are both rotation and enlargement.
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PM. This example has been crafted for simplicity in calculating and graphing: two

points are on a ray through the origin and the multiplication gives an outcome on

the vertical axis, thus with x = 0.

VectorProduct@
8a, b<, 8x, y<D

gives 8a x - b y, a y + b x<

VectorProductGO@
object, pD

the geometric transformation of object with point p

VectorProductPlot@
object, pD

plots the latter

PointToTFMatrix@pD gives q for GeometricTransformation@object, qD

6.1.6  Properties of multiplication and rotation

A property is that the lengths are simply multiplied:  |v w| = |v| |w|. 

Thus,  where  above  triangle  was  enlarged,  it  was  because  we  did  not  just  rotate

but also multiplied the vector lengths. Let us prove and understand this property

first.

6.1.6.1  Proof that the distance of a product is the product of the distances 

With v  = {x, y}  and w = {a,  b}  we get v w  = w  v = {a x -  b y,   a y + b x} from above.

Application of Pythagoras gives:

|v w| 2 =  (a x - b y)2 + (a y + b x)2

            =  (a2 x2 - 2 abxy + b2 y2) + (a2 y2 + 2 abxy + b2 x2)

 =  a2 x2 + b2 y2 + a2 y2 + b2 x2

=  (a2 + b2) x2 + (a2 + b2) y2 
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= (a2 + b2) (x2 + y2) =  |v|2  |w|2 

6.1.6.2  Consequence for the unit circle

By  consequence:  When  points  on  the  unit  circle  are  multiplied  with  each  other

then the resultant remains on the unit circle. 

If P  = {X, Y}  and Q = {A, B} are on the unit  circle then  |P| = |Q| = 1.  Then above

property gives |P Q | = 1.

Alternatively stated: When we divide v w = w v = {a x - b y,  a y + b x} by  |v w| =

|v|  |w|  then  we  get  points  on  the  unit  circle.  Multiplication  of  those  gives  an

outcome that is again on the unit circle. Namely:

v w

v w
 = 

w v

v w
 = {

a

w
 
x

v
 - 

b

w
 
y

v
,  

a

w
 
y

v
 + 

b

w
 
x

v
}

This  is  a  key  discovery.   Something  does  not  change:  we  stay  on  the  circle.  This

means that multiplication of vectors consists of (1) multiplying the lengths, and (2)

rotating on the unit circle. The following graph displays the two aspects.
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An open question remains  what exactly  happens on that  circle.  We have derived

the new co-ordinates, but is there a handy interpretation ?

6.1.6.3  The form that relates to functions X and Y

This  important  result  can  be  shown  in  another  way,  using  the  normed  values.

Expressing vectors in both length and co-ordinates on the unit circle then we get:

v = {x, y}  = |v| (Xv +  Yv)

w = {a, b} = |w| (Xw +  Yw)
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            v w = w v = |v| (Xv X  + Yv Y )   |w| (Xw X  + Yw Y )

                                  = |v| |w| ( (Xv Xw - Yv Yw) X   +  (Yv Xw  + Xv Yw) Y  )

thus Xv w = Xv Xw - Yv Yw

            Yv w = Yv Xw + Xv Yw 

This is a form that more clearly links up with the co-ordinate functions.

When  we  multiply  more  than  two  vectors  then  these  rules  result  in  rather

complicated expressions. Below we will find a way for simplification.

2D demonstrations by Roger Germundsson:

http://demonstrations.wolfram.com/author.html?author=Roger+Germundsson.

6.2  The key theorem of analytic geometry

6.2.1  Vector multiplication means addition of angles

The key theorem of analytic geometry is: vector multiplication on the unit circle is

the addition of angles.

We  can  derive  the  theorem  directly  using  angles,  thus  using  the  unit

circumference circle with r = 1 / Q and using angles or turns indeed. The formulas

however are more transparent on the unit  circle with r = 1.  The theorem can also

be  formulated  so:  vector  multiplication  means  the  addition  of  arcs.  Later,  when

we  calculate  surfaces  and  the  changes  in  surfaces  then  it  appears  that  these  arcs

are important too. There is good reason to get used to them. To prove the theorem

we use the following drawing on the unit circle. See the explanation below.

Call the origin O, note that all vectors have length 1 and that all arcs are measured

from {1, 0}. We can identify:

  1.  v = {X, Y} is the first vector. It creates an arc j.

  2.  w = {A, B} is the second vector. It creates an arc y.

  3.  w = {A, -B} is called the conjugate. It creates an arc -y.

  4.  The key triangle is Ovw. The arc has absolute length j + y. Projection of v on w 

gives point P. We write p = |P|.

  5.  Rotating this key triangle to a horizontal position we get the point (labelled j 

+ y) where the arcs are properly added (not just the absolute value). The 

projection P is rotated too, and appears to be at the x-co-ordinate of that point. 
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  6.  Hence, when we calculate p then we have determined what it means when 

arcs are added. We already had the result of vector multiplication above. If 

and only if these two results are the same then we have proven the theorem 

stated at the beginning of this section.

  7.  Denote h = |v - P| for the dashed height of the key triangle, and q = |v - w| for 

the thick chord.

  8.  Pythagoras gives v 2 = h2 + p2 = 1 and  q2 = h2 + H1- pL2.
  9.  Thus q2 = h2 + H1 - pL2 = 1 - p2 + H1- pL2 = 1 - p2 + (1 - 2p + p2) = 2 (1 - p) 

  10.   We also know the length of q from applying Pythagoras on v and w. Thus q2 

= HX - AL2 + HY - H-BLL2 = (X 2 - 2 A X + A2) + (Y 2 + 2 B Y + B2) = 2 - 2 A X + 2 B 

Y since both X 2 + Y 2 = 1 and A2 + B2 = 1.

  11.   Combining the two results allows us to eliminate q2 and we get 2 (1 - p)  = 2 - 

2 A X + 2 B Y which solves into p = A X - B Y.

  12. Above we had found Xv w = Xv Xw - Yv Yw. This is exactly the same. Thus Xv w = 

p and multiplication of vectors on the unit circle gives the same co-ordinates 

as the addition of the separate arcs. Q.E.D.

PM. Check what happens with an obtuse angle.

AGKeyTheoremPlot@ϕ, ψD the diagram of the key theorem of analytic geometry
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6.2.2  The Arc function and what we have derived for it

For  a  point  {X,  Y}  on  the  unit  circle  it  is  natural  to  define  the  length  of  the  arc

(starting from X ) as a function of the co-ordinates. 

j = Arc[{X, Y}] =Arc[{x, y}] = Arc[v]

We have derived:

Arc[v w] = Arc[v] + Arc[w] =  j  +  y

When we divide these arcs by Q = 2p then we get the turns around the circle, using

a = j / Q and b = y / Q. 

Turn[v w] = Turn[v] + Turn[w] = a + b

This  is  the  main  contribution  of  vector  analysis.  Since  the  focus  now  shifts  to

angles it is time for consequences like trigonometry. 

6.3  When is it a vector space ?

When does a vector space apply ? The only rule is: when it works. 

With  one  basket  with  {3,  3}  apples  and  oranges  and  another  with  {2,  4}  then  in

total there are {5, 7} apples and oranges. A vector space.

In proportion space though with the ratios {2, 1} and {3, 1}, and thus the fractions

1/2  and  1/3,  then  the  addition  {5,  2}  is  interesting  and  represents  2/5  but  is  no

adequate outcome if your plan is to arrive at {6, 5}.

A  good  other  example  are  recovered  exponents  (logarithms)  since  those  can  be

added.
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Part III.  Consequences

 

 

 

We  have  seen  the  basic  ingredients  of  analytic  geometry:  line,  circle  and  vector,

found  and  proven  the  key  theorem,  and  now  proceed  to  what  essentially  are

consequences. Of course there will be new insights but in another respect these are

variations on the themes. 

  1.   We develop the properties of Xv = xur and Yv = yur.

  2.   The complex plane is a different way to write the vectors.

  3.   The calculation of Q is historically exiting (though nowadays routine).

  4.   Linear algebra gives no news for 2D but opens the road to higher dimensions.

Though  these  are  variations  on  the  themes  it  still  appears  that  simply  writing

things  a  bit  different  may  cause  a  new  ray  of  light.  Like  speaking  another

language.
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7.  � and �

 

 

 

7.1  Introduction

The graph for the Pythagorean Theorem will provide for clarity of discussion.

r y

x

a

j

  1.  Given the right angle we have x2 + y2 = r2. 

  2.  s[a] = y / x is the slope.

  3.  j = a Q

  4.  When a and r change then j, x and y change. 

  5.  When x and y change then j, a and r change. 

For point 5 we have defined the Arc function:

j = Arc[{X, Y}] =Arc[{x, y}] = Arc[v]

And we have derived the key theorem of analytic geometry:

Arc[v w] = Arc[v] + Arc[w] =  j  +  y

Turn[v w] = Turn[v] + Turn[w] = a + b

Due to the dependency: if we invert 5 then we must find 4.

We will work with j and Arc since the property of r = 1 is handy. The issue is two-

dimensional  in  Arc  but  in  the  following  we  are  going  to  use  one-dimensional

functions  ArcX  and  ArcY.  We  first  proceed  quickly  and  then  later  correct  for

shortcuts made along the way.
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7.2  X and Y as functions of the arc

Let us look at the first quadrant. Then for each X there is an arc j, and for each arc

j there is a X.  The same for Y, that can be found by Pythagoras. That means that

there  are  functions  ArcX  and  ArcY  and  that  these  have  inverses.  Since  v  is

twodimensional  {x,  y}  and j  is  a  single  figure,  there is  no  confusion writing  Xv  =

Xj.

j = ArcX[ Xv = x / r ]     so that    Xv = x / r = ArcX-1[j ] = Xj

j = ArcY[ Yv = y / r ]    so that     Yv = y / r = ArcY-1[j ] = Yj

This looks like an abundance of names for {X, Y} but they help to express shifts in

focus.  Xv  expresses  the  dependence  upon  the  two-dimensional  vector,  Xj  the

dependence  upon  the  arc.  Then  the  key  theorem  of  analytic  geometry  can  be

restated in the following form, and in a frame to express its importance:

Xv w = Xv Xw - Yv Yw = Xj Xy - Yj Yy = Xj +y

Historically,  the  function  Xj  that  expresses  the  dependence  of  the  x-co-ordinate

upon the arc is denoted as Cos[j], so that x / r = Xj  = Cos[j]. And Yj  is denoted as

Sin[j].  Cos and  Sin  are  called  cosine  and sine  from  Latin  sinus  for  angle,  corner,

vertex.  These  historical  names  are  somewhat  unattractive  since  they  do  not

directly refer to the co-ordinates that we are dealing with. See if you can get used

to them:

 Xv w = Xv Xw - Yv Yw = Cos[j] Cos[y] - Sin[j] Sin[y] = Cos[j  +  y]

When we extend this relation from the first quadrant to the whole plane then we

get the following graph. For plotting it is useful to have proper axes to that we can

see that the Yj or sine wave starts at 0 with a slope of 1 or an angle of 1 / 8 or 45°. 

† Cos and Sin are the X  and Y values on the unit circle given by the arc there.

1 2 3 4 5 6
j

-1.0
-0.5

0.5
1.0

Xuc = Cos

1 2 3 4 5 6
j

-1.0
-0.5

0.5
1.0

Yuc = Sin

See http://demonstrations.wolfram.com/IllustratingTrigonometricCurvesWithTheUnitCircle/
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7.3  X and Y as functions of the angle

Also for the angles it appears useful to have different symbols to express the shifts

in  focus.  The  co-ordinate  is  first  related  to  the  vector  but  can  also  be  seen  as  a

function  of  the  angle.  Since  the  suffix  of  X  has  been  exhausted  we  take  another

kind of X symbol. We can write Xv  = xur@aD = �[a] called Xur and Yv  = yur@aD = �[a]

called Yur, where a is on the angular circle or the Unit Circumference Circle, and

xur and yur are on the Unit (Radius) Circle. Straightforwardly a = j / Q so that:

   Xv = x / r = �[a] = �a                    Yv = y / r = �[a] = �a

The key theorem can now be formulated neatly in its proper form for angles:

Xv w = Xv Xw - Yv Yw = �a�b -�a �b = �a+b

This expresses that we are dealing with (a) co-ordinates and (b) dependence upon

angles expressed in turns, (c) multiplication of vectors is addition of angles.

Plotting gives the same wave form as above but on the 0 to 1 domain for angles.

† These are the co-ordinates on the unit circle as functions of the angle.

�a = xur[a] = Cos[a Q] and �a = yur[a] = Sin[a Q] for angle a.

0.5 1
a

-1

1

� = Xur

0.5 1
a

-1

1

� = Yur

7.4  The algorithm

The  algorithm  thus  is:  when  we  multiply  two  vectors  with  known  co-ordinates

normalized on the unit circle then we can find the result first of all from Xv w  = Xv
Xw - Yv Yw while Yv w can be found from Pythagoras or from Yv w = Yv Xw + Xv Yw.

But  we are  free to  express everything also in  terms of  the addition  of angles  and

translate these back into co-ordinates. This can be handy for more multiplications
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translate these back into co-ordinates. This can be handy for more multiplications

like for cyclic functions as waves or regular polygons.

7.5  There are four quadrants

7.5.1  Pythagoras again

There  is  a  tricky  issue.  We  took  a  shortcut  that  needs  to  be  resolved.  Due  to

Pythagoras  and  his  squares  we  get  plusses  and  minusses.  One  X  gives  two

possible  Y’s  and  one  Y  gives  two  possible  X’s.  We  can  find  unique  values  when

we  keep  track  of  the  positive  or  negative  signs  of  the  variables,  i.e.  in  what

quadrant  they  occur.  Then  we  can translate  the  two-dimensional  Arc[v]  function

to  the  one-dimensional  ArcX and ArcY functions  that  depend upon the  X and Y

values. 

8X , Y <8-X , Y <

8-X , -Y < 8X , -Y <
There thus are the following dependencies:

Dependency � �

Mirror over horizon �@-aD = �@aD �@-aD = -�@aD
Mirror over vertical �@1 ê 2 - aD = -�@aD �@1 ê 2 - aD = �@aD
Jump over diameter �@a + 1 ê 2D = -�@aD �@a + 1 ê 2D = -�@aD
Positive quarter turn �@a + 1 ê 4D = -�@aD �@a + 1 ê 4D = �@aD

Negative quarter turn �@a - 1 ê 4D = �@aD �@a - 1 ê 4D = -�@aD
When the arcs are expressed in terms of only one co-ordinate, we get:

Arc[v] = Arc[{x, y}] = ArcX[ X8x, y<, given Sign[y] ] = ArcY[ Y8x, y<, given Sign[x] ]

We  can  apply  these  functions  in  two  ways.  The  first  way  is  to  know  in  what

quadrant we are and then apply the proper subfunction. The other way is to leave

the  quadrant  somewhat  unspecified  and  then  work  in  a  default  manner,  with

proper inverses in a limited range.
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† When we don’t know the signs we can determine a unique value over a limited

range. For X we assume that Y ¥ 0 with range {0, 1/2} Q. For Y we assume X ¥ 0.

To  get  a  continuous  funtion  for  Y  we  assume  that  a  negative  value  means  a

negative arc. The range then is {-1/4, 1/4} Q. The outcomes can differ from when

we have full information.

-1 1

X on

Unit

Circle

1

2

3

Length of arc HArcXL

-1 1

Y on

Unit

Circle

-1

1

Length of arc HArcYL

ArcLength@8x, y<D gives the length of arc on the unit circle

when the point is projected there along a ray

through the origin. The arc length is measured

counterclockwise from 81, 0< and the range is 0 to Q

ArcX@x H, nLD assumes x =

X@8x, y<D. If y  0 then n = Negative can be used.

ArcY@y H, nLD assumes y = Y@8x, y<D. If x ¥ 0 then n = NonNegative,

otherwise Negative.

ArcLengthPlot@HsLD plots. If label s = XandY then the variants

with NonNegative and Negative are used

Arc is implemented with the name ArcLength to emphasize what it does. With ArcX and ArcY this is fairly obvious.

Since Y  = ± 1 - X 2 it matters in what quadrant the values are. 

7.5.2  Unifying the plane

Unifying the plane again, we get the following graph. For example, when X = 1/2

then  there  are  potentially  two  values  for  the  arc.  When  we  look  at  those  two

values in the plot for Y then we find two values for Y that generate the same arc,

one positive  Y and one negative  Y.  Iff  we know the  sign  of  Y then we know the

proper arc length.
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† The points {X, Y} are on the unit circle so that X and Y are between -1 and 1. We

let X move from 1 to -1 and then Y = ± 1 - X 2 gives two values. If we know

the signs of X and Y then all fits.

-1 1

X on

Unit

Circle

2

4

6

Length of arc Hgiven YL

-1 1

Y on

Unit

Circle

2

4

6

Length of arc Hgiven XL

These are not functions but correspondences. They are transforms of the Cos and

Sin functions, with the X and Y axes interchanged, turned but also mirrored.

7.6  The polar and angle planes

A point  in  space v =  {x,  y}  =   r  {�a,   �a}  =  r  {Xj,  Yj}  =  r  {Cos[j],   Sin[j]}  thus has

different representations.

Alongside  the  two-dimensional  plane  for  {x,  y}  there  is  a  plane  for  {r,  j}  =  {|v|,

Arc[v]} that uses both the Euclidean length of the vector and the length of the arc.

These  are  called  the  polar  plane  and  polar  co-ordinates.  Another  plane  uses  length

and  angle  {|v|,  a,  1},  called  the  angle  or  UMA  plane  with  likewise  co-ordinates

(unit  measure  around),  where  it  is  useful  to  include  the  parameter  for  the  unit

range so that it  is not confused with the polar plane with parameter  Q  that is not

stated by default.

7.7  Taking stock

It  is  useful  to  look  back  at  our  steps  and the  results  that  came about.  Remember

why we do all of this.

For vectors it was easy to define addition. Next we introduced multiplication and

looked  at  the implications.  We want  to  understand it  and if  possible  we want  to

find an easier expression. 

We  noted  that  the  unit  circle  with  its  easy  radius  plays  a  key  role.  We

distinguished the length of  a  vector  and a normalization  to  the unit  circle.  When

multiplying those normalized vectors, the normalized result remained on the unit

circle.  The  idea  arose  that  multiplication  of  vectors  meant  the  addition  of  their

arcs. We proved that this is indeed the case: the key theorem of analytic geometry.
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arcs. We proved that this is indeed the case: the key theorem of analytic geometry.

The relationship between co-ordinates  and arc was expressed in j  = ArcX[x /  r]  =

ArcY[y /  r]  functions (for the first quadrant),  that  take a co-ordinate and generate

an  arc.  Their  inverses  take  an  arc  and  generate  a  co-ordinate,  i.e.  the  functions

traditionally called Cos and Sin.

In  review  and  summary:  We  have  succeeded  in  finding  a  transparant

interpretation.  With  the  key  result  of  analytic  geometry  we  now  have  found  the

following  relationships  between  co-ordinates,  turns,  angles  and  arcs  (where  an

angle  is  based  upon  arcs  too)  and  slopes  as  well.  There  is  an  abundance  of

notations but these allow us to express the shift in focus:

  1.  The length of z = v w is given by  |z| = |v w| = |v| |w|. 

  2.  The arc of z is given by Arc[z] = Arc[v w] = Arc[v] + Arc[w] = j + y.

  3.  The horizontal co-ordinate is X[z] = Xv Xw - Yv Yw.

  4.  Moving from two dimensions to one dimension we get: 

  4a.  j = ArcX[ Xv ] = ArcCos[ Xv ] and thus inversely Xv = Xj = Cos[j].

  4b.  j = ArcY[ Yv ] = ArcSin[ Yv ] and thus inversely Yv = Yj = Sin[j].

  5.  Thus we have Cos[j + y] = Cos[j] Cos[y] - Sin[j] Sin[y].

  6.  � = xur and � = yur use angle a = j / Q with Q = 2 p.

  7.  Then Xv = x / |v| = xur[a] = �a = Cos[j] and Yv = y / |v| = yur[a] = �a = Sin[j].

  8.  Thus we have Xv w = Xv Xw - Yv Yw = �a �b - �a �b = �a+b.

  9.  The slope is given by sv = y / x = Yv / Xv = �[a] = Tan[j] on the line x = 1.

A bit  confusing in this  development  are  the historical  names of  Cos and Sin that

do not express their relation to the unit circle and the specific co-ordinates. Due to

the path that  we followed it  ought  to  be established firmly  in your mind though

that those Cos and Sin functions are only the co-ordinates on the unit circle.

PM. It is an option to rebaptise Cos and Sin into Xuc and Yuc as all their action is

on the Unit  Circle,  but  this likely  causes confusion with Xur  and Yur,  and use of

Cos and Sin gives better access to the traditional literature and webpages.

PM. Traditional  books and websites write Cos[j] = x / r and suggest that this is a

definition of Cos. However, it is an equation to solve. A definition like f[x] = x2 has

x on the right hand side, and there is no j on the right hand side of Cos[j] = x / r.

At best it is an inverse definition, but confusingly this is hardly ever explained. It

will be the way how in the historical past numerical tables were generated but it is

inverted  from  how  we  use  the  functions.  The  proper  expression  is  x  =  r  Cos[j]

where the co-ordinate is calculated from the arc and the radius. Also j = ArcX[x /

r] = ArcCos[x /  r] = Cos-1[x /  r] calculates the arc from the co-ordinate on the unit

circle.
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PM. Since computer programs implement Cos and Sin functions by tradition,  the

transforms to angles are:

a = j / Q = ArcX[Xv = x / r] / Q    so that   Xv = x / r = �[a] = ArcX-1[j] = Cos[j]

a = j / Q = ArcY[Yv = y / r] / Q   so that    Yv = y / r = �[a] = ArcY-1[j] = Sin[j]

7.8  Appendix

7.8.1  The xur and yur or cosine and sine rules for a triangle

The key theorem of analytic geometry uses a particular step that can be stated as a

general rule for triangles: the xur  or cosine rule for a triangle. Let us reproduce the

situation.

A

B

a

b

c

a g

b

D C

  1.  Denote p = AD and h = BD (the height)

  2.  Pythagoras gives c2 = h2 + p2 and  a2 = h2 + Hb- pL2
  3.  Thus a2 = c2 - p2 + Hb - pL2 = c2 - p2 + (b2 - 2bp + p2) = c2 + b2 - 2bp 

  4.  Thus a2 = c2 + b2 - 2bp can be used if b, c and p are known.

  5.  �[a] = xur[a] = p / c  = Cos[a Q]. Thus a2 = c2 + b2 - 2bc �[a].

The xur or cosine rule thus is a2 = c2 + b2 - 2bc �[a].

If g = 1/4 then p = b and the rule reduces to Pythagoras (line 4).

There is also a rule for yur or sine. With �[a] = h / c and �[g] = h / a, elimination of h

gives, more in general, also including b:

�HaL
a

�
�HbL
b

�
�HgL
c

PM. A teacher’s  problem  in teaching  is  a  student’s  problem in  learning,  and it  is

useful for students to be aware of some choices made here. Consider: triangles can

have  any  direction  while  those  in  the  unit  circle  are  oriented  in  four  limited

directions.  If  you  would  have  learned  trigonometry  for  triangles  of  any

orientation  then  you  might  have  to  unlearn  and  adjust  for  the  system  of  co-
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orientation  then  you  might  have  to  unlearn  and  adjust  for  the  system  of  co-

ordinates. Or the other way around. This book tries to give a balance. The chapter

on geometry is low key on the calculation of angles and sides: there is little  need

for  that  there.  These  cosine  and  sine  rules  are  only  introduced  here  since  one  of

them  shows up  as  a  step  in  the  proof  for  the  key  theorem  of  analytic  geometry.

But the rules can be used for angles of any orientation.  This book likes you to be

aware of these choices so that you can better deal with orientation. This approach

seems  much  better  than  first  provide  training  on  calculating  all  kinds  of  angles

and sides, and then actually unlearn again for application to the unit circle.

7.8.2  Doubling and halving angles

With  �a+b = �a �b - �a �b  we  take  a  =  b  so  that  �2 a = �a
2 - �a

2 .  With

�a
2 + �a

2 = 1 we get �2 a = �a
2 - H1 - �a

2L  or �2 a = 2�a
2 - 1 .

Halving gives a Ø b/2 and �b = 2�bê22 - 1 or �bê2 = I1 + �bM ë 2 . Thus:

 �2 a = 2�a
2 - 1

�aê2 = H1 + �aL ê 2 .

The method where a result of a calculation is used as the input for a next round of

calculation is called “recursion”. In human culture there are many instances of the

use  of  repetition  and  repeated  application,  so  this  use  is  not  particularly  new.  It

becomes mathematics though when we make a systematic analysis of it.

† Starting at �1ê4  = 0 and repeatedly halving the angle. The first four steps:

:0, 1

2

,
2 + 2

2
,
1

2
2 + 2 + 2 >

In the limit L, the result no longer changes and L = H1 + LL ê 2  gives L = 1.

7.8.3  Dependency in the unit circle

Above  we  had  a  table  of  the  dependencies  in  the  four  quadrants.  There  are

different formats, and evaluation in Mathematica kindly verifies.

† For the angles.
� �

Mirror over horizon �@-aD� �@aD �@-aD� -�@aD
Mirror over vertical �B 1

2
- aF� -�@aD �B 1

2
- aF� �@aD

Jump over diameter �Ba + 1

2
F� -�@aD �Ba + 1

2
F� -�@aD

Positive quarter turn �Ba + 1

4
F� -�@aD �Ba + 1

4
F� �@aD

Negative quarter turn �Ba - 1

4
F� �@aD �Ba - 1

4
F� -�@aD
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† Translated  to  Cos[a  Q],  then  simplify.  The  mirror  over  the  horizon  is  directly

true without simplification.
True True

cosJ2 p J 1
2
- aNN� -cosH2 p aL sinJ2 p J 1

2
- aNN� sinH2 p aL

cosJ2 p Ja + 1

2
NN� -cosH2 p aL sinJ2 p Ja + 1

2
NN� -sinH2 p aL

cosJ2 p Ja + 1

4
NN� -sinH2 p aL sinJ2 p Ja + 1

4
NN� cosH2 p aL

cosJ2 p Ja - 1

4
NN� sinH2 p aL sinJ2 p Ja - 1

4
NN� -cosH2 p aL

7.8.4  Solving equations

Solve �a
2 - �a = 0. Solved by �a (�a - 1) = 0, thus �a = 0 or �a = 1.

Thus either a = 1/4 + k / 2  or  a = k   uma for k = 0, 1, 2, ...

Or solve cosHjL2- cos(j) = 0. Solved by cosHjL (1 - cos(j)) = 0. Cos(j) = 0 or cos(j) = 1.

Thus j = Q/4 + k Q/2   or  j = k Q   rad

Or     j = p / 2 + k p     or  j = k 2p  rad.

7.8.5  Calculating arcs

Consider points P = {x, 0.8} and Q = {0.1, y} on the unit circle for negative solutions

of x and y. Calculate the length of the shortest arc from P to Q. 

Done by ArcYur[0.8]  = 0.147584. The angle to P is a = 1/2 - 0.147584 = 0.352416.

ArcXur[0.1] = 0.234058. The angle to Q is b = 1 - 0.234058 = 0.765942.

The shortest arc on the unit circle is Q (b - a) = 2.60.

Or ArcSin[0.8] = 0.927. The arc to P is j = p - 0.927 = 2.214.

ArcCos[0.1] = 1.471. The arc to Q is y = 2p - 1.471 = 4.813.

The shortest arc between P and Q is y - j = 2.60.

7.8.6  Transformations

With a and b for angles and j and y for arcs we can map from angles to arcs and

vice  versa.  We  may  keep  the  same  variable  names  but  may  also  change  them.

When we move from arcs to angles then it  makes sense to replace p  by Q/2 but a

separate  routine  is  useful  for  the  converse  -  since  it  is  a  separate  issue  and  Q  is

useful for arcs too. 

For  xur[a]  there  is  Cos[j].  The  angle  function  is  represented  by  (1)  Xur  that

translates to Cos on the spot, (2) xur that is symbolic and displays as �, and (3) of
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translates to Cos on the spot, (2) xur that is symbolic and displays as , and (3) of

course we may directly type �. Similarly for yur and Sin and tur and Tan.

† From symbolic cos to symbolic xur while keeping the variable.

Cos@y + Pi ê4 D êê ArcToAngle

�
y

Q
+
1

8

† It is more convenient to have standard replacement of names.

SetOptions@ArcToAngle, Angle Æ 8a, b, g<, Arcs Æ 8j, y, J<D;
SetOptions@AngleToArc, Angle Æ 8a, b, g<, Arcs Æ 8j, y, J<D;

Cos@y + Pi ê4 D êê ArcToAngle

� b +
1

8

Cos@ 2 j + 3y + Pi ê6D êê ArcToAngle

� 2 a + 3 b +
1

12

† If k is a unit counter then it should not be replaced.

Cos@j + k Pi ê6D êê ArcToAngle

� a +
k

12

Result êê AngleToArc êê ToPi

cos
p k

6
+ j

† If J is not a unit counter then its coefficient is a proper coefficient.

Cos@j + J Pi ê6D êê ArcToAngle

� a +
g Q

12

Result êê AngleToArc êê ToPi

cos j +
p J

6

FromPi@exprD
ToΘ@exprD

replaces p in expr with Qê2

FromΘ@exprD
ToPi@exprD

replaces Q in expr with 2 p
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ArcToAngle@exprD transforms Cos, Sin and Tan into xur, yur and tur, and Pi into Qê2
AngleToArc@exprD transforms xur, �, yur, �, tur and � into Cos, Sin and Tan.

It leaves Q: see ToPi

ArcToAngle and AngleToArc have the same input formats and orders.

Option Simplify Ø True is default. Option Arcs can contain variable names for arcs, and Angle (without s) for the 
corresponding angles (defaults { }) and then those are substituted, with appropriate j = a Q.

AngleToArc@RuleD the replacement rules

AngleToArc@
expr, α, ϕD

substitutes too

AngleToArc@expr,
α, ϕ, β, ψ, ...D

for alternating sequence

AngleToArc@expr,
8α, β<, 8ϕ, ψ<D

for collected lists Hthat might also be in the options

ArcToAngle and AngleToArc have the same input formats and orders.

�@…D used as a label for xur, see ArcToAngle

xur@exprD displays as �@exprD, see ArcToAngle

Xur@αD gives Cos@Q aD for angle a measured in Unit Turn or Unit Measure

or Meter Around HUMAL. It gives the x value on the circle

with unit radius. Xur@aD equals the ratio of the horizontal

value to the radius. Let Q = 2 p, then Q UMA = 1 radian

ArcXur@xD gives the angle a = ArcCos@xD ê Q such that Xur@aD = x

The same for Yur and Tur. � is î[DoubleStruckCapitalX].

7.8.7  A corollary

Given  �a+b = �a �b - �a �b  it  is  straightforward  to  find  �a-b = �a �b + �a �b,

using the properties that �-b = �b and �-b = - �b. 

It  can be a good exercise to directly prove it,  though, using below graph. Point A

associates with angle a, vector v and arc j. Point B associates with angle b, vector

w  and arc y.  The chord AB  is  the side of a triangle given by the radii  but also by

Pythagoras. 
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B ~ w ~ y
j - y

b
a

A ~ v ~ j

x

y

† Xur rule and unit radius: AB2 = 1 + 1 - 2 * 1 * 1 * �a-b = 2 - 2 �a-b. 

† Pythagoras: AB2  = HDXL2  + HDYL2  = I�a - �bM2  + I�a - �bM2 = �a
2  - 2 �a�b + �b

2

+ �a
2 - 2 �a�b + �b

2 = 2  - 2 (�a�b +  �a�b)

† Combining these gives �a-b = �a �b + �a �b

7.8.8  A technical note

The  arc  functions  rely  on  standard  routines  in  Mathematica  such  as  for  complex

numbers that are discussed below.

† These are the definitions.

See@ArcLength@8x, y<D, ArcX@xD, ArcY@yD D

-p H1 - sgnHyLL sgnHyL + argHx + Â yL cos-1HxL sin-1HyL

Plot@8ArcLength@8x , Sqrt@1 - x^2D<D, ArcLength@8x, -Sqrt@1 - x^2D<D
<, 8x, -1, 1<, PlotRange Æ All, AxesLabel Æ 8x, ArcLength<D

-1.0 -0.5 0.5 1.0
x

1

2

3

4

5

6

ArcLength

This again demonstrates that the complexity of trigonometry derives mainly from

pushing a 2D problem into 1D functions. 
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8.  The complex plane

 

 

 

8.1  Notation of the above as complex number

The key theorem showed that trigonometry is an essential part of vector analysis.

We will  now rewrite these results into the form of “complex numbers”.  Basically

you  will  learn  nothing  new.  Except,  that  this  new  way  of  writing  may  simplify

some steps in deductions.  Complex numbers are much used and it  is  very useful

when you understand the notation. The notation of complex numbers can be seen

as  more  efficient  than  the  notation  we  have  used  for  the  vectors.  Eventually

however  the  vector  notation  can  be  generalized  better  into  more-dimensional

systems  while  the  notation  of  complex  numbers  gets  a  bit  stuck  to  2D  or  3D

problems.  Complex  numbers  are  handy  and  elegant  and  educational  like

horseback  riding  but  also  limited  in  trying  to  reach  the  stars.  An  advantage  of

complex numbers is that square roots of negative numbers always have solutions.

It will be a reason why Mathematica uses complex numbers as the standard.

8.2  The imaginary number

A simplification of x X + y Y  is to write X  = 1 and Y  as Â. (Or i or I.) We get:

v = {x, y} = x X + y Y  = x +  y Â

Where we said horizontal and vertical, now x is called the real part and y is called

the imaginary part. When we take x = 0 then v2 = y2 Â2 = y2 Y  Y = - y2 X  = -y2. We can

divide by any y ∫ 0 and then get Â2  = -1. Since -1  has not been defined yet, we

may solve Â2  = -1  as Â  = ± -1 .  It  is  standard to define Â  = -1 .  In the historical

past  mathematicians  were  only  familiar  with  real  numbers  and  roots  of

nonnegative real numbers. Hence the root of -1 struck them as a rather imaginary

phenomenon. Whence the historical name of Â as the imaginary number. Numbers

with  Â  are  called  imaginary  numbers  in  general  and  this  plane  thus  is  called  the

imaginary plane. 

Working with Â = -1  is tricky. Regard 1 = 1  = -1 * -1 = -1 * -1  = Â2  =

-1.  If  you  do  not  know  the  proper  theory  on  vectors  above  you  will  be

flabbergasted. This outcome can be understood from the notion that we need two
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flabbergasted. This outcome can be understood from the notion that we need two

rotational  steps to get from 1 to -1. The third equality sign then is improper.  This

may be easily overlooked so beware your steps.

Though  working  in  the  imaginary  plane  can  be  tricky  it  has  the  advantage  of

formulas  that  are  a  bit  easier  to  write  than  x X + y Y .  People  also  get  used  to  a

language. Hence it has remained a popular approach.

A quick  result  is  the  vector  product  that  we used in  the  key  theorem  of  analytic

geometry, that we have learned to recognize as the xur or cosine rule:

(a + b Â)( x + y Â) =

a x + a y Â + b x Â + b y Â2 =

a x - b y + (a y + b x) Â

It  was an option for this present book to develop analytic  geometry starting with

complex  numbers.  This  option  was  rejected  for  the  reason  that  Â  is  a  bit  vague

when you first meet it. Starting with {x, y} = x X + y Y  is a more solid way to really

grind  in  the  notion  of  the  two  axes.  And a  base  for  future  n-dimensionality.  The

objective of this book is to allow you to understand analytic geometry, in a quick

and  easy  and  accurate  but  also  deep  and  solid  manner.  Once  you  understand  it

you choose your own notation.

Given our knowledge of vectors the following properties are straightforward. We

might  have  developed  these  properties  in  vector  notation  but  once  you  master

complex numbers then you will be happy to use the current derivations.

8.3  Absolute value and conjugate

There are two definitions that matter.

† The  absolute  value  or  modulus.  Mathematica  presumes  that  x  and  y  may  be

unknown complex numbers and thus leaves the expression as it  stands instead

of producing Pythagoras as NRadius does. 
Abs@vD Abs@x + Â yD Abs@4 + 3 ÂD NRadius@8x, y<D
†v§ †x + Â y§ 5 x2 + y2

† The conjugate of v = x + y Â  is v  = x  - y Â  . Mathematica  uses v�. The conjugate is

the  number  mirrored  over  the  horizontal  axis.  When  we  do  not  specify  what

are real numbers then they are not recognized as such.

See@Conjugate@vD, Conjugate@x + y ‰D , Conjugate@4 + 3 ‰DD
v� x� - Â y� 4 - 3 Â
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FullSimplify@Result , AssumptionsÆ 88x, y< Œ Reals<D
v� x - Â y 4 - 3 Â

A key to complex numbers is this property of multiplication. The product of these

two  complex  expressions  gives  the  square  of  the  absolute  value,  which  is  a  real

number again.

Hx + y ‰ L Hx - y ‰ L êê Simplify

x2 + y2

We now have sufficient material to reproduce the Pythagorean Theorem.

† The conjugate is important because v v = v 2. It is a real number too. Thus v v =

(x + y Â) (x - y Â) = x2 - y2Â2 = x2 + y2 = v 2. Also |v| = |v|.

H4 + 3 ‰ L H4 + 3 ‰ L �

25

Conjugate@vD v êê FullSimplify

†v§2

† The conjugate of a product is the product of conjugates: v w =  v w. 

HHa + b ‰ L Hx + y ‰ L L �

Ia� - Â b�M Ix� - Â y�M

The length of the product is the product of the lenghts: | v w  | = |v| |w|. Above

we have spent quite some time and formulas in deriving this but now it goes fast

using the conjugates: v w 2 = v w v w = v v w w = v 2 w 2. 

† Expressed with roots instead of squares.

Abs@ Ha + b ‰ L Hx + y ‰ LD êê FunctionExpand
†a + Â b§ †x + Â y§

Division  is  a  neat  result.  In  a  quotient  v  /  w  we multiply  both  positions  with  the

conjugate  of  the  denominator.  The  denominator  then  reduces  to  a  real  number

and we get a standard complex number again. Thus v / w = (v  w) / (w w) =  (v  w) /

w 2.

† Mathematica is so powerful that it can leave this as it stands. 

Hx + y ‰ L ê Ha + b ‰ L êê FunctionExpand
x + Â y

a + Â b
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† Enforcing the simplification for numerator and denominator.

Division@Simplify@Times@��DD&, Hx + y ‰ L ê Ha + b ‰ L , 8 a - b ‰ <D
Ha - Â bL Hx + Â yL

a2 + b2

† Mathematica however takes complex numbers as simpler.

Simplify@Result , AssumptionsÆ 88a, b, x, y< Œ Reals<D
x + Â y

a + Â b

The length of a ratio is the ratio of the lengths:

† |v / w|  =  |v  w / ( w w ) |   =  |v  w| / w 2  =   |v| |w| / w 2  =  |v| / |w|. 

Abs@Hx + y ‰ L ê Ha + b ‰ L D êê FunctionExpand
†x + Â y§
†a + Â b§

8.4  Real and imaginary parts, Re and Im

Re[ ] takes the real part and Im[ ] takes the imaginary part, i.e. the coefficient of Â.

† In x  + y Â  variables x and y may be complex numbers too. 

See@Re@x + y ‰D, Im@x + y ‰D D
ReHxL - ImHyL ImHxL + ReHyL

Simplify@Result , AssumptionsÆ 88x, y< Œ Reals<D
x y

† Pythagoras. Application of FullSimplify would generate True.

Abs@vD ^2 == Conjugate@vD v êê FunctionExpand

ImHvL2 + ReHvL2 � v v�

The real part is halfway on the line between v and its conjugate.

† The real part.

Re@vD == Hv + v�L ê 2

ReHvL�
v� + v

2
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Simplify@Result ê. v Æ x + y ‰, AssumptionsÆ 88x, y< Œ Reals<D
True

† For the vector {3, 1}, the standard addition with the conjugate {3, -1} gives {6, 0}

and halfway we find Re[{3, 1}].

O

v

v

R

1 2 3 4 5 6
x

-1.0

-0.5

0.5

1.0

y

The imaginary part is halfway on the difference between v and its conjugate. NB.

The imaginary part is a real number and thus is on the horizontal axis.

† Take half and divide by Â to eliminate it from the numerator.

Im@vD == Hv - v�L ê H2 ‰L

ImHvL� -
1

2
Â Iv - v�M

Simplify@Result ê. v Æ x + y ‰, AssumptionsÆ 88x, y< Œ Reals<D
True

Take for example v = 3 + Â. 

  First take w = - Â v and z = Â v.

w = - Â v = -3 Â + 1.

z = Â v = Â H3 - ÂL = 3 Â + 1 = w.

Then w + z = w +w = 82, 0<.
Im@83, 1<D is halfway from w + w = 82, 0<.

O

w

w

R

1 2
x

1

2

3

y

 

8.5  Argument function, Arg

The  argument  Arg  of  a  complex  number  is  the  arc  from  {1,  0}  counterclockwise.

Values for a negative y get a negative arc too. 
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† The key theorem of analytic geometry again. The argument of a product  is the

sum of arguments.

Arg@vwD == Arg@vD + Arg@wD;

† Application  to  a  specific  number  requires  explanation  that  the  coefficients  are

reals. Note the Floor function.

PowerExpand@ Arg@Ha + b ‰L H x + y ‰LD , AssumptionsÆ 88x, y, a, b< Œ Reals<D

2 p -
argHa + Â bL

2 p
-
argHx + Â yL

2 p
+
1

2
+ argHa + Â bL + argHx + Â yL

† ArcLength above is from 0 to Q. Arg is from -p to p.

See@ Arg@x + y ‰D, Arg@1 + ‰D, Arg@1 - ‰D, ArcLength@81, -1<DD

argHx + Â yL p

4
-
p

4

7 p

4

PlotBy = 1 - x2 ; 8Arg@x + y ‰ D, 2 Pi + Arg@x - y ‰ D<, 8x, -1, 1<, AxesLabel -> 8x, Arg<F

-1.0 -0.5 0.5 1.0
x
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4
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Arg

8.6  The polar form

We get another format for the polar form:

v = |v| (�[a] + �[a] Â)

v = |v| (Cos[j ] + Sin[j] Â)

† The key theorem of analytic geometry.

v w == r HCos@jD + Sin@jD ‰L * s HCos@yD + Sin@yD ‰L
v w � r s HcosHjL + Â sinHjLL HcosHyL + Â sinHyLL

assump = AssumptionsÆ 88r , j, s, y< Œ Reals<;
Simplify@PowerExpand@Result , assumpD, assumpD
v w � r s HcosHj + yL + Â sinHj + yLL
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8.7  Euler’s form

8.7.1  What it is and why it works

The  recovered  exponent  of  a  product  is  the  sum  of  the  recovered  exponents,  or

rex[xa  yb]  =  a  rex[x]  +  b  rex[y].  This  property  has  the  same  structure  as  the

multiplication  of  vectors  and  addition  of  arcs.  Thus  exponents  can  be  used  to

represent arcs. A base can be chosen that is agreeable with various properties: and

this appears to be the number ‰ = 2.71828....

Later we will discuss calculus. This is a good place to make a point that you may

not  understand  yet.  Teachers  will,  students  may  not.  It  is  better  to  put  it  here

where it belongs than discussing it later where it will be a bit out of context. Once

you understand calculus you can look back at this short discussion, where it then

is at the right place.

The  pivot  around  which  this  then  works  is  ‰Â  =  Cos[1]  +  Sin[1]  Â  º   0.540302  +

0.841471 Â, thus the co-ordinates of an arc of 1 radian. Arcs j raise this pivot to the

power, thus H‰ÂLj, and the radius is multiplied with it. Thus: (1) a real part c in the

exponent gives the radius r = ‰c  and (2) the imaginary part in the exponent gives

the co-ordinates on the unit circle. Together:

‰c + Â j = ‰c ‰Â j = r ‰Â j = r HCos@jD + Sin@jD Â L
With c  = 0 there is the unit circle, and j = 1 holds for 1 radian. In general it still is

the point v = {x, y} = r {Cos[j],  Sin[j]} with r = |v|.

† r  = 1 and j = 1 give ‰Â = Cos[1] + Sin[1] Â º  0.540302+ 0.841471 Â

1
Y = Sin@jD

X = Cos@jD
a

j

‰Â j � X + Â Y

† Euler’s definition, true by definition, but codifying the key theorem.

SimplifyAr „‰ j == r HCos@jD + Sin@jD ‰L , AssumptionsÆ 88r , j< Œ Reals<E
True

PM. Above we saw how 1 = -1 could be proven with improper steps. Let  us now
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PM. Above we saw how 1 = -1 could be proven with improper steps. Let  us now

manipulate j in radians to show that any complex number on the unit circle must

be 1.

:‰Â j � I‰2 Â p jM
1

2 p , fl , ‰Â j � I‰Â 2 pM
j

2 p � 1>

Result êê PowerExpand

9True, fl , ‰Â j � 1=

8.7.2  Key theorem of analytic geometry

† The key theorem of analytic geometry now has a very basic form.

vw == Ir „‰ j M * Is „‰ yM

v w � r s ‰Â j+Â y

Euler’s  form  is  a  definition  and  subsequently  we  require  an  existence  proof  that

indeed the arcs can be added. See the existence proof in §6.2. Thus the Euler form

is  basically  an  efficient  way  of  stating  the  key  theorem.  It  does  a  bit  more  by

joining up complex numbers with exponential numbers.

† The key theorem of analytic geometry in some different formats.

Ir „‰ j M * Is „‰ yM == r HCos@jD + Sin@jD ‰L * s HCos@yD + Sin@yD ‰L

r s ‰Â j+Â y � r s HcosHjL + Â sinHjLL HcosHyL + Â sinHyLL
Simplify@Result, AssumptionsÆ 88r , s, j< Œ Reals<D
True

8.7.3  Euler’s form in angles

Straightforward:

† Euler’s form of the complex number as function of angle a = j / Q:

v ê r � ‰Â a Q � �HaL + Â �HaL � cosHa QL+ Â sinHa QL

PM. The following is a bit of fun. A full circle gives ‰ Â Q = Cos[Q] + Sin[Q] Â = 1 + 0 Â,

thus  the  unit  vector  on  the  horizontal  axis.  If  we take  ‰ Â Q  =  1  +  0  Â  =  1  and  thus

erroneously multiply  out  Â,  then it  seems that  H‰Â QLa   =  1a  =  1  so  that  there is  not

much of a formula to work with here. To remove the mystery: this is like the proof

above that 1 = -1. We must distinguish between an operator and the arithmetic for

reals. The outcome 1 is the accurate value when j  = Q.  The only thing that we do

now  is  rescaling.  The  notation  as  imaginary  number  and  as  a  power  of  ‰  is

fundamentally shorthand for Cos[... Q] X  + Sin[... Q] Y . 
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9.  Approximation of Q

 

 

 

9.1  Noblesse oblige

It  is  not altogether  clear why this book bothers to look into the approximation of

Q.  Mathematica  has Q  already to  great  accuracy.  Books  and websites  abound (e.g.

Jon  and  Peter  Borwein).  If  you  are  interested  in  that  then  you  are  in  paradise

already.

Still,  in a book on analytic geometry and calculus there is a sense of obligation to

say something.

  1.  There is the issue whether Q is really dimensionless.  

  2.  A primer is a primer. You might like some material for practicing. Below 

applies Viètes method with steps that each apply the Pythagorean Theorem. It 

is very basic. It avoids a formal development of polygons. There is no use of 

the trigonometric functions. Thus it can be appreciated as an exercise to get 

some more familiarity with geometric reasoning. Naturally, it uses the X and 

Y values on the unit circle and therefor the trigonometric functions are 

implicit. It is the duty of trigonometry to convince and teach students that it is 

useful to make those explicit. Discussing the calculation of Q might suit that.

  3.  Having seen the proof may help to understand the formulas for circumference 

and area. The proof establishes proportionality. 

  4.  It might be a good stepping stone to later understand calculus on the circle.

  5.  The calculation uses recursion. Archimede in his calculation of p already used 

recursion. It is a fairly nice way to grow aware of the issues involved.

PM. Use of  the symbol  Q  in  Mathematica  happens to  be awkward since it  has not

been  programmed  in  the  N[  ]  function.  Routines  ToQ,  FromQ,  ToPi  and  FromPi

replace vice versa.

N@8Q, 2 p, p< , 20D
8Q, 6.2831853071795864769 , 3.1415926535897932385 <
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Hexpr = 5 ê6 Q êê FromQ L == Hexpr êê ToQL
5 p

3
�
5Q

6

Independently, Bob Palais also judged the selection of p over Q to be a historical error.
See Palais, R. (2001a), “p Is wrong!”, The mathematical intelligencer, Vol 23, no 3 p7-8.

9.2  The dimension of Q

Our comments on the dimension of Q  and the choice of the unit  of measurement

are:

  1.  It is doubtful whether Q = 2p is dimensionless. We can define a ratio but a 

movement around is a different dimension than a one-dimensional radius or 

diameter. Moving around requires two dimensions.

  2.  In geometry we frequently do not specify a unit of measurement. This only 

becomes relevant for practical application when the engineers take over from 

the mathematicians. This however is a different issue. What now is at issue is 

that an angle is different from a line, even though they are in the same plane. 

Originally we took an angle as a section of the plane, later we replaced this 

with measurement along an arc.  In the plane a meter one way is the same as a 

meter in another direction, but here we deal with a change in direction.

  3.  The proper approach is to use the Unit Turn as the unit measure for turns 

around. A turn is a Unit Measure Around (UMA) as provided by the angular 

circle.

  4.  When we measure the circumference or how the circle rolls one cycle then a 

point P on the angular circle indeed moves over the distance of that UMA. 

When the engineers step in and we require a dimension then we already have 

a unit of measurement in the Meter. The distance rolled by the circle then is 

measured in Meters. This means that the point P also has moved one Meter. If 

the measure is the Meter then we keep the label UMA in a different 

interpretation. In that engineering world the unit circle with r  = 1 Meter also 

has a radian of 1 Meter, so for radians the principle of assigning 1 to 1 Meter 

applies too.

  5.  Using (a) dimensionless a as a ratio or (b) the unit of measurement Unit Turn 

(UMA) or (c) the UMA-read-as-Meter causes a great simplification of various 

formulas. Formulas clutter with p but the symbol can now disappear in many 

cases.
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  6.  Using a half circle and p as a standard is curious since it is more logical to use 

a whole circle. Note the shift in denominator when radian = arc / radius but p  

= (full arc) / diameter. Practiced users use the label 2p for whole turns but 

curiously not in their unit of measurement. Always dividing and 

renormalizing on the spot remains awkward for didactics. Students think that 

they calculate fractions of p while they should focus on turns. Students tend to 

punch 2p into the calculator which is not the objective. (Now they will be 

tempted to punch Q / 2 (if the symbol is there) but with above didactics that is 

less likely to happen.)

  7.  The use of p comes with the convention to use positive turns to p and negative 

turns to -p. The advantage of this is nonexistent since we can also say 1/2 and 

-1/2 for angles and Q/2 and -Q/2 for arcs, with the advantage that the latter are 

readily understood. 

  8.  Though teaching must be effective in teaching to a standard too, it is useful to 

keep in mind that some standards may be less effective in themselves too.

9.3  The actual approximation

9.3.1  The method

Check out  the  graph  below.  We rely  on geometric  insight  of  halving  of  an  angle

and  Pythagoras  but  also  use  vector  addition  and  the  slope  of  a  line.  Above  in

§7.8.2 we already derived a repetitive relation on halving an angle but we need a

bit more for the sides of a triangle.

  1.  We look at the first quadrant and multiply the result by 4. We take B fixed. 

The startpoint is at A = A1, and we take ever shorter chords towards B: A1, A2, 

...

  2.  Pythagoras tells us that AB  = 2 . Multiply by 4.

  3.  Halving the angle gives us A2 on the circle and the intersection C1 with AB. 

Since the triangles between the two radii are isosceles, the lines are 

perpendicular and C1 is halfway. Thus C1 = ½ ({0, 1} + {1, 0}) = { ½, ½ }. 
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  4.  The line through MAn has formula y = s x. With X 2 + Y 2 = 1 we get X 2 + Hs X L2 = 

1 or the co-ordinates on the circle are X  = 1 / 1 + s2  and Y = s / 1 + s2 .

  5.  The co-ordinates of C1 give s = 1 and thus A2 = {1 / 2 , 1 / 2 }. 

  6.  Repeating, the length A2B = H1 - X L2 + Y 2  = 2 - 2 ì 1 + s2 in 

general and for s = 1 we have A2B = 2 - 2 .  Multiply by 4 * 2 = 8.

  7.  Repeating, we bisect the angle again and find C2 and A3. Vector addition and 

halving gives C2 =  ½ (A2 + B ), we find the slope s, the co-ordinates of A3, the 

length of A3 B and we multiply by 4 * 4 = 16. 

  8.  Repeat while you want and the estimate of Q is 2n+1An B when we start at n = 1.

  9.  But first simplify. Intermediate steps can be eliminated because there is a 

regularity. With f[0] = 0 and f[n] = 2 + f @n -1D we find An B = 2 - f @n -1D . 

We can also prove that f[n] = 2 in the limit since then f[n] º f[n - 1] and see a = 

2 + a , so that we do not cross the line and new additions An B are 

practically zero. Archimede gave a lower and upper bound but given this 

limit and current computer power this current method may do well. The End.

See http://demonstrations.wolfram.com/VietesNestedSquareRootRepresentationOfPi/

9.3.2  The result

The  following  routine  QPiApproximation  takes  above  steps  and  has  not  been

optimized since, indeed, Mathematica does a much better job.
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† An  is  on step n  and its  estimate of Q  on step n  +  1.  In the third step the formal

output  does  not  fit  on  the  page  but  numerically  at  the  sixth  step  the  first  two

digits already look familiar.
Q p 8X, Y< Slope Step

- - 80, 1< ¶ 1

4 2 2 2 : 1

2

,
1

2

> 1 2

8 2 - 2 4 2 - 2 : 2+ 2

2
,

1

2 2+ 2

> -1 + 2 3

Q p 8X, Y< Slope Step

- - 80., 1.< ¶ 1

5.65685 2.82843 80.707107, 0.707107< 1. 2

6.12293 3.06147 80.92388, 0.382683< 0.414214 3

6.24289 3.12145 80.980785, 0.19509< 0.198912 4

6.2731 3.13655 80.995185, 0.0980171< 0.0984914 5

6.28066 3.14033 80.998795, 0.0490677< 0.0491268 6

The algorithm and the actual numbers clarify some points:

  1.  The accuracy depends upon the accuracy of taking roots.

  2.  Convergence and speed are tricky. We see 6.27 flip to 6.28 and perhaps if we 

take many more steps it will flip to 6.29 ... Archimede’s upper boundary 

approach then is useful. But at a cost of speed. 

  3.  Advances in trigonometry allow more compact specifications. If we use a 

regular polygon and trigonometric tables are created with algebraic expansion 

then we get (expressing everything in degrees to prevent circularity in 

radians, and using surface - and the reason why this works is that the slope 

becomes the arc and Sin at 0 has a slope of 1 so that 360° is translated in Q):

Limit@ n * Sin@360 Degree ê n D , n Æ InfinityD êê N
6.28319

  4.  The Gauss-Legendre algorithm then is impressive. 

9.3.3  A key point

The method reaffirms that the circumference is proportional to the radius, thus Cir

= r  Q. Also, we use triangles that have Sur  = h w / 2. Since the height is r  and the

cumulative width is given by the circumference, circle surface is Sur  = r (r Q) / 2 =

½ r2Q. 
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9.3.4  Slope space ?

You  were  first  introduced  to  lines  where  slopes  were  the  key  issue  and  then

subsequently  you  are  taken  to  angular  space  where  slopes  play  a  minor  role.  Is

this a form of cruelty ?

Part of our art of mathematics is to recognize patterns and options to formalize. In

above algorithm we found the co-ordinates on the circle as X  = 1 / 1 + s2  and Y

= s / 1 + s2 . The slope s = tur  = yur  / xur  = Tan = Sin / Cos. We haven’t discussed

this but the points on the circle can be found not only by the angle but also with

the tangens without explicitly referring to the angle. The values of the tangens can

be found using the line y =  s  x  and the line  x = 1.  The drawback is  that  there are

two points on the circle that have that slope. We may consider to insert a sign of x

and then create Slope Space:

{x, y} ¨  Polar[r,  j] ¨  Angular[r,  a, 1] ¨ ? Slope[r, s = y/x = tur[a], Sign[x]]  

Is  this  really  a  Space,  with  proper  operations  of  addition  and  multiplication  ?  If

we add two slopes then what does this operation mean in {x, y} space ? It  means

that we add the values on the line x = 1. We vertically stack mountains instead of

neatly  fitting  the  angles  like  in  a  cake.  In  normal  space  this  kind  of  stacking  can

occur. When we add two linear functions we take the average slope though (cf. y =

3 x + 1 and y = 2  x  -  3).  To create a Slope Space we also need a bit  more,  like the

rule  that  multiplication  of  vectors  is  addition  of  angles.  For  these  rules  to  work,

the  slope  of  y/x  must  for  example  be  equivalent  to  twice  its  half  slopes,  for

example  y/x  =  y  /  (2x)  +  2y/(4x),  that  is,  the  point  {x,  y}  must  be  producible  from

points  {2x,  y}  and  {4x,  2y}.  There  are  also  the  r’s.  This  is  getting  complex  ...  For

now, let us close this short exploration of other Spaces.

We draw two conclusions: (1) The concept of a Space is important,  and it is great

that  we  have  both  normal  Euclidean  Space  and  Polar  or  Angular  Space.  (2)  We

started out with lines and spent a lot of attention to the slopes of lines. It  is great

that  we  see  slopes  again  in  trigonometry.  It  is  a  disappointment  though  that

slopes  do  not  play  the  dominant  role  in  this  Space.  It  appears  that  angles  take

over. However, later in calculus slopes gain in importance again.

A fine example http://demonstrations.wolfram.com/TheCelestialTwoBodyProblem/

See also Palais, R. (2001b), “The Natural Cosine and Sine Curves”, JOMA

http://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=483
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10.  Linear algebra

 

 

 

10.1  Dimensions

The complex plane is impressive but for three or more dimensions x + y Â + z ü + ...

becomes less tractible than the earlier notation where all unit vectors are specified,

thus  x  X  +  y  Y  +  z  Z  +  ....  For  then  each  dimension  is  treated  the  same  and  we

prevent paradoxes like 1 = -1.

We already  have touched upon 3D or  4D problems,  for  example the  mapping of

Euclidean  into  polar  space.  We  will  not  develop  n-dimensional  space.  We  will

remain in the two dimensions of the vector space that we already discussed, thus

x X  + y Y. What we can do however is develop the notation of linear algebra. The

news is that this is an efficient notation that allows us to derive and express results

in a compact manner.

People  in  the  past  have  been  solving  systems  of  equations  a  lot.  Over  time  they

invented an efficient way of notation and solving. The following is their invention.

The efficiency gain exists for 3D and higher. There is a loss for 2D, but even there

we gain in conceptual transparancy since there is new light on what we are doing.

It  would have been an option to introduce  this notation when presenting vectors

and  before  discussing  vector  multiplication  that  causes  rotation.  It  was  better

however to first master the key theorem of analytic geometry and there the vector

notation was sufficient. The imaginary plane added to our understanding. We can

now collect the findings and move one step further.

10.2  Inner product

Regard the general  formula for a line again:  p x + q y = r.  In this equation we see

the vector v = {x, y} but also the coefficients w = {p, q}. 

We  already  had  multiplication  of  vectors  as  rotation.  Let  us  now define  another

kind  of  multiplication,  called  the  inner  product  or  the  dot  product.  We  can  write

the general formula for the line in a really compact manner.

Definition of inner product: r = p x + q y    ñ    r = w . v = {p, q} . {x,  y}
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As you see, this is just another way to write what we already know. 

† Check for yourself that this holds.

r == 82, 3< . 83, 4<
r � 18

We  denote  vectors  with  Roman  letters  and  numbers  with  Greek  letters.  Such

numbers  l  and  m  are  also  called  scalars  (as  scale  is  also  a  ladder).  Then  lv  is  a

multiple l of v, an expansion along a ray from the origin. Properties for the inner

product are:

  1.  Linear along rays: (lv) . (mw) = (lm) v.w.

  2.  We can switch order (“commutative”): v.w = w.v.

  3.  Eliminating brackets in “distributive” manner: v . (w + u) = v.w + v.u.

With (2) we can derive (v + w)(u + z) = v.u + v.z + w.u + w.z

  4.  For two nonzero vectors v.w = 0 if and only if they are perpendicular.

  5.  The inner product with itself gives the squared length: v.v = v 2.

† Writing r2 instead of r it is the Pythagorean Theorem again.

r2 == 8a, b< . 8a, b<
r2 � a2 + b2

10.3  Collecting parameters

10.3.1  A system of inner products

Two lines intersect in a point. Above in §4.3.3 we had this systems of equations:

y � 4 - 2 x
y � -5 + 7 x

    =   
4 = y + 2 x

-5 = y - 7 x

† Write these equations as inner products and solve them.

Equation@1D = 4 == 82, 1< . 8x, y<
4 � 2 x + y

Equation@2D = -5 == 8-7, 1< . 8x, y<
-5 � y - 7 x

Solve@8Equation@1D, Equation@2D<, 8x, y<D
88xØ 1, yØ 2<<
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We  have  solved  these  equations  step  by  step  before  but  now  the  objective  is  to

understand this solution in terms of inner products.

10.3.2  Matrix of coefficients

With  two  equations  there  are  two  sets  of  parameters.  Let  us  make  that  compact

again. We collect all parameters in a table, called matrix. 

Definition:  A  matrix  is  a  list  of  lists  of  equal  length.  A  matrix  has  rows  and

columns. If the number of rows is equal to the number of columns then the matrix

is  called  square.  When  we  have  as  many  equations  as  unknowns  then  we  get  a

square matrix. A matrix can contain zeros for elements that are absent.

† This is the matrix of our system of equations. We can write the rows below each

other  but also next to each other.

A == 882, 1<, 8-7, 1<<

A �
2 1

-7 1

10.3.3  Inner product of matrix and vector

With v = {x, y} for the unknown variables take w = {4, -5} for the outcome. Our new

definition for compact writing is:

Definition:  The  inner  product  for  vectors  can  be  extended  for  a  matrix  A  and  a

vector v  such that a new vector is  created as w = A . v. The condition is that each

row of matrix A has the same length as the vector v, so that there is a proper inner

product for each row. 

† This product of matrix and vector generates another vector.

84, -5< == 882, 1<, 8-7, 1<< . 8x, y<
84, -5<� 82 x + y, y - 7 x<

† Writing the equality for each element.

Thread@ResultD
84 � 2 x + y, -5 � y - 7 x<

Writing w = A . v gives a compact form for a system of equations. It separates the

variables from the coefficients. The variables are not that interesting. We can work

directly on the coefficients.

131



10.4  Solving by means of the inverse

10.4.1  Inverse matrix or matrix inverse

We  know that  there  is  a  solution  for  the  unknowns,  namely  v  =  {x,  y}  =  {1,  2}.  A

major  step is  now to presume that  alongside  to  matrix  A  there  is  a  matrix  B  that

gives that very solution.

Definition: If w = A . v and if there is a B  such that B . w = v, and if this holds for

arbitrary  v  and  w,  then  B  is  called  the  matrix  inverse  of  A.  In  that  case  v  =  B  .  w

solves w = A . v .

† Matrix A and its inverse B.

A �
2 1

-7 1
B �

1

9
-
1

9

7

9

2

9

† Application to our problem: w = A . v solves into v = B w.

84, -5< == 882, 1<, 8-7, 1<< . 8x, y<;

8x, y<� HoldB
1

9
-
1

9

7

9

2

9

.84, -5<F

Result êê ReleaseHold
8x, y<� 81, 2<

Another value of {4, -5} would give another solution for {x, y} without the need for

additional  solving  of  equations.  The  remainder  of  our  discussion  is  on

understanding the theory and on how to find the inverse.

10.4.2  Constructing the inverse

How to find the inverse ? There are three steps:

  1.  We calculate the so-called “determinant” or Det[A] = |A|. If Det = 0 then the 

equations are dependent, the lines overlap or are inconsistent. For example x = 

1 and x = 5 do not have a point of intersection. Then there is no solution, and 

we stop: see the next subsection). If Det ∫ 0 then we proceed.

  2.  We switch the coefficients in the matrix to create the “adjoint” matrix, or 

Adj[A].

  3.  We divide the latter by the determinant. The inverse then is Adj[A] / |A|.

132



§10.7  below gives  a  geometric  display  of  the  determinant.  It  is  the  surface  of  the

parallelepiped  generated  by  the  rows  of  the  matrix.  Like  a  vector  has  a  size

measure  called  length,  two  vectors  have  a  size  measure  called  surface.  That

geometric  display  fits  better  there  than  here,  but  if  you  are  interested  you  can

already look there. If the surface is zero then we obviously cannot divide by it.

† Let us take a general matrix. 

mat = 88a, b<, 8c, d<<
a b

c d

† Step 1: The determinant. It uses the cross-product of the elements of the matrix. 

det == Det@matD
det � a d - b c

† Step  2:  The  adjoint.  We  trade  places  for  a  and  d,  and  give  opposite  signs  to  b

and c.

adj == Adjoint@matD

adj �
d -b

-c a

† Step 3: The inverse. Divide adjoint by determinant.

adj ê det == Inverse@matD

adj

det
�

d

a d-b c
-

b

a d-b c

-
c

a d-b c

a

a d-b c

† For our example, check that Det[A] = 2 * 1 - 1 * (-7) = 9

mat = 882, 1<, 8-7, 1<<;
See@Det@matD, Adjoint@matD, Inverse@matDD

9
1 -1

7 2

1

9
-
1

9

7

9

2

9

10.4.3  Solving linear equations

As said, our solution was:

8x, y< == Inverse@ 882, 1<, 8-7, 1<<D . 84, -5<
8x, y<� 81, 2<

Mathematica has a specific routine for linear equations with square matrices.
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† Taking the inverse and multiplying with the known vector in a single step.

LinearSolve@ 882, 1<, 8-7, 1<<, 84, -5<D
81, 2<

Nonsquare matrices arise in two cases. 

  1.  There are not enough equations, e.g. when the determinant is zero and there 

appears a dependence so that equations must be eliminated. Then we can 

solve for only part of the unknowns. The variables give a solution space.

  2.  There are too many equations. If there is a contradiction then we are stuck. 

Otherwise we drop those that must be overlapping and proceed with the 

square problem.

These cases can be handled by matrix algebra. That leads too far for our purposes

though. In those cases we can use the general Solve routine.

† Let us solve the first equation for x. It appears to be a linear function y. If there

is more information then a precise solution may be found.

Solve@y== 4 - 2 x, 8x<D

::xØ 4 - y

2
>>

10.5  Inner product for matrices

We proceed with the theory of linear algebra.

10.5.1  Identity matrix

Property: If w = A . v and B . w = v then actually v = B . (A . v) and w = A . (B . w). 

Till  now  we  did  not  apply  the  dot  product  to  two  matrices  only.  Let  us  see

whether we can extend the definition to two matrices. Steps are:

† Let us rewrite the brackets v = B . (A . v) into v = (B . A) . v.

† Let (B . A) = I  for some I = {{a, b}, {c, d}}. 

† Then v = I . v.

† This must hold for any v. Let us try v = {1, 0} and {0, 1}.

† Using v = {1, 0}. 

81, 0< == 88a, b<, 8c, d<< . 81, 0<
81, 0<� 8a, c<
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Thread@ResultD
81 � a, 0 � c<

† Using v = {0, 1}.

80, 1< == 88a, b<, 8c, d<< . 80, 1<
80, 1<� 8b, d<

Thread@ResultD
80 � b, 1 � d<

† Thus - and check that for v = {x, y} that v = I . v.

IdentityMatrix@2D
1 0

0 1

We can do the same for A . B.

Definition: If an inverse B exists then B . A = A . B = I, called the identity matrix.

mat = 882, 1<, 8-7, 1<<; Inverse@matD . mat
1 0

0 1

Definition: The inverse of matrix A will be written A-1. Thus A-1  . A = A . A-1  = I.

For  the  determinant  we  find  |I|  =  1.  NB.  We  can  now use  the  symbol  B  for  any

matrix again and not just the inverse of A.

10.5.2  Matrix product

What  will  be  a  practical  definition  for  the  dot  product  for  matrices  B  .  A  ?

Consider the rows and columns separately and write B = {BRow1, BRow2} and A =

{AColumn1, AColumn2}. There is a system of four inner products, namely each a

row of B and a column of A.

BRow1.AColumn1 BRow1.AColumn2

BRow2.AColumn1 BRow2.AColumn2

Lower  case  letters  read  a  bit  better  than  upper  cases  now,  so  we  switch  from  A

and B to a and b. In finer detail, consider all elements and write ai, j  = a[i, j] for the

element  in  matrix  a in  row i  and column j.  Writing  the  dot  products  of  the rows

and columns out in detail:

:a �
a1,1 a1,2

a2,1 a2,2
, b �

b1,1 b1,2

b2,1 b2,2
>
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a.b �
a1,1 b1,1 + a1,2 b2,1 a1,1 b1,2 + a1,2 b2,2

a2,1 b1,1 + a2,2 b2,1 a2,1 b1,2 + a2,2 b2,2

† Check that the dot product in this manner gives the identity matrix.

HoldB
1

9
-
1

9

7

9

2

9

.
2 1

-7 1
F

† The  dot  product  of  a  matrix  and  its  adjoint  gives  the  determinant  on  the

diagonal.  Clearly,  when we divide  this  by the determinant  we get  the identity

matrix.
a d - b c 0

0 a d - b c
� HoldB d -b

-c a
.
a b

c d
F

PM. Again, see §10.7 below for a geometric explanation of the determinant.

10.5.3  Properties of determinants

We give two properties without proof, that you however could check for our two-

dimensional matrices.

Without proof we take |A . C | = |A| |C | and hence |A-1| =  1 / |A|.  

Without proof we take |r A | = rn  |A| where n is the size of the square matrix, or

the  number  of  rows  or  columns.  Thus  |Adj[A]|  =  |A-1  *  |A|  |  =  A n  |A-1|  =

A n/ |A| = A n-1. 

Definition:  The  transposed  or  dual  matrix  arises  when we  interchange  rows  and

columns. Then the determinant does not change. 

: a b

c d
Ø TransposeØ

a c

b d
, DetØ a d - b c>

10.6  An algorithm for n = 2

For n = 2 the methods of §4.3.2 and 4.3.3 seem most efficient but it is instructive to

see how matrix algebra would work.

For n = 2 the adjoint has determinant |A|. Indeed, the adjoint in our example has

determinant 9 too. Thus it is an option to directly write the adjoint matrix from the

system of 2 equations and use that for the determinant. The calculation v = A-1  . w

can be written as u = Adj[A]  .  w /  |A|.  If we use the inverse matrix  only once for

the solution at a single point then it is faster to do Adj[A] . w and only then divide

by |Adj[A]| (for n = 2) since this divides only two numbers instead of four.

Let us take the problem of §4.3.2:
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K 5 � c + 10 s

-3 � c+ 4 s
O

adj = Adjoint@ 8810, 1<, 84, 1<<D
1 -1

-4 10

See@temp = adj . 85, -3<, det = Det@adjD D
88, -50< 6

res = temp ê det

:4
3
, -

25

3
>

Compare  this  to  §4.3.2.  Counting  the  number  of  steps  then  the  simple  method

there scores better (where all steps have equal effort on a pocket calculator). 

Plus Minus Times Divide Total

Dy ê Dx 2 1 3

yA - s * xA 1 1 2

Total 0 3 1 1 5

Plus Minus Times Divide Total

Adjoint 2 signs 2

Det 1 2 3

adj * coefs 2 4 6

Final 2 2

Total 2 1 8 2 13

A small advantage for Chapter 4 is that c has coefficient 1 so that the equations are

easy  to  subtract.  This  advantage  however  also  arises  for  the  determinant  for

mental  calculation.  You will  be more comfortable  with the step by step approach

as long as you do not have  experience with matrix algebra. When working in 3D

and higher, computers quickly take over so that much does not matter.

10.7  The geometry of the determinant

10.7.1  Area of a parallepiped

The  matrix  {{a,  b},  {c,  d}}  contains  two  row  vectors  {a,  b}  and  {c,  d}  that  together

span  a  parallelepiped.  When  we  draw  a  diagram  of  this,  we  find  that  the

parallelepiped  is  contained in a  rectangle  with sides (a  +  c)  and (b  +  d)  which are

the column sums of the matrix.
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† TwoVectorsPlot essentially gives the same plot but here we put a box around it. 

811, 3<
84, 9<

The  total  area  of  the  rectangle  is  given  by  (a  +  c)(b  +  d)  while  the  area  of  the

parallelepiped  can be  found by  subtraction  of  the  triangles  and small  rectangles,

thus (a  +  c)(b  +  d)  -  2 b c  -  2  * (
1

2
a b)  -  2  * (

1

2
c  d)  =  a d -  b  c.  This latter  value  is the

determinant of the matrix.

Ha + cL Hb + dL - 2 b c - 2
1

2

a b - 2
1

2

c d êê Simplify

a d - b c

Det@88a, b<, 8c, d<<D
a d - b c

ShowDet@D plots defaults 811, 3< and 84, 9<
ShowDet@
HLabel,L 88a, b<, 8x, y<<D

plots the two rows as vectors. Label for a better graph

10.7.2  Kinds of data

How  we  interprete  the  geometry  depends  very  much  upon  the  kind  of  data  we

have. When we measure the size of a window then we understand what it means

when  we  say  that  it  is  too  small  and  must  be  made  10%  larger.  When  we  have

categorized people according to their religion or political  party then it  is dubious

to  say  that  catholics  are  halve  protestants,  or  that  some  party  is  the  “average”.

These kinds of measurement scales arise:

  1.  Nominal scale: just names, labels, categories or bins. For example religion. 

Mathematically we use only equality and counts.

  2.  Ordinal scale: there is some ordering or ranking. For example exam results (A 

to F). Cumulative counts have a meaning.

  3.  Interval scale: differences have meaning but there is no natural zero value. For 

example degrees Celsius, created by equal distances on a thermometer. We 

cannot say that 10 degrees is twice as warm as 5 degrees, but the difference of 

5 degrees is the same length at 10 or 30 degrees. Mathematically we can use 
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5 degrees is the same length at 10 or 30 degrees. Mathematically we can use 

addition.

  4.  Ratio scale: ratios have meaning here. Length, time, mass, angle. Degrees 

Kelvin, since 0 degree Kelvin has absolute meaning. A unit of measurement is 

taken from the phenomenon itself. Mathematically we can also use 

multiplication.

With some creativity we can try to work around these categories of measurement

scales. A notable example is the Arpad Elo rating in chess, the same system found

independently by Georg Rasch for tests on reading skills. In chess we see winners

and  losers,  and  it  seems  that  we  can  only  rank  them  in  their  scores.  However,

when players  of  a  different  strength meet then we may calculate  a  probability  of

winning.  The ratings  can  be  updated  after  the  outcome.  In  that  way the  ranking

can  be  transformed  into  a  rating,  an  interval  scale.  The  same  approach  allows

comparing competence or skill with challenge. If the skill is too large then there is

boredom and if the challenge is too large there is stress. There is “flow” if there is

adequate match. The difference in skill  and challenge generates the probability of

succeeding on a test, which again generates an interval scale.

We now consider measures of association. When we have vectors {a, b} and {c, d},

how can we compare them ? With nominal data we may still use the determinant,

with a ratio scale we may do more.

10.7.3  A measure of association

A statistician asks 100 men and 100 women whether they are on a diet or not. The

results  for  these  nominal  data  can  be  put  in  a  2  by  2  table.  This  kind  of  table  is

called a contingency table. In a test the effect is put in the rows. The subjects carry

the  cause  and  are  put  in  the  columns.  The  test  is  whether  the  subjects  have  a

disease or not (in this case whether they have a diet). Contingency tables generally

are presented with table-headings and border-sums.

† The relevant data are in the core and generate the border sums.
a b a + b

c d c + d

a + c b + d a + b + c + d

† Assumed frequencies  of  men and women dieting  or  not.  The behaviour  of  the

groups differs. Can we express the degree of difference in a measure ?
Men ŸMen Tested

Dieting 20 64 84

Ÿ Dieting 80 36 116

Sum 100 100 200

We can use the determinant as a measure of association.
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† When we take the ratio of the areas cr = (a d - b c) / ((a + c)(b + d)) then we find a

number between -1 and 1. 

† Row sums differ from column sums. A determinant a d - b c  holds for the dual

(transposed) matrix too, giving a row ratio rr. 

† Since there are two ways of looking at the matrix a more robust measure is the

geometric  average  cr * rr .  The  numerator  remains  a  d  -  b  c  but  the

denominator  becomes   ((a  +  c)(b  +  d)(a  +  b)(c  +  d)).  This  gives  us  a

“standardized volume (surface) ratio”.
a d - b c

Ha + bL Ha + cL Hb + dL Hc + dL

Result ê. Thread@8a, b, c, d< -> 820, 64, 80, 36.<D
-0.445742

A diagonal matrix with b = c = 0 gives outcome +1 and with a = d = 0 gives outcome

-1.  Nominal  data  have  no  natural  order,  but  one  cannot  avoid  an  order  of

presentation and the sign of the association measure reflects that.  In this example

there  is  a  negative  association  meaning  that  the  rising  diagonal  gets  relatively

more weight. Men incline to not-dieting, women incline towards dieting. So much

was obvious, but if we now have other data we can compare the inclinations.

10.7.4  Statistical independence means zero association

Let  p  be the fraction  of  men in the total  number  of  observations.  (Here p  = 50%.)

Let t be the fraction of all observations that satisfies the test. (Here t  = 42%.) When

the distribution of men over those who satisfy the test and those who do not is the

same  as  the  overall  distribution,  then  this  must  necessarily  also  hold  for  the

women.  Then  the  test  (habit  of  dieting)  is  no  different  in  the  two  subgroups.  In

that case the variables sex and eating habit are called statistically independent and

there is zero association between the variables.

Thus  algebraic  dependence  means  that  our  measure  of  association  shows  zero

association,  and  means  that  there  is  statistical  independence.  The  statistical

independence causes the algebraic dependence.

† We construct a table with statistical independence and verify the 0.

mat4 = PrTable@t, pD * N;

Simplify@CorrelationPr2By2@mat4D, Assumptions Æ 8t ≥ 0, p ≥ 0<D
0
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Men ŸMen Tested

Dieting N p t -N Hp - 1L t N t

Ÿ Dieting -N p Ht - 1L N Hp - 1L Ht - 1L N - N t

Sum N p N - N p N

CorrelationPr2By2@
matrixD

gives the measure of correlation for a contingency table of two

binary nominal variables Hcorrelation and not just associationL
Let Cause be the column variable and Effect the row variable. In logic, the variables take values {1, 0}. Here it is better to 

take {1, -1} so that equal numbers of observations give a zero mean. Output then is the normal Pearson CorrelationPr[{1, 1, 

-1, -1}, {1, -1, 1, -1}, {n11, n21, n12, n22}].

10.8  The geometry of the inner product

Let vectors  v and w  not  necessarily on the unit  circle  be associated with angles a

and  b  and  arcs  j  and  y.  Three  dots  give  a  plane.  Thus  with  the  origin  and  two

vectors from the origin we have a plane and we can apply plane geometry. 

† Let u = v - w and check that we have a triangle with those three.

† The xur or cosine rule gives u 2 = v 2 + w 2 - 2 |v| |w| �[a - b]

† u.u = (v - w) . (v - w) = v.v + w.w - 2 v.w or u 2 = v 2 + w 2  - 2 v.w

† Elimination gives v.w = |v| |w| �[a - b] 

† �[a - b] = v . w / (|v| |w|) 

† or the inner product of the vectors normalized to the unit circle is the xur of the

angle  between the vectors,  also seen as  the projection  of  either  vector  onto the

other.

w ~ y

j - y

b
a

v ~ j

x

y
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† The inner product of the normalized vectors equals the xur or cosine of the angle

between these vectors. Use XandY or otherwise explicit:

811, 3< . 84, 9< ê HNRadius@811, 3<DNRadius@84, 9<DL êê N
0.632267

With  v  =  {x,  y}  and  w  =  {a,  b}  we  thus  get  two  values  for  the  xur  or  cosine:  either

from  �a+b  when  the  vector  product  a  x  -  b  y  applies  (i.e.  the  product  in  the

complex  plane),  or  as  �a-b  when the  inner  product  a  x  +  b  y  applies  (see  §7.8.7).

Addition of angles means subtraction of the y-terms,  subtraction of angles means

addition with the y-terms.

When  writing  this  book  it  was  conceivable  to  start  the  discussion  with  linear

algebra  and  the  inner  product  and  then  show  that  it  means  projection  and

subtraction  of  angles.  The  choice  was  made  to  start  with  vector  products  and

show that these are the addition of angles, since this links up a bit better with the

complex  plane  and  the  analogy  with  (recovered)  exponents.  Materially  it  should

not matter since subtraction is addition of a negative. The inner product arises as

the multiplication with the complex conjugate.

10.9  The geometry of correlation

10.9.1  Correlation is not cause

Let  us  take the  savings =  h  w  -  p  q  model  where  income is  hours times  wage and

spending is  price  times  quantity.  Let  our wage be $1 per  hour and let  us plan to

work  11  hours  and  consume  $3  so  that  anticipated  savings  are  $8.  Winning  a

lottery  makes  us  change behaviour,  we work only  4  hours  and our consumption

rises  to  $9.  A  statistician  does  not  know  about  that  lottery  and  has  to  make  do

with what is observed. Statistically there is a record of plans {11, 3} and effects {4,

9}.  A hypothesis is  that  the plans are causal factors for behavioural  outcome. The

statistician  calculates  a  correlation  coefficient  between  plans  and  realizations  of

63%. The variation in the effects is explained by 63% by the variation in the causes

but there is still is some sizeable error due to unknown factors.

The method followed is called regression:

† The effect is split in an explained part and an error. 

† This  split  is  achieved  by  a  perpendicular  projection  P  of  effect  on  presumed

cause.  The  projection  is  interpreted  as  the  explanation  by  the  cause.  The  cause

contributes  by a  factor  m  =  |Explanation|  /  |Cause| using the absolute  lengths

of the vectors. Thus P = m Cause. 
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† The vector from P to the effect is the error. The effect is a vector addition of the

explanation  and  the  error.  The  perpendicularity  means  that  all  error  influences

are fully independent of the explanation along the line of the cause.

† The  ratio  of  the  explanation  to  the  effect  is  called  the  correlation  coefficient.  It

ranges  between  -1  and  1.  Geometrically  it  is  the  Xur  (cosine)  of  the  angle

between  the  vectors  of  cause  and  effect.  A  value  of  1  means  that  cause  and

effect  overlap  and  there  is  a  perfect  explanation.  The  squared  value  of  the

correlation coefficient is called the coefficient of determination,  and it gives the

share of the variation that has been explained.

† The error ratio is the Yur. The squares of correlation and error ratio add up to 1. 

† When the vectors of cause and effect are normalized to the unit  circle  then the

explained  part  of  the  effect  and  the  explanation  by  the  cause  are  just  as  long,

and both give  the Xur  value  of  the angle  inbetween.  When the vectors  are  not

normalized  then  the  Xur  is  only  given  by  the  said  projection  P  of  effect  on

presumed cause.

† The  correlation  coefficient  between  plans  and  realization  is  63%.  The  left  is

normalized to the unit circle, the right is not normalized.

Effect

Cause
Explained

Explanation

Error

Work

Consumption

Effect

Cause
Explained

Explanation

Error

Work

Consumption

8CauseØ 811., 3.<, EffectØ 84., 9.<<
»Effect» 9.849

»Explanation» 6.227

»Cause» 11.402

»Error» = »Effect - m Cause» 7.63

m = »Explanation» ê »Cause» 0.546

R = Correlation = »Explanation» ê »Effect» 0.632

ErrorRatio = »Error» ê »Effect» 0.775

R^2 = Correlation^2 0.4

Correlation^2 + ErrorRatio^2 1.
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Cause and effect are determined by the model that we make. The notion of model

is  key  here.  It  is  hard  if  not  impossible  to  know  reality  but  we  can  deal  with

models.  What  we  see  as  a  cause  depends  upon  our  perception  of  what  is

happening,  thus  the  model  that  we  design.  Correlation  is  no  cause.  A  model  of

cause and effect suggests to us to calculate a correlation coefficient but that is only

a  part  in  testing  and  modelling.  A  low  correlation  may  cause  us  to  reject  a

hypothesis  but  may also  confirm a  suspicion  and cause  a  search for  confounders

and reasons for the errors.

† The inner product of the normalized vectors equals the xur or cosine, thus  v . w /

(|v|  |w|)  =  �[g]  for  the  angle  g  between  the  two  vectors.  Use  XandY  or

normalize explicitly:

811, 3< . 84, 9< ê HNRadius@811, 3<DNRadius@84, 9<DL êê N
0.632267

NB. For vectors  of  length >  2  we take the difference from the mean first,  thus v -

Mean[v].

ProjectionPlot@
8a, b<, 8x, y<D

plots with cause 8a, b< and effect 8x, y<. 2 D only,

defaults 811, 3< and 84, 9<
ProjectionPlot@
Table, 8a, b<, 8x, y<D

gives the explanatory table

10.9.2  Two points give a line

The two points {11, 3} and {4,  9} that we used on planned and realized work and

consumption may also be put on a line.

† The routine that we used before.

line = TwoPointsToLine@x, 811, 3<, 84, 9<D
87

7
-
6 x

7

† Linear  estimation  in  Mathematica  gives  the  same.  Each  hour  of  work  reduces

consumption by $6/7, or each hour of leisure increases it.

model = LinearModelFit@data = 8811, 3<, 84, 9<<, x, xD êê Rationalize

FittedModelB 87
7
-
6 x

7

F

144



4 8 12
Work

4

8

12

Consumption

This line is a weak model. We presented this only for the following reasons:

† To introduce the notion of linear estimation.

† The linear estimation routine can be used to find a line trough two points. The

estimation error then is zero. The line perfectly links up the two points. Seen in

this way, the correlation coefficient is 100%. When we add more points then we

really start estimation. 

† 100%  differs  from  the  63%  that  we  saw  earlier.  Presently  we  regress

consumption  on  hours  worked,  earlier  we  looked  at  plans  versus  realizations:

different cases.

The  issue  that  we  are  discussing  is  clearly  complex  and  multidimensional.  We

have  four  categories  {hours  worked,  consumption}  ×  {plan,  realization},  and

actually  there  are  also  the  wage,  price  and  quantity  consumed,  savings,  and  the

lottery surprise. This is too much for present purposes.

Nevertheless,  it  is  useful  to  have  a  geometric  interpretation  of  linear  regression

and  thus  we  simplify.  In  the  following  we  assume  a  list  of  observations  for  five

people,  assuming  that  not  all  can  win  a  lottery,  and  with  recorded  hours  and

dollars spent on consumption. These can also be hours of homework and level of

pocket money, though hopefully there is no correlation there.

10.9.3  More observations

Assume that five people provide us with their data on hours worked and dollars

spent on consumption on a particular day (actual and not plans). We sort the data

on the hours worked (just to have them in neat order) and then fit them,  with the

consumption  explained  from  the  hours.  It  appears  that  only  about  25%  of  the

variation in the data is explained.

data = 881, 3<, 83, 5<, 85, 1<, 87, 6<, 89, 6<<; model = LinearModelFit@ data, x, xD

FittedModelB 0.35 x + 2.45 F

8r2 = model@"RSquared"D, Correlation Æ Sqrt@r2D<
80.260638, CorrelationØ 0.510527<
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In  a  graph  we  put  both  the  dots  of  the  observations  and  the  estimated  line.  The

vertical  distance  of  a  dot  to  the  line  is  the  estimation  error  ei  for  that  point  of

observation. The squared error is the square created by that distance. When we do

this  for  all  dots  and  we  add  the  areas  of  the  squares  then  we  get  the  “Sum  of

Squared  Errors”,  SSE  =  e1
2  +  ...  +  en

2  .  Taking  the  root  gives  us  |Error|.  Each

possible estimated line gives squares of different sizes. The minimal value of these

possible  SSE  gives  our  best  estimate.  This  method  is  called  “the  least  squares

method”. There is least error when the sum of squares is minimal.

See: http://demonstrations.wolfram.com/LeastSquaresCriteriaForTheLeastSquaresRegressionLine/

The least  squares  method follows the approach  displayed in the  cause and effect

diagram.  The  minimal  SSE  generates  an  explanation  as  the  perpendicular

projection of the effect on the cause. The diagram there thus applies  also for data

vectors larger than 2 elements. For correlation, though: take the vector differences

from their mean values.

10.9.4  The stage has been set

This  concludes  our  present  discussion  of  linear  algebra.  Discussion  of  regression

was useful  not  only because of  this  interpretation  of  squared errors  (the distance

measure)  but  also  because  of  the  notion  of  projection  and  the  insight  that  xur  or

cosine  has  more  uses  than  in  measuring  angles.  We  have  also  touched  upon  the

notion of more dimensions. Our notation of vectors and matrices would allow us

to handle them, but to actually do it:  that  is another book.  We now proceed with

calculus. Later we will  return to this example of estimation and apply calculus to

find the minimal error.

146



Part IV.  Calculus

 

 

 

We consider these types of functions:

  1.  Polynomials contain only powers of x thus y = c + s x + a x2 + b x3 + ...

  2.  Exponential functions have x in the exponent such as y = basec + s x + .... Their 

inverses are recovered exponential functions, rex[base, y]. 

  3.  Trigonometric are xur and yur depending upon an angle a.

  4.  Two-dimensional is z = f[x, y]. If x or y is held constant then it is 1D again.

The  new  topic  of  discussion  is  the  surface  between  the  horizontal  axis  and  the

function values. Geometry is about measurement, after all.
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11.  Polynomial

11.1  Measurement of surface

11.1.1  Rectangle and triangle

Calculus  concerns  the  measurement  of  surface  between  a  function  and  the

horizontal  axis.  A  key  aspect  is  also  the  change  in  surface.  The  basic  cases  of

rectangle and triangle are in the following graphs.

† The surfaces under f[x] = 0.8 and g[x] = 0.8 x, for x over the interval [0, 4].

The  surfaces  under  f  and  g  for  x  over  [0,  4]  are  easily  calculated.  The  constant

function f gives a rectangle 0.8 * 4 = 3.2. The ray function g gives a triangle ½ h w =

½  (0.8 * 4) * 4 = 6.4. Let us make it more formal.

Original function f @xD = c g@xD = s x

c = s = 0.8, x = 4 0.8 3.2

Surface function Sur@ f , xD = c x Sur@g, xD = ½ Hs xL x = ½ s x2

c = s = 0.8, x = 4 3.2 6.4

In  this  table  we  see  the  value  3.2  in  two  places.  Scrutinizing  the  formulas  we

observe this equality for the height of the triangle h:

when c = s then h = g[x] = s x =
!
 Sur[f, x] = c x

There exist functions such that c = s. We used an example 0.8 but there are others.

Our  distinction  between  slope  and  constant  is  a  bit  too  strict:  the  slope  of  one
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Our  distinction  between  slope  and  constant  is  a  bit  too  strict:  the  slope  of  one

function  (g)  can  be  the  constant  of  another  (f).  When  the  domain  [0,  4]  changes

then  the  relation  remains.  Given  that  f  and  g  are  related  with  this  choice  of

parameter  c  =  s  we  can  express  the  dependence  in  their  names  and  formal

expression. The following definitions are useful:

† Since g gives the surface for f we call g the “primitive” and f the “derivative”.

† When g is the primitive then we use a prime ' to indicate the derivative: f  = g'.

† It will also be clearer to use an upper case letter for a primitive function, thus F

and f = F '. This cannot be maintained forever but it is a good convention.

The key idea is - let us not call it a theorem just yet, since we ought to develop the

theory first:

The primitive is F[x] = s x = Sur[F', x] iff the derivative is F'[x] = s. (idea)

When we apply this idea to g and the surface for g itself then we get:

The primitive is F[x] = ½ s x2 = Sur[F', x] iff the derivative is F'[x] = s x.  (idea)

† The surface primitive for g is found to be Sur@g, xD = ½ * 0.8 * x2 

1 2 3 4 5 6 7
x

10

20

G@xD = Sur@0.8 x, xD

11.1.2  Triangle stacked upon a rectangle

The function  f[x]  =  c  +  s  x  gives  a  triangle  stacked upon a  rectangle.  The  triangle

has h = s x = f[x] - c. Total surface is Sur[f, x] = c x + ½ (s x) x = c x + ½ s x2.

The primitive is F[x] = c x + ½ s x2 = Sur[F', x] 

iff the derivative is F'[x] = c + s x.          (idea)

† The surfaces under f[x] = 2 + 0.9 x, for x in [0, 4] 

When functions are added then we can add their surfaces.
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11.2  Distance, speed and acceleration

We are quite  familiar  with the notion of  surface, so we already have a good idea

what  these  primitives  and  derivatives  mean.  In  physics  we  however  see  a  new

and more compelling application and interpretation.

11.2.1  Basic physics

When an object  starts from position x[0] with a speed v[0] and gets a constant

acceleration  a[t]  = a  then the same formulas and graphs arise  as in the former

subsections.  Constant  acceleration  a  is  defined  such that  each unit  increase  of

time t causes an increase in speed with a units. This is purely a definition. 

v[t] = v[0] + a t

An observation in physics is that gravity and acceleration for small objects close to

Earth  can  be  taken  constant.  Take  gravity  with  a  =  9.8  [m  /  s2,  in  meters  and

seconds].  Let  an object  be  in rest  and then fall.  With no air  friction  it  falls  490

meters in 10 seconds. Its speed at that moment is 98 [m / s], or 352.8 [km / h]. 

2 4 6 8 10
t

10

20
a

2 4 6 8 10
t

50

100
v

2 4 6 8 10
t

250

500
x

From x[0] = v[0] = 0: (a) constant acceleration, (v) v = a t, (x) the position of the object.

How do we get the quadratic  expression for the position of the object  ? At time t

the object has moved with an average speed of (v[0] + v[t]) / 2 = v[0] + ½ a t. The

distance covered will be this average speed times the time lapsed: 

x[t] = x[0] + (v[0] + ½ a t) t 

      = x[0] + v[0] t + ½ a t2

These are precisely the kind of formulas that we looked at earlier. The model is in

physics but the description is in terms of  surfaces. Why a surface ? We now spot

the rectangle in a * t. Also “distance = (average speed) * time” involves a product,

and gives a surface as well. This was a bit difficult to spot when we only focus on

average  speed  and  instantaneous  speed  at  t.  Nicole  d’Oresme  (1323  -  1382)

discovered that this product can be seen as a surface.
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Concept Symbol Dimension Description

Time t s clicks of radioactive decay

Place s m co - ordinates, Latin : situs

Distance x m distance between two points; for co- ordinates

s@tD : the distance is s@tD - s@0D HPythagorasL
Speed v mês x ê t = s@tD - s@0D ê t is average speed,

see later for instantaneous speed

Acceleration a m ë s2 Hv@tD - v@0DL ê t is average acceleration,
see later for instantaneous acceleration

The unit of measurement of location and distance is the meter; of time the second. To distinguish s from s

it is a convention to put the dimension within [ ] brackets. Variables are in italics too.

In these measurements we calibrate to a moment t = 0 and conveniently take s[0] =

x[0] = 0. What we actually use are the differences in time and place, Dt and x = Ds

so that average speed over an interval is v = Ds / Dt. 

11.2.2  An elevator

Acceleration,  speed  and  location  of  an  elevator  are  a  nice  example.  For  five

seconds it has an acceleration of 1 m/s2. Then the acceleration drops to zero, and

the  elevator  moves  at  constant  speed  of  18  km/h  for  2  seconds.  Then  the

elevator  starts  braking  at  -1  m/s2.  In  a  total  of  12  seconds  it  moves  35  meters

up. 

5 10
t

-1

1

a

5 10
t

1

5

v

5 10
t

20

35

x

11.2.3  Vectors

Above displays are one-dimensional. The elevator goes up and down only. These

equations for acceleration, motion and place reflect a motion in one direction only.

A  soccerball  would  hopefully  have  at  least  two  dimensions:  not  only  up  and

down but also some distance covered. 

When  a  ball  is  kicked,  the  sideways  movement  will  remain  constant  (neglecting

air  friction  and  other  players).  The  vertical  movement  will  be  determined  by

gravity.  The vertical  movement does not determine the distance covered,  for that

is  done  by  the  movement  sideways.  The  vertical  movement  only  determines  the

time available, till the ball drops on the ground and is controlled by friction again.

What happens is that  all  variables  depend upon time,  but that  time as a variable
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What happens is that  all  variables  depend upon time,  but that  time as a variable

can  be  eliminated,  so  that  distance  can  be  seen  as  a  function  of  height,  or  in  a

standard form that height is a function of distance. 

speed distance

vertical v h

horizontal w d

† Kick  space  has  vertical  (h  and  v)  and  horizontal  (d  and  w)  dimensions.

Elimination of time t gives height h as a function of distance d.

SolveA9h == v t - 1 ê2 g t2, d == w t=, h, tE

::hØ 2 d v w - d2 g

2w2
>>

0.0 0.5 1.0 1.5
Distance

0.1

0.2

0.3

0.4

Height

† Time t is determined by the vertical speed v and distance from w.

SolveA0 == v t - 1 ê2 g t2, tE

:8tØ 0<, :tØ 2 v

g
>>

There  would  actually  be  only  one  true  velocity  but  at  some  angle:  polar  space.

Vertical and horizontal speeds are projections onto the axes of Euclidean space. If

we assume a proper single velocity of 1 then the horizontal speed would be given

by xur  and the vertical speed by yur.  Maximal distance is achieved by a tangent of

1, as we can check for values of a around 1/8. 

Show@Table@Height2D@Plot, Xur@aD, Yur@aD, 10D, 8a, 1 ê16, 3 ê16, 1 ê32<D, PlotRange Æ AllD

0.02 0.04 0.06 0.08 0.10
Distance

0.01

0.02

0.03

0.04

Height
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11.3  The core theory of calculus

11.3.1  A surface function and its derivative

We  found  a  relationship  between  surface  and  derivative  for  two  basic  functions

and  a  next  question  is  whether  we  can  generalize  this.  What  about  x2  and  its

Sur[x2, x] function ? How does that function look like and is it easy to work with ?

But x2  is curved and the issue looks rather difficult.  Well,  we have two cases of a

relation  between a  primitive  and a  derivative:  let  us  see  whether  we can discern

some pattern. 

11.3.2  Stepwise development of an algorithm

In these steps we presume F known and f to be unknown. We keep an eye on what

we already derived but we will not use linearity.

  1.  Let F[x] be the surface under y = f[x] from 0 till x, for known F and unknown f 

and y that are to be determined (note this order). For example F[x] = x2 gives a 

surface under some f and we want to know that f.

  2.  We take a small step Dx. The surface area under f becomes larger. We do not 

know f but we know that F[x + Dx] gives the new total surface area. (See the 

upper graph. Start at the right hand side with some Dx and see what it means 

for the left hand side.)

  3.  The change in surface is DF = F[x + Dx] - F[x]. When Dx = 0 then DF = 0.

  4.  The surface change can be approximated in various ways. Of these DF º y Dx 

is the simplest expression with y = f[x] for the unknown function and y º DF / 

Dx its estimate. But we are not quite interested in approximation and DF / Dx 

seems undefined for Dx = 0.

  5.  The idea is: When we find an expression for y = f[x] such that DF // Dx is not 

undefined at Dx = 0 and then set Dx = 0 then we have extracted f (while at Dx = 
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undefined at x = 0 and then set x = 0 then we have extracted f (while at x = 

0 the exact surface is given by F[x], known).

  6.  For Dx ∫ 0 we simplify u = DF // Dx algebraically. 

  7.  We try whether setting Dx = 0 gives a defined outcome. When that is the case, 

then we set y = u as that outcome. We also expand the domain with Dx = 0. 

  8.  We thus have the program: y = {DF // Dx, then set Dx = 0}. It is the dynamic 

quotient, thus first algebra assuming Dx ∫ 0 and then expanding the domain, 

but with the crucial added step of actually setting Dx = 0.

  9.  We rewrite y = f [x] = F’[x ] as well.

  10.  In summary, the derivative is f [x] = F’[x] = dF / dx = {DF // Dx, then set Dx = 0}. 

The D stands for “difference” (a defined step) and the d stands for 

“differential” - a difference that doesn’t actually exist since the step has been 

set to zero. This contains a seeming ‘division by zero’ while actually there is 

no such division, since we have been adjusting the domain. The expression “to 

differentiate” means finding the derivative.

PM. This is discussed in more detail in §15.5.

11.3.3  Check on what we already know

Let us check the derivatives that we know about. 

Linear Quadratic

F@xD s x a x2

F@x+ DxD s Hx + DxL a Hx + DxL2 = a Hx2 + 2 x Dx + Dx2L
DF s Dx a I2 x Dx + Dx2M

DF êê Dx s a H2 x + DxL
Set Dx = 0 s 2 a x

Applications of dF / dx = {DF // Dx, then set Dx = 0}. For example a = ½ s.

11.3.4  Application to a new function

Let us apply the rule to a function that we have not seen before: F[x] = a x3.

a Hx + DxL3 � a x3 + 3 a x2 Dx + 3 a xDx2 + a Dx3

a Hx+DxL3-a x3
Dx

�
3 a x2 Dx+3 a x Dx2+a Dx3

Dx

a Hx+DxL3-a x3
Dx

� a I3 x2 + 3 xDx + Dx2M
Extend domain and set Dx = 0 fl f HxL� 3 a x2

This answers the opening question of this section: what is Sur[x2, x] ? The answer
3
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This answers the opening question of this section: what is Sur[ , x] ? The answer

is F[x] = Sur[x2, x] = 1/3 x3. Namely, with a = 1/3 in the above.

In this manner the idea rises that F[x] = Sur[ a xn, x] = 
1

n + 1
 a xn+1 in general.

11.3.5  The constant and the switch from surface to integral

11.3.5.1  The surface under y = 0

What  we  haven’t  properly  discussed  yet  is  the  constant  function:  F[x]  =  c.  This

may be a confusing function to substitute in. Write: F[x] = c + 0 * x. Then DF = F[x +

Dx] - F[x] = c - c  = 0. The dynamic quotient 0 // Dx can be simplified to 0. There is

no problem in extending the domain. Thus the derivative of a constant is 0. Thus

when F[x] = c then f[x] = F'[x] = 0.

Now a  paradox  arises  when we  want  to  go  from the  derivative  to  the  primitive.

For f[x] = 0 there is no surface between it and the horizontal axis. For convenience

of notation we still use F[x] = Sur[0, x] = c, but use the abstract term “integral” for

all  F  rather  than  surface.  We  also  accept  that  the  constant  can  be  any  c,  of

unknown  size.  This  also  means  that  we  have  to  adapt  our  rules:  when  going  in

reverse direction from the derivative f to the integral F[x] = Sur[f, x] then we must

include an unknown C, called “the integration constant”. Above we used the label

“(idea)” but we can now observe that the “if  and only if” clause only holds when

we include the integration constant in the surface or, better, integral function. 

11.3.5.2  The general relation

For power functions or polynomials in general (now from idea to theorem):

For n = -1 we still have to determine the integral of 1 ê x :
The primitive F@xD = C + c x +½ s x2 + ... + a xn+1 ê Hn+ 1L = Sur@F ', xD
iff the derivative is F '@xD = c + s x + ... + a xn.

A function tells us how fast the surface under it is changing.

We can prove this  by means of recursion.  Let  us assume that it  holds for  some n

and then show that it  holds for n+1. We have already shown it for n  = 1 and 2 so

from  there  we  can  work  up  towards  infinity.  Since  this  relationship  between

primitive  and  derivative  is  equivalent  in  either  direction,  we  can  develop  the

proof  in  the  easier  manner  of  taking  the  derivative,  while  making  sure  that  each

step is  reversible.  We consider  only the derivative  of  a xn+1  +  c  since the addition

with lower terms is the same. In steps:

Assume that it holds for n:

  0.  We have 
„

„x
(a xn + c) = {a HHx + DxLn - xnL // Dx, then set Dx = 0} = a n xn-1
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We could quickly prove it by replacing n+1 for n in this very form: 
„

„x
(a xn+1  + c) =

a (n+1) xn+1-1 = a (n+1) xn. The form persists. However, in all likelihood, the smaller

steps carry more convincing power: 

  1.   f [x] = F’[x] = dF / dx = 
„

„x
(a xn+1 + c) = {DF // Dx, then set Dx = 0}. 

  2.  DF  = a Hx + DxLn+1 - a xn+1 
  3.  DF  = a Hx + DxLn (x + Dx) - a xn+1

  4.  DF  = a x Hx + DxLn            - a xn+1  +  a Hx + DxLn Dx

  5.  DF  = a x Hx + DxLn            - a x xn   +  a Hx + DxLn Dx

  6.  DF  = a x 8Hx + DxLn - xn<               +  a Hx + DxLn Dx

  7.  DF  // Dx = x 8a HHx + DxLn - xnL êê Dx<   +  a Hx + DxLn
  8.  {DF // Dx, then set Dx = 0} =  x  {a HHx + DxLn - xnL // Dx, then set Dx = 0}  +  a HxLn 
  9.                                            =  x {a n xn-1}  +  a HxLn  = a (n + 1) xn

  10.   f [x] = F’[x] = dF / dx = 
„

„x
(a xn+1 + c) = a (n + 1) xn

Thus we have a proof for polynomials, and a nice example of a proof by recursion.

11.3.5.3  Definite and indefinite integral

The  functions  that  we  have  been  looking  at  all  gave  surfaces  from  0  to  x.  For  a

general  interval  domain [d, u]  with down and up value we find F[u] -  F[d]  as the

surface enclosed. The integration constant drops out.

† A definite integral uses a domain. We write Sur[F', {x, d, u}] = F[u] - F[d].

† An  indefinite  integral  leaves  the  domain  unspecified.  When  going  from  the

derivative  to  the  primitive  then  it  is  imperative  to  include  the  integration

constant C.

NB. The use of the letters F and f = F' has been very useful while developing this

theory  of  calculus.  In  the  future  we  tend  to  use  smaller  case  letters  f  and  f  '.

Indeed,  a  derivative  can  have  a  derivative  too,  called  the  second  derivative  f  ''

when starting from f. Or if you start high enough, a third derivative f'''. In general

f HnL = dnf / dxn.

11.3.6  Notation

The conventions are:
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† Derivative, both in Mathematica input and in traditional form.

D@f@xD, xD ==
‚ f@xD
‚x

f £HxL�
DifferentialD@ f HxLD
DifferentialD@xD

† The  indefinite  integral  or  a  definite  for  an  interval  from  a  to  b.  The  notation

contains an elongated S and reflects that surface is found by F[x] º f[x] Dx. 

See@ Integrate@f@xD, xD, versus, Integrate@f@xD, 8x, a, b<D D

Ÿ f HxL „ x versus Ÿab f HxL „ x

† An  example,  where  Mathematica  in  its  wisdom  reorders  the  expression.  The

outcome assumes that you know that a constant needs to be included.

Integrate@c + 2 x + x^2, xD

c x +
x3

3
+ x2

11.3.7  Historical importance

dF / dx is a crowning achievement of mathematics. It started with Archimede and

was  developed  by  Fermat,  Newton,  Leibniz,  Cauchy,  Weierstraß.  Interestingly,

while Newton developed his flux method and used it to derive and check results,

he  wrote  his  “Principia”  in  terms  of  geometry  as  was the  standard  of  the  day.  It

was  an  initiative  of  Emilie  du  Cha
`
telet  to  rewrite  the  analysis  in  proper

derivatives, which version became very popular and was instrumental in winning

people  over  both  on  gravity  and  the  method  of  analysis.  Finally  mankind  had

sound mathematical clarity about distance and speed and changes in them. 

Newton denoted the  derivative  with the  “flux  dot”  y° .  Leibniz  coined the  dF  /  dx

that  is  more explicit  on what variable  is  variated.  For  integration  he created Ÿ  or

an elongated S standing for a summation of surface under a function. 

PM.  A sum with  more  terms  like  y  =  x1  +  x2  +  ...  +  xn  can  be  compacted  into  the

expression y =  ⁄i=1n xi  where S  is  capital  sigma or  Greek S, called  the “sum sign”,

and where  i  is  an  index,  a  variable,  that  runs  over  the  indicated  integer  domain.

Leibniz’s  Ÿ  is  a  variant  of  S  intended  for  surface  components  that  are  thought

infinitely small.

PM.  More  on  integrals  and  derivatives  is  in  §15.5.  At  this  point  the  following

small  aspects  can be  mentioned.  (1)  Leibniz  assumed that  f  was known and then

found the F as a summation over f[x] Dx. His S is summation in Latin (summa) and

not quite  surface  though he summed surface (spacium,  space),  later  formalized in
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not quite  surface  though he summed surface (spacium,  space), later  formalized in

Riemann sums of  a string of f[x]  Dx.  We retain the notation.  (2) The conventional

approach in calculus is oriented on numbers and then uses concepts of numerical

continuity  and  limits.  Our  approach  relies  on  the  algebraic  or  formal  identity  in

the  formulas.  This  is  a  notion  of  continuity  too,  not  in  the  sense  of  numerical

continuity but in the sense of ‘same formula’. Limits are important but notably for

x Ø ¶ and not for Dx Ø 0 in calculus. We manipulate the domain and distinguish

between equation (Dx  = 0) and setting to zero (Dx  := 0).  The whole is an algebraic

operation  in  the  creation  of  a  formula  and  there  is  no  “vanishing  zero”.  (3)

Conventional calculus first introduces the derivative and then has another chapter

on  finding  the  surface.  We  handle  them  jointly,  not  quite  since  it  is  smart  but

rather since it is proper. Primitive and derivative go hand in hand, the one cannot

do without the other. We assume F known and use a single Dx to recover the f. A

function  gives  the  change of  surface  under  it.  Since  we made sure  that  each step

was logically  reversible,  we also  can go  from f  to  F.  (4)  The  traditional  approach

starts  with  the  derivative  and  the  interpretation  of  the  slope  but  then  invites

problems  with  “division  by  zero”  while  we  focus  on  surface  that  has  a

multiplication. (5) It is not proper here to compare the different methods of doing

calculus. For a comparison both need to be fully developed, and we develop only

one here.

11.4  The derivative as a slope

11.4.1  The insight

We have learned that the slope is s =  Dy /  Dx.  Focussing on the dynamic quotient

DF // Dx it is a quick decision that apparently this is a slope. As x does one step to

the right then F takes a vertical step. When Dx ∫ 0 then we have an average slope

for F  but  when we extend the domain with Dx  =  0 then this  must be the slope at

that very point. The derivative is the slope of the primitive.  See example §11.4.3.4

below.  Using  the  example  in  physics  of  §12.2.1:  compared  to  the  average  speed

over  an  interval  of  time  we  now  get  the  instantaneous  speed  at  a  point  of  time.

E.g. v[8] is the slope at x[8].

2 4 6 8 10
t

10

20
a

2 4 6 8 10
t

50

100
v

2 4 6 8 10
t

250

500
x

The notion of slope needs some attention however. Consider the functions |x| and

sign[x] and their slopes, for example.
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11.4.2  Derivative and slope of abs[x]

What is the slope of |x| at the origin ? What are the tangent and tangent line ?

† Abs[x] and an example line through the origin.

-2 -1 1 2
x

1

2

y

Some observations are:

† The  derivative  to  the  left  is  -1  and  to  the  right  +1,  which  differ,  so  that  there

seems to be no overall derivative. 

† When “tangent  line”  is  defined  as  having  the  point  {0,  0}  in  common  without

intersection then these can have slopes from –1 to 1.

† When “tangent line” is defined as having the “same slope” then which slope ?

† When the  derivative  is  interpreted  as  a  slope  then the derivative  of  |x| seems

undefined,  since  any  line  through  the  origin  might  be  said  to  be  somewhat

slopish.  Having  no  intersection  with  |x|  is  no  strong  condition  since  we  can

imagine  functions with slopes where the tangent  line does intersect  (if  tangent

means “same slope”):  for  example  a  function that  rises,  becomes fully  flat  and

then rises again.

The dynamic quotient helps out. For x ∫ 0, the various combinations of (|x + Dx| -

|x|) // Dx give the normal result, sign[x]. For x = 0 the dynamic quotient gives (|0

+ Dx| - |0|) // Dx  = |Dx| // Dx  = sign[Dx]. Setting Dx  = 0 gives 0. Hence in general

|x|’ = sign[x]. 

This  may  be  seen  as  partly  a  matter  of  definition  and  partly  a  matter  of  being

consistent  on  the  notion  of  surface.  The  sign  function  itself  may  be  defined  as

sign[x] = x  / |x| with an exception gate at 0. But it is also possible to define |x| =

sign[x]  x.  For  surface:  |x|  is  the  surface  under  some  function,  this  appears  to  be

sign[x], and the surface under this function does not change at x = 0.

When “tangent line” is defined as having the same slope as the function then here

there are only the three slopes –1, 0, 1.
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11.4.3  Application to the parabola

11.4.3.1  Mirrors and balls

A  quadratic  function  f[x]  =  c  +  s  x  +  a  x2  is  called  a  parabola  (with  vertical

orientation).  Parabolic  mirrors  reflect  sunlight  (parallel  rays)  to  a  focus.  The

formula also describes the path of a ball under the influence of gravity. There is a

turning point and there may be intersections with a horizontal axis such as where

a ball drops. The following plots give the three options: (1) one intersection, (2) no

intersection, (3) two intersections.

-2 -1 1 2
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≤x2

-2 -1 1 2
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2

4

6

2 + x2 and 1 - x2

11.4.3.2  Location of the turning point

A typical  question is to find the turning point or vertex of the parabola.  It  can be

found where the slope is zero. Thus we set the derivative equal to zero.

† For example for c = 2, s = 2 and a = -1.

DAc + s x + a x2, xE == 0

2 a x + s � 0

99xØ -
s

2 a
== gives 88xØ 1<<

11.4.3.3  Solving for intersections

Another typical question is to intersect a parabola with a line, c + s x + a x2 = b x +

d.   For  example  the  parabola  gives  the  trajectory  of  a  ball  and  the  line  gives  the

position and slope of  the stands.  When both coefficients  of  the line  are  zero then

this  is  just  the intersection  with the  horizontal  axis.  For  nonzero  values  we write

Hc- dL + Hs - bL x + a x2 = 0  so  that  we  have  just  another  parabola,  but  shifted

along the plane. The general solution is called the Quadratic Formula.

SolveAc + s x + a x2 == 0, xE

::xØ - s2 - 4 a c - s

2 a
>, :xØ s2 - 4 a c - s

2 a
>>
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Result ê. 8c Æ 2, s Æ 2, a Æ -1<

::xØ 1

2
J2 + 2 3 N>, :xØ 1

2
J2 - 2 3 N>>

PM. Another  way to  find the  turning point  is  that  we can choose c  such that  the

square  roots  are  zero.  Thus  we  shift  the  parabola  vertically  so  that  there  is  only

one  solution.  The  neat  thing  is  that  we  do  not  have  to  calculate  that  shift,  we

merely set the roots to zero.

11.4.3.4  Solving for tangent lines

To determine the tangent line at a point on the parabola, we first determine the co-

ordinates, then the slope, and then we substitute these findings into the definition

of a line. 

† Suppose that c = 2, s = 2 and a = -1, and the point is at x = 4.

yval = c + s x + a x2 ê. 8x Æ 4, c Æ 2, s Æ 2, a Æ -1<
-6

slope = DAc + s x + a x2, xE ê. 8x Æ 4, c Æ 2, s Æ 2, a Æ -1<
-6

yval == slope x + constant ê. 8x -> 4< êê Simplify
constant � 18

y == slope x + 18

y � 18 - 6 x

1 3 5
x

-20

-10

0

10

20

y

11.5  Product, quotient and chain rules

11.5.1  Product rule

Consider h[x] = (2 x + 1) (x2  + 4x + 1234). When we want to find the derivative then

we  can  expand  the  expression,  find  the  separate  terms,  and  then  differentiate

162



we  can  expand  the  expression,  find  the  separate  terms,  and  then  differentiate

them.  Sometimes  it  is  quicker  to  use  the  following  “product  rule”.  Define  the

separate terms as f[x] = 2 x + 1 and g[x] = x2  + 4x + 1234, thus h[x] = f[x] g[x]. Then:

When h = f g and f ' and g' exist then h' = (f g)' = f ' g + f g'. 

With f' and g':  h'[x] = {2  (x2 + 4x + 1234)} + {(2 x + 1) (2 x + 4)} = 6 x2 + 18 x + 2472.

The rule can be proven with the following decomposition of terms.

† h[x + Dx] =  f[x + Dx] × g[x + Dx] while  f[x + Dx] = f[x] + Df[x].

Hence:

DhHxL� hHDx + xL - hHxL� f HDx + xL gHDx + xL - f HxL gHxL
DhHxL� H f HxL + DfHxLL HgHxL + DgHxLL - f HxL gHxL
DhHxL� DgHxL f HDx + xL + gHxLDfHxL
DhHxL
Dx

�
DgHxL f HDx+xL+gHxLDfHxL

Dx

DhHxL
Dx

� HDg@xD êê DxL f @x+DxD + HD f @xD êê DxL g@xD
DhHxL
Dx

� g'@xD f @x+DxD + f '@xD g@xD
Extend domain and set Dx = 0 fl h£ � g f £ + f g£

The  quotient  
DhHxL
Dx

 is  dynamic.  Dg[x]  //  Dx  and  Df[x]  //  Dx  simplify  to  expressions

without Dx in the denominator. When Dx is set to 0 then f[x + Dx] = f[x].

11.5.2  Quotient rule

We can state the rule directly: 

When h = f / g and f ' and g' and h' exist then h' = (f ' g - f g') / g2. 

When h = f / g then f = g h and we use the product rule. This is also why we require

that h' exists. We give all equations and eliminate h.
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Solve@ 8h == f ê g, f ' == g' h + g h'<, h ', hD

::h£ Ø-
f g£ - g f £

g2
>>

11.5.3  Chain rule

The sales revenue of an icecream vendor depends upon the number  of  ice cream

cones  sold.  This  sales  volume  depends  upon  the  temperature.  Thus

revenue[sales[temperature]] is a function of a function. A unit change in sales has

a  particular  effect  A  on  revenue.  A  unit  change  in  temperature  has  a  particular

effect B on sales. To find the total change in revenue the effect of a unit change in

temperature must be multiplied by the effect of a unit change in sales volume.

This is called the chain rule and it can be expressed in two ways:

When y = f[x] and h[x] = g[y] and f ' and g' exist then h'[x] = g'[y] * f'[x]. 

Compactly: when h[x] = g[f[x]] and f ' and g' exist then h'[x] = g'[f[x]] * f'[x]. 

Even more compact is writing g[y = f[x]], eliminating a need for h, rather using the

variables not as mere places but as meaningful in themselves. The proof:

dg / dx = {Dg // Dx, then set Dx = 0}

                              = {Dg // Dy * Dy // Dx for (Dx = 0 ñ  Dy = 0), then set Dx = 0 }  

                            = {Dg // Df, then set Df = 0} * {Df // Dx, then set Dx = 0}

        = dg / df  * df / dx  

† For example for an unspecified z = g[x] and a function that contains z2.

D@g@xD^2 + g@xD, xD
2 gHxL g£HxL + g£HxL

† If  distance  is  a  function  of  time,  speed  is  the  change  of  distance,  and

acceleration the change of speed, this simplifies to the second derivative.

v@tD == D@x@tD, tD;
a@tD == D@v@tD, tD == D@D@x@tD, tD, tD
aHtL� v£HtL� x££HtL
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11.6  Inverse function

If  y  =  f[x]  is  differentiable  and if  its  inverse  x  =  g[y]  exists  then we can apply  the

chain  rule  to  find  the  derivative  of  that  inverse.  To  avoid  cluttering  in  our

formules with ' and -1 we write the inverse as g instead of f -1. Then g[f[x]] = x so

that the outcome of differentiation to x must be 1. The chain rule gives g'[y] f'[x] =

1 that solves neatly.

Thus g'[y] = 1 / f'[x] = 1 / f’[g[y]]  where we replace x = g[y] in that denominator.

This  property  is  useful  to  find  the  inverses  of  polynomials,  thus  functions  with

fractional  powers.  For  positive  x  the  inverse  of  f[x]  =  xn  is  x  =  g[y]  =  y1ên.  The

derivative of the latter appears to be:

g'[y] = Iy1ênM ' = 
1

f '@xD = 
1

HxnL'  = 
1

n xn-1
 = 

x1- n

n
 = 

y1ên- 1
n

  = 
1

n
 y1ên- 1

We observe the same rule: the exponent drops to the base level and the exponent

is reduced by 1.

† The derivative of x  is used a lot.

H x L' �
1

2 x

11.7  Arc length along a curve

After being kicked, a ball drops over at 5 meters but how far has it traversed along

its curve ? Distance can be measured not just between two points but also along a

winding curve. Let our winding curve be f[x].

When we hold slope s fixed and if x moves by Dx then y = s x moves by Dy = s Dx.

The joint movement or arc DA is given by Pythagoras.

DA = HDxL2 + HDyL2 = HDxL2 + s2 HDxL2 = Dx 1 + s2

We recognize the surface change DA º Dx a[x] for some function a. The above uses

a[x]  =  1 + s@xD2  with  fixed  slope  s[x]  =  s.  Let  us  now  use  variable  y  =  f[x].  A

variable  slope  s@xD  comes  from  the  derivative  of  f,  thus  s[x]  =  f'[x].  Hence  a[x]  =

1 + f '@xD2 . Then A is this primitive:

A[x] = Sur[ 1 + f '@xD2 , x]

Conditions  are  that  y  =  f[x]  is  differentiable  and  f[x]  and  f'[x]  are  continuous

(without  holes  or  jumps).  There  are  functions  with  indeterminate  arcs  like  the
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(without  holes  or  jumps).  There  are  functions  with  indeterminate  arcs  like  the

Koch function but that leads too far here.

Return  to  the  kick  of  the  ball.  When  we  express  the  trajectory  of  the  ball  as  a

function of time then the arc would contain two dimensions, height and time. This

is  not  a  proper  distance.  Distance  is  in  meters  and  not  seconds.  For  proper

distance we need to express the height as a function of the horizontal distance.

† Let  the ball  be  kicked with vertical  and horizontal  velocities  v =  w  =  5,  and let

gravity be 10. The parabola as a function of horizontal distance is:

h � x -
x2

5

0 1 2 3 4 5
Distance

0.5

1

Height

† The  derivative  and  arc  along  the  curve.  From  the  graph  we  may  guestimate

with an isosceles triangle with base 5 and height 1.25, then employ Pythagoras -

and check how close that is to the accurate value.

h' � 1 -
2 x

5
gives IntegrateB J1 - 2 x

5
N2 + 1 , 8x, 0, 5.<F� 5.73897

See Jon McLoone http://blog.wolfram.com/2010/09/27/do-computers-dumb-down-math-education/
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12.  For ‰, � and �

12.1  The exponential number „

12.1.1  The notion of a fixed point

Consider function f from x on the interval [0, 1] to y on the interval [0, 1]. A special

function  is  y  =  x,  also  known  as  the  diagonal.  When  we  consider  an  arbitrary

continuous  function  that  starts  at  {0,  0}  and  that  ends  at  {1,  1}  then  this  function

must  touch  or  cross  the  diagonal  at  least  once  (not  counting  the  origin).  Below

graph uses an arbitrary function. This example is smooth but it  might  have kicks

and  bounds,  and  cross  more  times,  as  long  as  it  is  continuous.  A  point  where  it

touches  or  crosses  the  diagonal  is  called  a  fixed  point:  there  f[x]  =  x,  or  the

application  of  the  function  to  that  point  generates  that  very  point  itself  again.

Repeated  application  still  gives  the  same  point.  This  is  an  instance  of  Brouwer’s

fixed point theorem.

† Brouwer’s fixed point theorem on the unit interval.

0 1
0

1
0 1

0

1

x

y
=
f
@xD

We apply this notion now to functions. We collect all the functions that we know

into  something  called  “function  space”  �.  Instead  of  addition  we  have  the

addition  of  derivatives  and  instead  of  multiplication  we  have  the  product  and

chain rules. Instead of the diagonal we have the “identity function” - a function is

always  identical  to  itself.  Now  we  reach  an  important  conclusion:  Given

Brouwer’s  general  theorem  this  function  space  �  must  also  have  fixed points.  In

particular: there must exist a function f that is its own derivative, f ' = f.
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This  is  the  theoretical  basis  of  the  exponential  number  ‰  =  2.71828....   We  now

leave function space and return to good old plane geometry. The notion of a fixed

point will stay with us though.

12.1.2  Definition of „

The exponential  number  ‰  is  defined  such that  the  surface  under  ‰x  is  described

by the very function itself. If we measure the surface from 0 then we define Sur[‰x,

x] = ‰x  - 1. Since the integration constant is somewhat arbitrary we can also adopt

a  slight  change of  measurement  of  surface:  instead  of  measuring  from 0 we now

start at -¶.  We keep using the same name. Then Sur[‰x,  x] = ‰x  is a fixed point in

terms of surface measurement and differentiation. Thus f[x] = F'[x] = (‰x)' = F[x] =

‰x. Key points are:

† ‰0= 1 must be the value of the surface from -¶ to 0.

† ‰1= ‰ must be the value of the surface from -¶ to 1.

† The slope at x = 0 must be ‰0 = 1.

When discussing surfaces and derivatives we are used to two graphs, the surface

to the right  and the derivative  on the left,  but now we have one graph only.  It  is

the same function.

† The derivative is the primitive. Numerically ‰ = 2.71828....

12.1.3  Exponentials and recovered exponentials

We can understand the meaning of the number ‰ also by looking at graphs of the

exponential functions and their inverse functions, the recovered exponentials.

The  exponential  functions  ax  have  a0  =  1  and  thus  all  pass  through  {0,  1}.  With

respect to the graph to the left and looking at {0, 1} we can reason that there must

be  a  number  like  ‰.  For  a  =  1  the  slope  is  0  and for  a  =  4  the  slope  is  very  steep.

There must be a number E such that the slope must be 1.  When we start  at  {0,  1}

and take a slope of 1 then we arrive at {1, 2}. This is the point of 2x  at x = 1 as well.
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and take a slope of 1 then we arrive at {1, 2}. This is the point of  at x = 1 as well.

However,  2x  moves below the first  rising diagonal  so that the number  E must be

larger than 2. From the graph we see that 2 < E < 3. Actually E = ‰ = 2.71828...

† Left:  exponential  functions:  f[1]  =  1,  2,  3,  4  and  f[-1]  =  1,  
1

2
,   

1

3
,   

1

4
.             

Right: the mirror image of 2x over the line y  = x gives the inverse rex[2, x].

-1.0 -0.5 0.5 1.0
x

1

2

3

4

81x, 2x, 3x, 4x<

-4 -2 2 4
x

-4

-2

2

4

2x & rex@2, xD = log@2, xD

The inverse to an exponential function y = ax is the recovered exponent x = rex[a, y]

(a.k.a. the logarithm). Both are plotted in the graph to the right for a = 2, using the

same causal argument x (otherwise flip the graph).  All recovered exponents have

0 = rex[a, 1] so pass through the point {1, 0}. Hence:

† For  the  function  ‰x  and  base  ‰  we  write  rex[x]  =  rex[‰,  x]  or  the  “natural  rex”

(a.k.a. the natural logarithm). Then rex[1] = 0 and rex[‰] = 1.

† Since ‰x  passes through {0, 1} with slope 1 then the mirror rex[x] passes through

{1, 0} with slope 1 too.

Above graph uses 2x  so is not perfect for a visual check on ‰. But we can imagine

two lines parallel to y = x just tangent to the curves at {0, 1} and {1, 0}. 

12.1.4  The derivative of an exponential function

The  derivative  of  an  exponential  function  follows  from  the  chain  rule  and  the

presumption that Exp[x] = ‰x is the fixed point in differentiation:    

d ax

dx
=

d ‰x rex@aD

dx
= ‰x rex@aD rex@aD = ax rex@aD

If we choose a = ‰ then rex[‰] = 1. Then indeed 
d ‰x

dx
= ‰x rex@‰D = ‰x.

12.1.5  The derivative of a recovered exponential function

What is the derivative of the rex ? It might be a shortcut to write x = ‰rex@xD  and use

the  chain  rule  but  it  is  better  to  use  the  general  rule  for  inverse  functions,  for

practice. With y = ‰x and x = rex[y] we get:
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rex'[y] = 
1

H‰xL'  = 
1

‰x
 =  

1

y
 

Or rex'[x] = 1 / x.

When there is a different base to recover from then rex[b,  x]  = rex[x]  /  rex[b],  and

thus in general rex'[b, x] = rex'[x] / rex[b] = 1 / (x rex[b]).

12.1.6  The surface under 1 / x

We have been silent on the surface under f[x] = 1 / x. We have been taking surfaces

from 0  to  x  but  when we look  at  the graph of  this  function then this  gives  us an

infinite surface. We might consider function 1 / (x + 1) but there is no law against

flexibility  so now we take the  surface from an arbitrary  (judicially  chosen) point,

namely x = 1. To the right we can plot the integral. We could write Sur2 but stick

to  Sur  (it  is  integral  in  general  anyway).  Thus  F[x]  =  Sur[f,  x]  starts  at  x  =  1  with

value 0  and grows to the right.  That  means that there is also a number  such that

the surface has precisely value 1. We find: F[1] = 0, F[‰] = 1. Also, 1/x  at x = 1 has

value 1 so the slope of the primitive must be 1 there too, or F'[1] = 1. 

† Surface size 1 under 1/x from x = 1 to ‰ = 2.71828...

For  negative  values  of  x the  rex is  not  defined.  What  works  though is  taking the

absolute value since its derivative is the sign function. 

Thus for f[x] = 1/x we have F[x] = Sur[f, x] = rex[ |x| ] + C.

12.1.7  A curious aspect of 1 / x

Though we have been discussing exponential functions it is useful to link up with

the polynomial power functions for a short moment. For polynomials like x2, x, 1

and  x-2  we  have  nice  derivatives  and  primitives  but  suddenly  the  function  x-1

inbetween  seems  to  behave  differently  since  it  links  up  with  a  strange  rex[x].  It

appears to be a matter of selecting a smart integration constant.

A  common  expression  for  the  integral  of  the  power  function  xn  causes  a  small

problem  when  n  =  -1.  The  limit  for  n  Ø  -1  gives  infinity.  If  we  include  a  well
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problem  when  n  =  -1.  The  limit  for  n   -1  gives  infinity.  If  we  include  a  well

chosen  constant  however  then  that  limit  generates  the  recovered  exponent

(logarithm).

† The integral of xn in common form or with a smart constant.
xn+1

n+1
versus

xn+1

n+1
-

1

n+1

Limit@Result@@1DD, n Æ -1D ê. Log Æ $Rex

H¶ versus rex@xD L

† When  n  is  a  number  then  Mathematica  generates  the  correct  result  for  -1.  The

integral for xn for symbolic n can use a constant though. Check x = 1.
Power -2 -1 0 1 2

Function
1

x2

1

x
1 x x2

xn+1

n+1
-
1

x
rex@xD x

x2

2

x3

3

-1+xn+1

n+1
1 -

1

x
rex@xD x - 1

1

2
Ix2 - 1M x3

3
-

1

3

† Left: standard, row 3. Right: adjusted, row 4. Check x = 1.

-2 -1 1 2
x

-4

-2

2

4

xn+1êHn+1L

-2 -1 1 2
x

-4

-2

2

4

xn+1êHn+1L - 1êHn+1L

There is always the integration constant so the issue is primarily  something to be

aware of for n = -1 or for when graphs look cluttered. But in another way it is nice

to see that the recovered exponent is no real deviant in the list of functions.

12.1.8  The algebra of „

12.1.8.1  Consistency proof in terms of deltas

In the section on the core of calculus §11.3.2 we took DF º y Dx and then used the

dynamic quotient to find the unknown y. For ‰x we know y by definition. Thus for

y = f[x] = F '[x] = F[x] = (‰x)' = ‰x = Exp[x]  we can directly work with the deltas and

we  do  not  need  to  take  the  quotient.  When  our  definition  is  inappropriate  we

should find a contradiction:

DF  = Exp[x + Dx] - Exp[x] º ‰x Dx 
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‰x + Dx – ‰x º ‰x Dx 

‰x  (‰Dx – 1) º ‰x Dx 

(‰Dx – 1) º  Dx 

Setting Dx = 0 gives 0 = 0.

The definition f[x] = F'[x] = F[x] = (‰x)' = ‰x  does not result into a contradiction and

appears  a consistent  construct.  The definition works since ‰x  itself  drops out  and

we  retain  an  expression  that  vanishes  when  it  should.  The  exponential  format

turns  the  x  +  Dx  expression  into  a  multiplicative  term  such  that  proportional

elimination  is  possible.  This  is  a  property  of  exponents  that  is  true  by  necessity,

and hence in hindsight it  should not come as a surprise that we can find such an

exponential base for the fixed point in differentiation.

A contradiction  seems to  arise  in  the point  that  the deduction  above is  still  valid

for values ‰ = 6 and 50, or whatever. Thus when Dx = 0 then these both satisfy (‰Dx

– 1)  =  Dx  .  Any value does.  This question however means that we turn from the

issue  of  surfaces  and  differentiation  to  the  issue  of  finding  a  good  numerical

estimate for ‰.

PM. When we do the same steps with ax  and use the chain rule on the derivative

then we find (aDx  – 1) º  rex[a] Dx. Above is a special case for a = ‰. Write rex[a] Dx

= b and then (aDx  – 1) = (‰Dx rex@aD  – 1) = (‰b  – 1) º  rex[a] Dx = b shows that this case

reduces to the original problem for ‰. 

12.1.8.2  Numerical approximation of „

Above deduction suggests a program to approximate ‰. Let h = (est@hDh  – 1) imply

the estimate which then solves into est[h] = (1 + h)^(1/ h). This is clearer for n = 1/h

> 1 so that estn[n]  = (1 + 1/n)^n while taking a power is easier than taking a root.

Taking n Ø ¶ gives an ever better estimate:

h 0.1 0.01 0.001 0.0001 0.00001 1.µ10-6

Estimate 2.59374 2.70481 2.71692 2.71815 2.71827 2.71828

We know that this program must converge on ‰ since we have proven above that

defining f[x] = F'[x] = F[x] = (‰x)' = ‰x  is viable, so that if we let Dx Ø 0 then DF Ø 0

and est[Dx] is constrained too. As with Q though there may be better programs to

estimate ‰ too.

This is a key insight: the expression (‰Dx  – 1) º  Dx should not be read as (est@DxDDx
– 1) º  Dx in the only sense of approximation. That confuses the approximation of ‰

itself with the issue of calculus on surfaces. Of course it is always possible for any

value of Dx  to calculate some est@DxD  but that is not the portent of DF  º  y  Dx.  The

definition  f[x]  =  F'[x]  =  F[x]  =  (‰x)'  =  ‰x  has  been  given  for  some  algebraically
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definition  f[x]  =  F'[x]  =  F[x]  =  ( )'  =   has  been  given  for  some  algebraically

relevant number and not for some approximation.

For Q  we relied on the continuity of space and the existence of  the ratio  between

circumference  and  radius;  and,  OK,  we  had  a  program  to  calculate  it.  For  ‰  we

rely on the continuity of space between 2 and 3; and, OK, we also have a program. 

With  the  dynamic  quotient  we  can  avoid  limits  in  the  determination  of  the

derivatives.  We  cannot  avoid  the  use  of  limit-methods  in  the  numerical

expansions  of  Q  and  ‰.  Those  are  points  in  space  that  require  special  methods  if

we try to catch them in a system of arithmetic. We can use space itself to measure

space, like using a rod called “meter” to measure length and diagonals. If we want

to map this into arithmetic then such algorithms are required.

12.1.8.3  Using the dynamic quotient

The  dynamic  quotient  worked  great  for  unknown  derivative  y  and  the

polynomials.  For  the  exponential  functions  it  can  lead  us  up  the  wrong  alley.

When we forget that (‰x)' = ‰x by definition then we create a quotient that does not

easily resolve. Let us see what happens:

For any x:

‰x ª d‰x / dx = {(Exp[x + Dx] - Exp[x]) // Dx, set Dx = 0}

‰x           = {(‰x + Dx – ‰x) // Dx, set Dx = 0}

‰x            = ‰x  *  {(‰Dx – 1) // Dx, set Dx = 0}

    1  = {(‰Dx – 1) // Dx, set Dx = 0}

Again  ‰x  itself  drops  out,  and we retain  an expression that  must  be  unity.  Up to

now we have been blessed with Dx dropping out. This does not seem to happen at

this  instance.  The  method  at  least  suggests  the  approximation  algorithm.  But  it

can lead us astray if we do not keep the issue straight.

As said: we must beware of quotients like (x - x) // (x - x) since the parts look like

variables  but are in fact constants.  Now (‰Dx  – 1) //  Dx looks dangerously similar.

There are two views:

† The give-away is that the dynamic quotient must be equal to a number, in this

case 1. We are tempted to multiply and create {Dx  = (‰Dx  – 1), set Dx = 0} but we

have  not  formalized  this  step  so  we  better  be  careful  about  that.  Instead,  we

rather  drop  the  dynamic  quotient.  It  was  introduced  in  a  situation  with

unknown derivative,  with DF  º  y  Dx defined for  surfaces  and unknown y.  We

should  return  to  this  original  situation  and  then  it  appears  that  the  case  is

resolved. Because y is not unknown. The conclusion is that ‰  is consistent (and

we have an algorithm).
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† A  formal  approach  is  to  take  it  that  1  =  {(‰Dx  –  1)  //  Dx,  set  Dx  =  0}  is  an

acceptable  conclusion  that  allows  us  to  algebraically  replace  that  particular

dynamic  quotient  and  program  by  the  number  1.  This  author  has  actually

followed  this  course  for  a  few years  before  he  realized  the  give-away  and  the

first  approach.  This  formal  approach  is  less  satisfactory  though,  since  the  Dx

does  not  actually  disappear  even  though  the  dynamic  quotient  is  intended  to

let  us  accomplish  that.  Looking  at  the  issue  after  some  years  afresh  the  give-

away  was  seen.  Having  the  first  approach  of  course  provides  a  base  for  this

formal approach ... which is always nice to have if not actually needed.

12.2  Angles and arcs

12.2.1  Elementary deduction

We have been using x as the independent variable. Now the independent variable

will be the angle and x will be the dependent variable.

For  angle  a  we  have  co-ordinates  �a  and  �a  on  the  unit  circle.  They  are

functionally  dependent.  When  we  take  the  derivative  of  one  then  the  chain  rule

ends in the derivative of the other. 

�@aD� 1 - �HaL2

d�@aDêda = �'@aD� -
�HaL�£HaL
1 - �HaL2

� -
�HaL�£HaL

�@aD

Dividing  by  the  derivative  of  �a  so  that  all  derivatives  are  on  the  left,  gives  the

slope or tangent s[a]:

�'@aD
�'@aD � -

�@aD
�HaL

This must  hold for all  a.  When we look at  the plots  of the original  functions and

check out the slopes then those must be constrained and must be zero at particular

points.  There  are  only  two  functions  that  satisfy  these  demands:  �a  and  �a
themselves,  up to  a proportional  constant.  Thus the trigonometric  functions have

themselves as their derivatives.

Since it later appears that this proportional constant is Q we can directly state:

d �@aD ê da = � '@aD = - Q �@aD d �@aD ê da = � '@aD = Q�@aD
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0.5 1
a

-1

1

� = Xur

0.5 1
a

-1

1

� = Yur

The slope of yur  at a = 0 must be Q �[0] = Q. The slopes of the waves are between

values -Q and Q. (If you plot for a small range around 0 you might include a line x

Q + 0.001 to show that they are parallel.)

12.2.2  For Cos and Sin

For Cos and Sin we get a proportional constant 1:

dCos@jD ê dj = Cos '@jD = - Sin@jD dSin@jD ê dj = Sin '@jD = Cos@jD
Looking at their graphs we might want to normalize by saying that a surface must

be  1  but  there  is  no  particular  reason  yet  why  this  would  be  so.  However,  the

slope of Sin at j = 0 must be 1 (angle 1/8 or 45°), as can be shown below, and that

allows us to calibrate the proportional  constants in the deductions. Since Cos[0] =

1, the proportional factor in the derivatives for Cos and Sin is 1.

1 2 3 4 5 6
j

-1.0
-0.5

0.5
1.0

Xuc = Cos

1 2 3 4 5 6
j

-1.0
-0.5

0.5
1.0

Yuc = Sin

Using the cosine rule on dCos[j] / dj gives: 

DCos[j] = Cos[j  + Dj] - Cos[j] = {Cos[j] Cos[Dj] - Sin[j] Sin[Dj]} - Cos[j] 

DCos // Dj =  Cos[j]  
Cos@DjD -1

Dj
  -  Sin[j] 

Sin@DjD
Dj

 =  - Sin[j]

Look at the slopes at j = 0. For Cos at j = 0 we find that the slope must be zero, so

that  with  the  dynamic  quotient  dCos[j]/dj  [0]  =  : Cos@0 + DjD -Cos@0D
Dj

=  
Cos@DjD -1

Dj
,  then

set  Dj  =  0}  =  0.  See  below  for  the  more  complex  
Sin@DjD
Dj

 =  1.  Substituting  these

outcomes in DCos // Dj gives that dCos[j] / dj = - Sin[j].

PM. We now also find the proportional constant for the functions depending upon

angles: �'[a] = Q Sin'[a Q] = Q Cos[a Q] = Q �[a].
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For the trigonometric  functions (1) the derivatives  are analytically  easier than the

surfaces  but  they  translate  into  each  other  and  (2)  the  arcs  are  easier  than  the

angles.  Since  Cos  and  Sin  do  not  get  Q  in  their  derivative  they  and  the

measurement  in  radians  can  be  very  practical  when  derivatives  are  involved  -

even though the scale (radians) needs getting used to.

12.2.3  Geometric interpretation

12.2.3.1  The basic layout

The  graph  give  the  first  quadrant  of  the  unit  circle.  First  look  at  the  left.  With

angle  a  there  is  arc  j  =  a  Q.  The  co-ordinates  of  A are {XA,  YA}  =  {xur[a],  yur[a]}  =

{Cos[j],  Sin[j]}.  At  A  we  take  the  tangent,  which  is  perpendicular  to  the  radius.

Thus  angle  a  can  also  be  found  in  the  triangle  created  by  projecting  A  onto  the

horizontal axis. 

a

a

A

j

a

a

A

j

B

Djb

C

On the right hand side an increment Dj creates point B. In triangle ABC angle b =

—ABC lies between a and a + Da. Thus b = a + f[Da] for a fractional function. For its

arc we find y = j + g[Dj] § j + Dj. Thus g is zero for Dj = 0.

We have DSin[j] = Sin[j  + Dj] - Sin[j] = YB - YA = BC.

12.2.3.2  The proof by approximation

A traditional approach is to take AB º Dj:

Then DSin // Dj = 
BC

Dj
  = 

Cos@yD AB
Dj

º 
Cos@yD Dj

Dj
 =  Cos[j + g[Dj]].

Setting Dj = 0 gives dSin[j] / dj = Cos[j].
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We  may  not  be  satisfied  with  this  entirely  since  AB  º  Dj  requires  a  theory  on

approximation that would much complicate calculus. 

12.2.3.3  The proof by algebra

It  is  better  to  show that  the  slope  of  Sin  at  j  =  0  must  be  1,  since  then  the  proof

continues as above.  The slope at  zero is {DSin[j]  //  Dj   for j  = 0,  set Dj  = 0} with

(Sin[0 + Dj] - Sin[0]) // Dj = Sin[Dj] // Dj.

We can simplify by looking at Sin[j] // j and set j = 0.

† On the left hand side, take point H = X  = {1, 0}.

† Triangle OAH has height h = Sin[j]. Its area is S = h w / 2 = Sin[j] / 2. 

† A sector  of  a  circle  is  a  part  of  the circle  enclosed between two radii  and their

arc. The area of the a sector is a part j / Q of the whole ½ r2 Q, thus F = j / 2. 

† The values of Tan[j] are always on the line x = 1. Regard the right triangle OHD

with D on extended OA (draw this yourself): it has area T = Tan[j] / 2.

† Given the area locations we have S § F § T. Thus Sin[j] § j § Tan[j]. 

† Dynamic  quotient  by  Sin[j]  and  allow  potentially  j  =  0:  1  §  j  //  Sin[j]  §  1/

Cos[j].

† Set j = 0: then 1 § {j // Sin[j], set j = 0} § 1 squeezes a result that can be set to 1.

† If  j // Sin[j] = 1 at j = 0 then also Sin[j] // j  = 1 at j = 0.

† There is no approximation but logical deduction: Sin[j] // j  = 1 at j = 0.

† It is actually the slope at j = 0: {DSin[j] // Dj  for j = 0, set Dj = 0} = 1.

In  summary,  the  derivatives  for  the  trigonometric  functions  follow  from  these

steps (that  do not  depend upon approximation):  (1)  using the  chain rule  we find

that the ratio of the derivatives is minus the slope, or tangent, i.e. the ratio of the

primitives,  (2) this holds for all angles and arcs, so the functions differentiate into

each  other  with  unknown  proportional  constant,  (3)  the  slope  1  for  Sin  at  0

identifies the proportional constant. 

See http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/part-a-

definition-and-basic-rules/session-8-limits-of-sine-and-cosine/

12.2.3.4  A potential trap

The following is a deduction with a tricky step that is useful to be aware of.

dSin[j] / dj = {DSin[j] // Dj, then set Dj = 0}.

Consider BC = Cos[y] AB = Cos[y + h[Dj]] Dj, for y = j + g[Dj] and function h.
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h = 
ForDj ∫ 0 h@DjD = ArcCos@Cos@yD AB êDjD - y
ForDj = 0 set h@0D = 0

Then DSin // Dj = 
BC

Dj
  = 

Cos@yD AB
Dj

= 
Cos@y+h@DjDD Dj

Dj
 =  Cos[j + g[Dj] + h[Dj]].

Setting Dj = 0 gives dSin[j] / dj = Cos[j].

The  tricky  thing  is:  In  this  way  we  can  also  prove  that  the  derivative  is  Sqrt[j].

Namely,  substitute  Cos[y]  AB  =  Sqrt[y  +  H[Dj]]  Dj,  with  H[Dj]  =

HCos@ yD AB ê DjL2  - y and for Dj = 0 set H[0] = 0. A possible reason to reject this H

is  that  it  is  not  continuous at  0  but  this  leads  too far  into  the  realm  of  numerical

continuity while it should suffice to use continuity in algebra and formulas.

12.2.4  The basis for Euler’s form

On the unit  circle  z = Cos[j]  + Â  Sin[j]  so that  d  z  /  d  j  = -  Sin[j]  +  Â  Cos[j]  =  Â  z.

Differentiation  gives  the  same  number  though  with  coefficient  Â.  Since  we  know

that ‰x has itself as the derivative, we can express the one into the other.

While the derivative for v[j] = r ‰Â j is v'[j] = Â r ‰Â j = Â v[j] then for angles we get a

scaling factor just like happens for rex[b, x] for a base other than ‰. Thus w'[a] = Â

Q w[a].

† The derivative gives a scale factor Â Q (setting r = 1)

w£HaL� Â Q ‰Â a Q � �
£HaL + Â�£HaL� -Q sinHaQL + Â Q cosHaQL� Â QwHaL

12.2.5  Arc length reconsidered

In  §11.7  we  derived  how  to  calculate  the  length  of  a  trajectory  along  a  winding

curve. We can apply that method also to the unit circle. The y can be expressed as

a function of the x, we determine the derivative and apply the integral expression

for the arc.

Y � 1 - X 2

Y' � -
X

1 - X 2

IntegrateB 1 + Y'^2 , XF êê PowerExpand

sin-1HX L

The result  is  ArcSin, indeed an arc function on the circle.  It  is a bit  tricky though

since ArcSin normally  applies to Y  and not to X. The solution to Y = Sin[j]  is j  =

ArcSin[Y].  The  arc  measured  by  Sin  is  from {1,  0}  counterclockwise.  The  integral

above is for X going clockwise, and the arc traversed is from {0, 1} to {X, Y}. Thus
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above is for X going clockwise, and the arc traversed is from {0, 1} to {X, Y}. Thus

we expect  outcome Q/4  -  ArcSin[Y]  =  Q/4  -  ArcSin[ 1 - X 2 ].  It  appears  to  be  an

equivalent  expression.  A  plot  (not  shown)  may  provide  encouragement  and  in

Mathematica with FullSimplify:

FullSimplify@Pi ê2 - ArcSin@Sqrt@1-X^2DD == ArcSin@XD ,
Assumptions Æ X Œ RealsD

sin-1HX L� 0Î X ¥ 0

The calculation of arc length thus gives a consistent result. Above integration does

not  result  into  an  explicit  expression  in  terms  of  X  without  the  Sin  function.  A

development explicitly in terms of X and powers of X might be nice for a change.

However, Sin-1= ArcY exactly expresses the arc.

12.2.6  A typical exercise

To  determine  a  minimum  or  maximum  we  can  use  that  the  slope  must  be  zero.

However, a point of inflection also has a zero slope (e.g. a function rises, goes flat,

and rises again).  In that case we can check on the value of the second derivative.

For  teaching  it  is  a  shortcut  to  allow  a  graphical  inspection.  (In  the  following,

consider what happens at a = 3/4.)

12.2.6.1  In angles

Consider the function g[a] = 2 �[a] + �[2a] + 1 in the domain [0, 1]. Calculate the

global minimum and maximum. 

0.2 0.4 0.6 0.8 1.0
a

-1

1

2

3

gHaL

A global  maximum  or  minimum  must  have  a  corner  solution  or  a  zero  slope  so

that the derivative must be zero. Given the graph the latter is the case.

g'[a] = -2 Q�[a] + 2 Q �[2a] = 0

�[a] = �[2a]

�[a] = �[1/4 - 2a] 

a = (1/4 - 2a) + k     fi     1/2 - a = (1/4 - 2a) + k    for k = 0, 1, 2, ...

3a = 1/4 + k             fi              a = - 1/4 + k  

a =  1/12 + k / 3       fi              a = 3/4 + k  
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Requiring 0 § a § 1 gives a e {1/12, 5/12, 3/4}. 

W.r.t. the graph, the global maximum is at a = 1/12 and the global minimum at a =

5/12. (And a = 3/4 gives a point of inflection.)

12.2.6.2  In arcs

Consider the function f[j]  = 2 cos[j]  + sin[2j] + 1 in the domain [0,  2p].  Calculate

the global minimum and maximum. 

1 2 3 4 5 6
j

-1

1

2

3

f HjL

A  maximum  or  minimum  must  have  zero  slope  so  that  the  derivative  must  be

zero, or we have a corner solution. Given the graph the first is the case.

f '[j] = -2 sin[j] + 2 cos[2j] = 0

sin[j] = cos[2j]

sin[j] = sin[p/2 - 2j] 

j = (p/2 - 2j) + 2pk     fi     p - j = (p/2 - 2j) + 2pk  for k = 0, 1, 2, ...

3j = p/2 + 2pk             fi     j = - p/2 + 2pk  

j =  p/6 + 2/3 p k         fi     j = 3/2 p + 2pk  

Requiring 0 § j § 2p gives j e {p/6, 5/6 p, 3/2 p}. 

W.r.t. the graph, the global maximum is at j = p/6 and the global minimum at j =

5/6 p. (And j = 3/2 p gives a point of inflection.)
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13.  Partial derivatives

13.1  A function depending upon two variables

13.1.1  Principle

Function y = f[x]  is  one-dimensional  and associates with a two-dimensional  point

{x,  y}.  While  this  book  is  about  the  plane  that  is  2D  it  behoves  to  be  aware  of

extensions  to  the  3D  case  and  higher.  Linear  algebra  subsequently  allows  us  to

imagine a more general vector space {x1, ..., xn}. We have seen this already with the

linear  regression  and  all  the  error  points.  These  were  only  glances  however.

Closing this  book  on 2D,  it  remains  a  good question what message  we may take

home from these glances at multidimensionality.

It  will  be  a  matter  of  judgement  but  the  best  answer  seems  to  be:  the  notion  of

partial derivatives. 

Regard  an  example  from  the  market  place.  When  our  expenditure  consists  of

apples and bananas Z = pa  qa  + pb  qb  then the inclusion of another apple will raise

expenditure by pa. This is that partial derivative.  The inclusion of another banana

will  raise  expenditure  by  pb  which is  the  partial  derivative  on the  other  variable

and which gives a different outcome since generally the prices differ.

Living  in  a  one-dimensional  world  with  a  one-dimensional  mind,  eating  one-

dimensional porridge with one-dimensional spoons, the latter outcome is strange.

The change in Z has two possible outcomes instead of only one ? Both pa  and pb  !

What  is  happening  here  ?  Well,  the  paradox  is  quickly  resolved.  The  partial

derivative  gives  the  effect  on  the  total  when  only  one  variable  changes.  When

another or more variables change then the total may change differently. 

The  message  to  take  home  from  multidimensionality  thus  is:  that  there  is  a  key

difference  between  the  notions  of  total  and  partial  derivatives.  For  the  one-

dimensional  world  the  differential  has  to  be  the  total  derivative.  If  we  presume

that this  would also be the case for  the more-dimensional  world then this would

cause serieus errors of judgement.
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This expenditure example is in linear space where the partial derivatives are given

by prices that do not change. In general the partial derivatives change themselves

and  they  change  all  at  the  same  time  too.  The  way  to  find  the  proper  partial

derivative  is  to  keep  the  other  factors  constant  and  vary  only  that  what  we  are

interested in. This gives the standard Latin expression in economic analysis: ceteris

paribus, meaning: keeping the other aspects to be the same.

Note how easily we are guided into error. Above we concluded that the derivative

of  y  =  c  +  s  x  would  be  y'  =  s.  What,  however,  if  those  constants  are  not  really

constants, but change too, perhaps not as a function of x but as a function of some

other variable ? Did we then really capture the proper change in y ?

13.1.2  Notation

Let z  = f[x, y].  The partial  derivative of f with respect to one of its variables while

keeping the other(s) constant is denoted with round deltas. An application is:

∑

∑x
H x2 + 3 y3L = 2 x

∑

∑y
H x2 + 3 y3L = 9 y2

We collect these partial derivatives into the total derivative:

† The  total  differential  of  f  is  df  =  
∑ f

∑x
dx  +  

∑ f

∑y
 dy  or  the  weighted  sum  of  the

differentials of separate variables weighted by their partial effects.

For the expenditure on apples and bananas:  dZ = pa dqa +  pb dqb.

† The total derivative of f with respect to a single variable uses the differential on

all variables. For example, with time t:  df / dt = 
∑ f

∑x
 
dx

dt
 +  

∑ f

∑y
 
d y

dt
.

† With x = x[t] and y = y[t] then  f'[t] = 
∑ f

∑x
 x'[t]  +  

∑ f

∑y
  y'[t].

For  expenditure on apples  and bananas and constant prices  we have 2D space

{Z, t} that works via other 2D spaces {qa, t} and {qb, t}.

13.1.3  We already saw this

We have already seen an application of this in the product rule. 

„ H f gL� g „ f + f „ g

Namely, take F = f g, then F'[x] = 
∑F

∑ f
 f'[x] + 

∑F

∑g
 g'[x] and 

∑F

∑ f
 = g and 

∑F

∑g
 = f. 

It  actually  is used also in  addition:  d (f  + g)  =   
∑H f + gL
∑ f

 f'[x]  +  
∑H f + gL
∑g

g'[x]  where the

partial derivatives only happen to be 1.
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13.2  Applications

Karel  Drenth at  the Technical  University  Delft  gave a  course  in  transport  science

for students in operations management. When you are an operations manager and

do  not  know  some  elementary  physics  and  do  not  know what  the  engineers  are

talking about then you can end up in a great mess. Karel allowed me to translate

his course into English and it is available on the web (TSOM). I find it a wise and

engaging selection of real world issues that shows the power of analysis. Many of

the Mathematica  programs used in this present book I  originally  wrote to support

Karel’s  course  and  textbook.  It  was  a  shock  to  hear  that  Karel  suddenly  died  in

2010.  He  was  a  great  person  and  wonderful  teacher.  TSOM  does  not  explicitly

employ  partial  derivatives  so  I  will  not  use  it  here  but  if  the  topic  interests  you

then it is a good exercise to spot where that method is actually relied upon.

Drenth, K.F. & Th. Colignatus (2000), “Transport science for operations management. Understanding elementary

physics and mechanical engineering”, http://thomascool.eu/Papers/TSOM/Index.html 

13.2.1  Application to estimation

An  instructive  application  of  partial  derivatives  concerns  linear  regression.

Remember the example in §10.9.3: we had a lot of observations in the {x, y} plane,

each  observation  represented  by  a  dot,  and  we  fitted  a  line  through  the  cloud,

selecting  the  line  with  minimal  sum  of  squared  errors:  SSE  =  S  ei
2.  Now,  how

exactly does this work ? To get to the details we need partial derivatives.

We  can  do  this  for  a  long  list  of  observations  but  it  suffices  to  use  three,  for

example {2, 3}, {5, 6} and {7, 6}. Let us try to find the line y = c + s x that fits those

three points best.

The errors are 3 = c + s 2 + e1  and 6 = c + s 5 + e2  and 6 = c + s 7 + e3. Squaring and

summing the errors gives:

 SSE = S ei
2 = H3 - c - 2 sL2 +  H6 - c - 5 sL2  +  H6 - c - 7 sL2.

A (sum of)  square(s) is  minimal  when its  slope is zero.  So we take the derivative

and  set  it  to  zero.  But  there  are  two  variables  c  and  s,  so  there  arise  two  partial

derivatives.  Each  partial  derivative  gives  the  contribution  of  an  estimated

coefficient  to  the  total  error.  The  total  derivative  will  be  zero  when  each  partial

derivative is zero by itself. 

The two partial derivatives are:

eqHcL� ∑ SSE

∑ c
� -2 H-c - 7 s + 6L - 2 H-c - 5 s + 6L - 2 H-c - 2 s + 3L

eqHsL� ∑ SSE

∑ s
� -14 H-c - 7 s + 6L - 10 H-c - 5 s + 6L - 4 H-c - 2 s + 3L
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Setting these to zero gives the so-called “normal equations” (also simplifying):

eqHcL� 6 c + 28 s - 30 � 0

eqHsL� 4 H7 c + 39 Hs - 1LL� 0

† The  two  parameters  give  us  two  equations  and  when  we  solve  them  then  we

find our estimates with minimal SSE.

Solve@86 c + 28 s - 30 � 0, 7 c + 39 Hs - 1L � 0<, 8c, s<D

::cØ 39

19
, sØ

12

19
>>

† The result is the same when using the linear fit routine in Mathematica.

data = 882, 3<, 85, 6< , 87, 6<<;
model = LinearModelFit@ data, x, xD êê Rationalize

FittedModelB 12 x
19

+
39

19

F

8R^2Ø 0.842105, Correlation Ø 0.917663<

In Chapter 11 we might have given this explanation for finding the best estimate.

For  example  we could  have  fitted  the  proportional  line  y  =  s  x  that  has  only  one

coefficient.  But  the  focus  in  that  chapter  is  on finding  out  what  calculus  actually

means  while  regression  is  rather  an  application.  Also,  optimizing  over  one

coefficient  does  not  optimally  convey  how  the  method  of  least  squares  works.

Instead,  regression  is  a  great  showcase  to  convey  and  understand  what  partial

derivatives are.

13.2.2  Application to taxation

13.2.2.1  Principle

In taxation there is a discussion what tax schedule the government should choose.

A lump sum per capita  or let  it  depend upon income, and how so ? Should high

incomes  pay a  bit  more (strong shoulders)  or  should they  stop  paying once  they

have  contributed  their  share  -  and  then  how  to  determine  that  share  ?  One

argument is that the rich benefit from social stability at least in proportion to their

wealth  or  perhaps  a  bit  more:  if  police  and  judge  do  not  function  then  a  rich

person  may  lose  more.  A  financial  gain  depends  upon  individual  initiative  but

also  upon  social  circumstance,  as  for  example  inventing  an  automobile  and

getting  it  sold  on  the  market  requires  a  state  of  technology,  the  existence  of

suppliers,  consumers  and  market  institutions.  Such  arguments  about  “should”

and “deserve”  have moral  components.  A somewhat  more objective  argument  is
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and “deserve”  have moral  components.  A somewhat  more objective  argument  is

based  upon  incentives  and  total  revenue  as  a  measure  of  the  collective  load.

People  take  tax  as  a  disincentive.  A  tax  punishes  earnings  and  a  tax  on  income

causes  people  to  reduce  work  effort.  The  impact  of  this  disincentive  is  larger  for

higher  incomes  because  those  incomes  are  higher.  If  the  government  wants  to

maximize total tax revenue then it might have to lower taxes for higher incomes to

incite  them  to  produce  more  taxable  income.  The  government  choice  then

depends  upon  behaviour  and  not  morals.  Behaviour  again  depends  upon  the

utility that people derive from their net income and the leisure from not working.

See Seth Chandler’s http://demonstrations.wolfram.com/TaxRatesAndTaxRevenue/

Let the taxpayer’s complex personality be reduced to a utility function with work

h and leisure 1 - h  and net income depending upon the wage as w h  - T[w h]. We

use the Cobb-Douglas form with one parameter a. 

utility = H1 - hLa Hw h - T@w hDL1-a;

The taypayer maximizes utility. The utility function is first rising in hours worked

but after a while declines, so the first order condition for a maximum applies and

we  set  the  slope  with  respect  to  hours  to  zero.  This  generates  a  rather  complex

equation.  Because  of  the  chain  rule  the  equation  has  a  first  derivative  on the  tax

function, in other words the marginal tax rate. A simpler expression follows from

solving for that marginal tax rate.

eq = D@utility, hD ä 0;

Solve@eq, T'@w hDD êê FullSimplify

::T £Hh wLØ a T Hh wL - w Ha + h - 1L
Ha - 1L Hh - 1Lw >>

In other words, the behaviour targetted at maximizing utility puts a restriction on

solution space, and the taxpayer chooses h such that the marginal tax rate plays a

role.  When formulating  tax policy  the King of  the Realm should pay attention to

that rate.

When we assume proportional tax T[x] = r x with constant marginal rate r then the

hours worked reduce to the parameter in the utility function:

D@utility ê. 8T@x_D :> r x<, hD == 0 ;

FullSimplify@Result, Assumptions Æ 8w > 0, 0 < a < 1, 0 < r < 1<D

H1 - hLa-1 Ha + h - 1L H-h Hr - 1LwL-a � 0

Solve@Result, hD

::hØ 1 - 0
1

a-1 >, 8hØ 1 - a<>
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For  this  utility  function  the  marginal  tax  rate  of  a  proportional  tax  drops  out

again. When all taxpayers have this utility then the government has little problem

in optimizing  revenue. The situation in reality  is more complicated,  notably with

the  wage  depending  upon  hours  worked.  The  example  of  the  Cobb-Douglas

utility function is useful to show the special case when the marginal tax rate drops

out  again but  in  practice  that  rate  will  play a  role.  The question that  concerns us

now is whether the tax schedule can be chosen with some sophistication.

13.2.2.2  A formal tax schedule

Let tax[y] be the tax schedule depending upon individual income y. The average is

tax[y]  / y and the tax on the marginal dollar is tax'[y]. Concepts are:

† the  schedule  is  proportional  if  the  average  is  constant:  
„

„y
(tax[y]  /  y)  =  0,  thus

tax[y] = s y for a constant s

† the schedule is regressive if the average reduces with income: 
„

„y
(tax[y] / y) < 0

† the schedule is progressive if the average increases with it: 
„

„y
(tax[y] / y) > 0.

These  concepts  have only  limited  meaning  since  the  rates  may differ  per  income

bracket.  A  tax  schedule  however  tends  to  be  implemented  as  a  system  that  is

uniform. Let us consider some common schedules.

The  Bentham  tax  schedule  (1)  allows  for  an  exemption  level  x,  based  upon  the

consideration that  people first  have to  earn their  own subsistence just  to survive,

and (2) there-after has a rate r. Thus Bentham[y, x, r] = r  (y - x) for y ¥ x  and zero

below it. This can also be formulated as a proportional tax minus a tax credit that

then also could be given to those under subsistence: CreditTax[y, x, r] = r y - r x. 

Governments  tend  to  employ  piecewise  linear  tax  functions  with  brackets  that

build  upon  the  Bentham  schedule.  This  causes  additional  political  debate  about

where  to  put  those  brackets.  This  kind  of  debate  can  be  avoided  in  a  general

curved tax schedule like CurvedTax[y, x, r, c] = r (y - x) * y / (y + c) with y ¥ x and

parameters {x, r, c}.  In this function exemption x  follows from subsistence, r from

the  marginal  rate  for  the  highest  incomes,  and  curve  parameter  c  from  the

requirement on total tax revenue.

The graphs below may look a bit  different  for the domains [0,  100] and [0,  1000],

expressed  in  $1000  per  annum.  We  consider  three  cases:  curved  tax  with

parameters {6, 0.60, 30} versus {6, 0.50, 100} versus {6, 0.40, -5}. With c < 0 there is a

recovery from exemption towards a proportional rate. 
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† Legend: check the limit marginal  rates in the bottom right graph. Solid line for

{6, 0.60, 30}, course dashing for {6, 0.50, 100} fine dashing for{6, 0.40, -5}.
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13.2.2.3  Dynamics and a constant average rate

What is  generally  lacking in this  discussion about  optimal  taxation,  and a reason

why  it  is  a  good  introductory  example  for  partial  derivatives,  is  an  awareness

about  what  happens  to  taxes  when  time  passes.  The  discussion  tends  to  assume

that  the  schedule  remains  the  same  over  time  but  it  doesn’t.  The  tax  schedule

generally gets adapted to inflation and economic growth, and thus the general rise

of welfare over time.

Properties are: (1) Taxes tend to be progressive given the Bentham argument. (2) If

the  tax  schedule  is  not  adapted  to  inflation  then  this  causes  “inflation  creep”:

people get taxed at ever higher rates since their income will rise with inflation. (3)
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people get taxed at ever higher rates since their income will rise with inflation. (3)

When  national  income  rises  also  due  to  economic  growth  then  the  government

would get an ever larger share of it  and after a while a political  party comes into

power  to  reduce  taxes  to  a  normal  level  again.  In  sum,  we  can  understand  the

process by looking at the total derivative. Use the curved tax form:

dtax = 
∑tax

∑y
 dy + 

∑tax

∑x
dx + 

∑tax

∑r
 dr + 

∑tax

∑c
 dc

The  change  in  the  tax  thus  depends  upon  the  change  in  the  tax  parameters  too.

There  are  some  general  properties  here.  In  practice  the  parameter  r  will  be  kept

constant over time since it reflects views on the limit marginal rate that is socially

desirable  for  the  rich.  Exemption  x  rises  with  the  general  rise  in  welfare.

Nowadays  also  the  poor  need  a  computer  to  participate  in  society.  Parameter  c

rises  with  the  need  for  tax  revenue.  In  a  simulation  we  would  distinguish  the

general  change of income from individual  changes and generate a distribution  of

effects. For now it suffices to consider a representative case. The parameters x and

c then tend to rise with the same factor as y.

Let  us  put  these  properties  into  formulas.  When  we  have  income  y  and

parameters  x  and  c  in  one  year  and  next  year  the  incomes  rise  to  p  y  due  to

inflation and economic growth, then a wise tax function of that new year will have

parameters p x and p c. Looking at the average tax we see that it does not change:

avtaxH1L� r Hy - xL
c + y

� avtaxHpL�
r Hp y - p xL
c p + p y

�
r Hy - xL
c + y

What does this mean for the marginal rate, the disincentive to earn income ?

13.2.2.4  Dynamic marginal tax rate

To find the marginal rate we take the total derivative to time with r dropping out

since we keep it constant:

dtax/dt = 
∑tax

∑y
 dy/dt + 

∑tax

∑x
dx/dt + 

∑tax

∑c
 dc/dt

It is informative to divide all by dy/dt again:

dtaxêdt
dyêdt  = 

∑tax

∑y
 + 

∑tax

∑x

dxêdt
dyêdt  + 

∑tax

∑c
 
dcêdt
dyêdt

and then dt  drops  out  too.  We could  have  done that  directly  but  then we would

have  missed  the  element  of  time.  Conclusion:  when  parameters  are  indexed  on

income  then  the  dependence  can  be  modelled  to  be  upon  y  and  not  upon  time.

The total  differential consists of a direct effect and the effect of the changes in the

parameters.

dtax

dy
 = 

∑tax

∑y
 + 

∑tax

∑x

dx

dy
+ 
∑tax

∑c
 
dc

dy
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With  the  proportional  adjustment  of  x  to  y  we  have  
dx

dy
 =  

p x - x

p y - y
 =  

x

y
 or  that  the

marginal  is  the  average.  This  expression  can  also  be  read  as  
dx

x
 =  

dy

y
 or  drex[x]  =

drex[y] or that the rates of growth are the same. The same with c and hence:

dtax

dy
 = 

∑tax

∑y
 + 

∑tax

∑x

x

y
+ 
∑tax

∑c
 
c

y

This is the dynamic marginal tax rate under proportional  adjustment. It  gives the

marginal  tax  rate  but  adjusted  for  the  change  in  parameters  when  these  are

indexed on the rise of the overall level of income.

It should come as no great surprise that the dynamic marginal under proportional

adjustment appears to be equal to the average marginal tax rate.

† The dynamic marginal can be equal to the average tax.

tax = r H y - xL
y

y + c
;
dtax

dy
== D@tax, yD + D@tax , xD *

x

y
+ D@tax , cD *

c

y
êê Simplify

dtax

dy
�
r Hy - xL
c + y

13.2.2.5  Concluding

The  following  is  a  small  example  of  how  a  dynamic  marginal  rate  can  equal  a

normal  average.  Let  exemption  be  $17000,  and  let  the  statutory  marginal  rate

thereafter be 60%. Someone earning $51000 pays a tax of $20400, on average 40%.

Let  all  incomes  grow  5%,  and  exemption  be  indexed  on  national  income.  Then

exemption  becomes  $17850,  income  $53550,  and  tax  $21420,  again  40%.  Thus  on

the (dynamic) “marginal dollar” this person doesn’t pay 60% but 40%.

Consider national income Y and national tax revenue T. If the average tax level is

to be constant then T / Y = (T + DT ) / (Y + DY ). A little algebra shows that DT / T =

DY / Y, or that tax revenue grows at the same rate as national income, and that DT

/  DY  =  T  /  Y,  or  that  the  dynamic  marginal  tax  rate  equals  the  average  tax.  In

balanced  growth this  would  also hold  at  the individual  level  -  and not  just  for  a

representative  or  average  taxpayer  since  balanced  growth  means  that  all

taxpayers participate in the growth. So you may be rich and have a high statutory

marginal  tax rate  of  60% but  if  your average is  40% then,  with general  economic

growth and subsequent wise adjustment of tax rates, your dynamic marginal will

also  be  40%.  The  impact  of  tax  incentives  will  also  depend  upon  this  dynamic

marginal or the average rate rather than only upon the statutory marginal.
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Part V.  Meta

 

 

 

Parts  I  -  IV  had a  textbook  layout  and have  been completed  with  the  above.  We

now take the upper ground and look back at it. 

  1.  Chapter 14: Euclid’s Elements and axiomatic development are at Van Hiele’s 

Level 3. The subject matter of points and lines is simple so it may well be that 

many 12-year olds can handle this level. In time there will be a computer 

game and we will see whether this indeed is true at what scale. However, to 

appreciate it as an axiomatization of space requires special attention at a wiser 

age. And how does it relate to non-Euclidean geometry ?

  2.  Chapter 15: The above has been composed with particular didactics in mind. 

At each point there might have been a footnote discussing the didactic turn, 

but this would clutter the text and block the free flow of the textbook format, 

while actually most didactic issues require an integrated discussion that is 

longer than a footnote.

  3.  Chapter 16: It will be clarifying to succinctly list the news in this book 

compared to other texts. You might check that first, to hone your mind to the 

points to be aware of. But it will be an advantage to first read the body of the 

text as if you are a novice and only later compare your own notes on new 

discoveries.

Obviously, the above only has a textbook format as this book is not quite a proper

textbook. Exercises are lacking. Subjects could be dosed better along the OSAEP/I

steps  of  Van  Dormolen  (see  below).  A  textbook  should  also  allow  for  the  multi-

dimensional  intelligences  of  our  students.  The  above has not  been discussed in a

school team nor has it  been tested in class. We have not discussed hours. For 200

pages  and  4  pages  per  hour,  and  3  hours  per  week,  the  above  might  take  17

weeks. But all  this is premature.  As this book is a primer,  we now set out for the

real business of the didactics in the education of mathematics.
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14.  Axioms and reality

  

  

  

14.1  The axiomatic method

14.1.1  Laws

The Codex Hammurabi and the Bible’s Ten Commandments created lists of do and

don’ts.  Euclid was a lawyer of  space and his  Elements  applied that  legal  notion to

geometry,  refined  the  laws  of  space  and  presented  the  first  axiomatic  system  in

mathematics.  It  is  up  for  discussion  (1)  whether  axiomatics  is  a  good  teaching

method (for geometry),  (2)  whether geometry still  is  the best  subject  for  teaching

about  axiomatics  and  the  deductive  method.  Propositional  logic  seems  simpler

and  is  directly  concerned  with  deduction  itself.  Perhaps  though  arithmetic  and

algebra  are  better  since  they  do  not  directly  claim  to  be  about  deduction  itself.

Preferably  all  are  used,  to  cater  to  the  multidimensional  intelligence  on  both

language, symbol, number and space. We mention only a few points now.

14.1.2  An abstract system

By abstraction from reality we get a formal system, that differs from its (intended)

interpretation  in  that  no  longer  the  semantics  apply  but  only  the  syntax.  The

advantage  of  a  formal  system  is  that  we  are  no  longer  distracted  by  hidden

assumptions  from  our  understanding  of  the  problem  area.  All  that  is  relevant  to

make  something  work is  put  in  schemes that  anyone can operate,  even someone

who  does  not  understand  the  issue  (like  a  computer).  Let  us  take  the  subject  of

geometry with all its semantics as discussed above and let us try to create a formal

axiomatic  system  for  it.  We  then  get  an  empty  formal  structure  that  we  might

interprete in various other ways too. In the axiomatic method we not only provide

axioms  and  rules  for  deduction  but  we  also  must  state  a  list  of  symbols  and

formation rules  for  which the axioms must  hold.  The  relations  just  discussed are

depicted  in  the  following  diagram.  The  situation  actually  is  slightly  more

complex,  since  what  isn’t  drawn  is  that  we  discuss  these  relations  in  a  meta-

language.
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Abstraction

HIntendedL interpretation Formal system

Interpretation

Once  we  have  created  this  formal  system  there  naturally  arise  a  number  of

questions  such  as  whether  it  really  is  a  “good”  system.  Axiomatic  theory  has

developed a number of criteria to judge on that “goodness”.

The  traditional  method  to  “prove”  the  adequacy  of  an  axiomatic  system  is  to

provide an existing example in the real  world that forms a model for the system.

Since the world is assumed to be consistent (there is only one reality at a time),  a

good fit  would  show that  we  have  found a  good  formal  model.  It  appears  to  be

enlightening  to  analyze  what  we  actually  mean  by  “a  good  fit”,  since  that

generates  all  kinds of  properties  of  systems that we may not  have been aware of

before.

DeLong (1971): “Our aim at formalization will  be achieved if  the informal  theory

(...)  is  an interpretation  of  the  formal  system.” (p  106)  and properties  of  a  formal

system  are  that  it  is  “consistent,  correct,  independent,  expressively  and

deductively complete, and decidable. (... and ...) may be made categorical” (p141).

14.1.3  Axiomatics versus enumeration

The  axiomatic  method  differs  from  the  enumeration  method.  The  first  uses  only

rules of substitution, expansion and contraction, that can be applied at liberty and

that  can  deduce  individual  statements.  The  enumeration  method  lists  all

possibilities  and  checks  them all,  trying  to  design  efficient  algorithms.  Given  the

infinity  of  possibilities  in  space  Euclid’s  axiomatic  method  was magical  in  that  it

actually worked in dealing with those. Of course the magic is in choosing limited

objectives  that  indeed  can  be  attained.  Nowadays  with  computers  the

enumeration  gains  in  force,  for  example  when  the  computer  creates  a  graph  so

that  we  check  its  form.  Analysis  can  be  seen  as  already  a  step  towards

enumeration  as  we  distinguish  in  kinds  of  functions  (polynomial,  exponential)

and  kinds  of  properties  (intersection,  extreme  value).  There  is  a  (hidden)

structural  identity between these two methods, notably where the algorithm uses

the same kinds of rules. There may be a difference though with respect to “finding

new truths”. 

14.1.4  Axiomatics versus deduction in general

Given the (hidden) structural identity of the axiomatic method and the method of

enumeration,  it  becomes  a valid  question why mentioning  the  axiomatic  method
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enumeration,  it  becomes  a valid  question why mentioning  the  axiomatic  method

at all.  The point  is  that  the axiomatic  method still  is  the standard in mathematics

for a proper definition of a system. This choice of standard clearly has its origin in

The Elements.

That being said, this book takes a relaxed attitude towards axiomatics.  It  appears

that  the  difference  between  the  axiomatic  method  and  a  perhaps  less  formal  but

still  deductive  system becomes  somewhat  fuzzy.  If  we see  the  axiomatic  method

as merely substitution of truths in truths according to a truth-conserving rule then

we are right to criticize this for neglecting solution strategies that reduce the time

for a proof. Mathematical formalism as a goal in itself has little value as well. The

objective of a proof is to convince a critical person and it may suffice that he or she

recognizes the proof, as long as the method remains valid.  In the methodology of

science  it  appears  that  a  surprising  number  of  issues  are  not  fully  defined.

Axiomatization  of  those  issues  seems  overdone,  though  a  bit  more  formalism

sometimes  helps.  A  useful  deductive  system,  even  not  fully  axiomized,  still  has

the  main  properties  of  an  axiomatic  system,  in  that  its  terms  and transformation

rules must be defined somehow. 

14.2  Non-Euclidean geometry

An important  aspect for a science and its methodology is the relation between its

definitions  and  the  reality  that  those  definitions  (should)  reflect.  Creative  minds

coin definitions that maximize explanatory power. Yet, there are always these two

aspects to be aware of.

PM.  This  present  section  only  selects  some  passages  from  my  discussion  of  an

article  on  100  years  of  Einstein,  in  The  Economist  January  1  2005.  I  am  not  a

physicist,  and  after  studying  economics  now  for  some  40  years  I  am  close  to

understanding a tiny  fraction of  that  field,  so the following is  with restraint.  The

connection  is  that  geometry  deals  with  measurement.  Non-Euclidean  geometry

was discovered by Bolyai, Lobachevski and Gauss but we can link up to Einstein’s

application to physical reality.

Colignatus (2005b) http://129.3.20.41/eps/get/papers/0501/0501003.html

PM. My major book on economics Colignatus (2005a) has the very words “Definition & Reality” in its title. 

A  key  issue  in  the  theory  of  science  is  the  issue  of  measurement.  Physics  before

Newton  suffered  huge  losses  in  intelligence,  time  and  energy  to  discussions  on

unobservables  and  metaphysics.  This  in  fact  lasted  partly  into  the  19th  century

with  discussions  on  the  ‘ether’.  Their  solution  was  to  put  a  stop  to  fruitless

discussion and concentrate on what can be measured. You don’t know what it  is,

but  it  moves  this  way,  at  that  speed,  and  if  you  hit  it  here,  then  it  moves  there.

This technical approach worked wonders, though it still seems that some theorists

assume some ‘whats’ to derive their theories on the ‘hows’ (as Bohr’s atom model).
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Jan Tinbergen copied this more technical approach of measurement to economics,

creating with Frisch and others the approach of ‘econometrics’.

A  key  notion  below  will  be  that  physics  might  ‘overshoot’  by  concentrating  on

measurement  and  by  neglecting  definitions  and  logic.  Econometrics  is  open  to

that same risk.

(PM 2011. Well, the world economy still suffers from the economic crash of 2007+.)

One way to understand what modern physicists often do, is that they, apparently

within  their  philosophy  of  measurement,  directly  associate  particles  or  waves

with mathematical  terms. This differs from the approach in economics where one

starts with a theory and then develops hypotheses about measurable phenomena.

Of  course,  many  parts  of  physics  may  follow  the  latter  approach  too  but

apparently  many  other  parts  of  physics  follow  that  first  approach  that  can

generate confusion. 

The Economist reports: “(…) Maxwell showed that it [light] consists of oscillating

electric  and  magnetic  fields.  This  immediately  raised  the  question  of  what  the

fields  were  oscillating  in.  At  that  time,  no  one  could  conceive  of  waves  which

were  not  vibrating  in  some  medium.  The  ocean  has  waves  in  water,  and  sound

waves  travel  through  air;  it  seemed  nonsense  to  imagine  that  waves  could  just

“be”.  (…) Lorentz  (… derived  …) that  there was a  contraction  in the direction  of

the Earth’s  movement (…) Einstein  realised (…) that  there was no seem about  it.

Space was really contracting, and time was slowing down.”

This, you will note, is a non-sequitur. It doesn’t make logical sense. What Einsteins

model does is to stop imagining what those waves oscillate in. Instead he focusses

on the measurement results and makes these the absolute source of wisdom. This

is  not  necessarily  the  best  answer  to  the  question  what  those  waves  oscillate  in,

since  you  might  also  develop  a  theory  and  deduce  testable  hypotheses.  Einstein

does  deduce  testable  hypotheses  but  without  a  theory  about  what  those  waves

“be”. How can they exist without being something ?

Einsteins  model  subsequently  seems  to  confuse  the  definition  of  space,  given  by

the definitions  of  Euclid,  and empirical  space as measured  by the  instruments  of

physicists.  (PM  2011.  This  links  up  with  our  discussion  of  geometry.

Demonstrations  of  non-Euclidean  geometry  tend  to  be  presented  within  our  3D

world otherwise we have a hard time imagining them. Einstein apparently uses a

model  to  get  rid  of  measurement  errors  but  this  is  something  else  than

determining  what  space  “really”  is.  When our  mind  forms  an  image  of  space,  it

rather  depends  upon  the  Euclidean  definitions  (Pythagoras),  otherwise  we  don’t

know  what  we  are  speaking  about.  Those  non-Euclidean  models  are  imagined

within this space.)

Modern  physicists  shy  away  from  the  possibility  that  space  and  time  have

independent  definitions  within  the  mathematical  modelling  of  the  world.  They
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independent  definitions  within  the  mathematical  modelling  of  the  world.  They

regard  space  and  time  as  what  they  measure.  However,  they  don’t  seem  to  see

that they can be hopelessly confused when they measure speed in meters / second

while  those  meters  and  seconds  change  under  measurement.  My  impression  is

that it is better to accept measurement error and try to explain that error.

When  physicists  get  weird  readings,  then  there  can  be  measurement  errors  and

something  may  happen  in  interaction  of  their  instruments  with  what  they  try  to

measure. If all instruments, and all the best of them, show the same measurement

error, then there can still be such an interaction. Physicists, apparently within their

philosophy  of  measurement,  tend  to  conclude  that  reality  is  weird,  with  “space

contracting  and  time  slowing  down”.  The  proper  approach  would  rather  be  to

stick to the Euclidean definition of space (and time) as independent concepts that

likely form part of the mind and the ability to think itself, and subsequently judge

observations in those terms.

While Euclid’s definition of space creates emptiness, it may well be that empirical

space  is  filled  with  ‘something’  that  allows  oscillations.  Presumably,  electro-

magnetism  is  the  proof  that  such  ‘something’  exists.  There  are  reports  that  the

‘void’  would  be  able  to  produce  particles.  Also,  there  can  be  phenomena  in  that

‘void’  that  appear  to  us  as  ‘contracting’  or  whatever.  All  that  is  OK.  But  if  you

want  to  understand  what  space  is,  you  would  rather  turn  to  Euclid  where

contracting is out of the question by definition.

It  may  also  be  that  I  simply  don’t  understand  what  Einstein  did.  But  then  this

article of The Economist really hasn’t been clear enough.

There is a caveat for both sciences with respect to mathematics. There is a danger

with  mathematicians  that  they  lose  track  of  reality  and  the  very  aim  of  their

research. Paradoxes like the liar paradox, the Russell set theory paradox, Gödel on

his  epi-phenomenon  on  the  liar  paradox,  and  the  like  generate  confusion.  Some

solutions  proposed  by  mathematicians  are  no  deep  mathematical  results  though

many  think  so.  Kenneth  Arrow with  his  theorem  on  voting  caused  much  havoc,

since,  though  the  math  is  right,  his  interpretation  wasn’t.  Thus,  it  is  difficult  to

strike  a  balance  between  mathematics  and  reality,  and  more  awareness  of  this

problem would help research.  It  might  be wise to  include more statistics  in  your

programme of research.

14.3  Synthesis and analysis

Alongside model theory and an application to non-Euclidean geometry we should

distinguish clearly as well:  (1) the technical  use of the terms analytic  and synthetic

for  geometry  (2)  didactics,  i.e.  the  study  how  people  gain  knowledge,  (3)  the

branch  of  philosophy  called  epistemology  that  studies  how  man  acquires

knowlegde,  with  questions  such  as  whether  there  might  be  a  mathematical  /
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knowlegde,  with  questions  such  as  whether  there  might  be  a  mathematical  /

platonic world as apart from reality that can be found by intuition.

14.3.1  A technical term

Technically  in  solving  a  geometric  question,  the  best  approach  is  to  assume that

the  problem  already  has  been  solved,  to  write  down  all  that  we  know  about  it

(‘analysis’),  sort  it  out,  and  the  answer  pops  up  so  that  the  proof  can  be

constructed  leaving  out  inessentials  (‘synthesis’).  Euclidean  analysis  is  to  reduce

to  earlier  axioms  and  proofs.  René  Descartes  did  not  create  analysis  but  helped

create a new way  of analysis. Henceforth a main line in Western philosophy links

up with the distinction between the (‘synthetic’) geometry of Euclid’s Elements and

‘analytic geometry’ by Descartes (and Oresme and Fermat).

An excellent summary is given by professor Beaney: “According to Descartes, it is

analysis rather than synthesis that is of the greater value, since it shows “how the

thing  in  question  was  discovered”,  and  he  accuses  the  ancient  geometers  of

keeping the techniques of analysis to themselves “like a sacred mystery”.”

Michael Beaney: http://plato.stanford.edu/entries/analysis/s4.html

And:  “The  philosophical  significance  was  no  less  momentous.  For  in  reducing

geometrical  problems  to  arithmetical  and algebraic  problems,  the  need to  appeal

to  geometrical  ‘intuition’  was removed.  Indeed,  as  Descartes  himself  makes clear

in ‘Rule Sixteen’, representing everything algebraically  - abstracting from specific

numerical  magnitudes  as  well  as  from  geometrical  figures  -  allows  us  to

appreciate  just  what  is  essential  (...)  The  aim is  not  just  to  solve a  problem,  or  to

come  out  with  the  right  answer,  but  to  gain  an  insight  into  how  the  problem  is

solved,  or why  it  is  the right  answer. What  algebraic  representation reveals  is  the

structure  of  the solution in its  appropriate  generality.  (...)  Of course,  ‘intuition’  is

still  required, according to Descartes, to attain the ‘clear and distinct’  ideas of the

fundamental truths and relations that lie at the base of what we are doing (...)”

The  situation  is  a  bit  problematic.  Intuitions  are  opposed  to  new  techniques.  In

both  cases  there  is  analysis,  the  old  geometers  using  their  (trained)  intuitions  to

decompose new propositions to basic propositions in The Elements,  and Descartes

decomposing  with  his  new  techniques.  It  is  also  hard  to  see  how  there  can  be

synthesis  without  analysis,  and  analysis  without  synthesis.  This  fits  Beaney’s

statement on Leibniz:  “Furthermore,  we can see how, on Leibniz’s  view, analysis

and  synthesis  are  strictly  complementary  (...)  For  since  we  are  concerned  only

with  identities,  all  steps  are  reversible.  As  long  as  the  right  notation  and

appropriate  definitions  and  principles  are  provided,  one  can  move  with  equal

facility in either an ‘analytic’ or a ‘synthetic’ direction (...)”. (And this fits the way

how  we  set  up  integrals  and  derivatives.)  The  situation  can  be  understood

however  as  a  mere  pragmatic  distinction  between  the  use  of  the  new techniques

by  Descartes,  called  anaytic  geometry,  and  the  old  ways,  called  synthetic
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by  Descartes,  called  anaytic  geometry,  and  the  old  ways,  called  synthetic

geometry,  merely  since  synthesis  is  opposed  to  analysis.  The  new baby  needs  to

have a name, after all. A bad name has the advantage of the need of explanation.

Hence,  as  a  major  conclusion:  Descartes  used  a  term  in  a  particular  sense  that

started a life of its own in Western philosophy; and we should not confuse any of

this, neither Descartes nor philosophy, with the kinds of geometric methods.

14.3.2  Gain of knowledge

Pragmatically: adding to knowledge is a learning process. A great distinction then

is between the Van Hiele levels 0 and 3 (see §15).  Things can be experienced and

intuited yet  it  requires  some work to  arrive at  a deductive  whole. Euclid  and his

time saw The Elements as a top result  in the deductive method,  properly so. Only

the Kantian suggestion of ‘synthesis’ º ‘intuition’ deviated from this, dubiously so.

The process of learning provides some cause to wonder where knowledge comes

from.  Van Hiele  (1973)  discusses  the  classic  Piaget  case  of  a  child  learning  about

height  and  volume,  with  glasses  of  different  sizes  where  the  same  volume  of

water causes different heights. It is not clear whether the child uses its terms in the

same  meaning  as  we  do.  It  is  clear  though  that  the  child  has  intuitions  about

water,  glasses,  height  and  volume,  whatever  those  intuitions  might  be,  but  they

seem somewhat aligned with our own intuitions (and those of mine actually  still

are quite vague). When the child ‘learns’, the terms get more aligned (and possibly

also the intuitions).  All this makes sense in terms of the Van Hiele levels,  and we

should be very careful about philosophical interpretations.

As another major conclusion: it suffices to say that we define space with Euclid and

his  distance  measure.  We  can  be  happy  with  that  definition  as  a  most  economic

summary  of  our  notions  and  experience  (applying  economy  to  the  handling  of

information).  Thus,  our  mind  entertains  conceptions  alongside  reality,  and  those

conceptions are only adopted because they are so powerful in dealing with reality.

14.3.3  Epistemology

The distinction between analysis and synthesis got a life of its own in the realm of

philosophy  and  epistemology,  i.e.  the  study  of  how  man  gains  knowledge.

Cartesius’s  method  in  Discours  de  la  Méthode  (of  which  La  Géométrie  was  an

appendix)  uses four main rules,  one of  which is fundamental  doubt,  and here he

concludes:  “But  I  immediately  became  aware  that  while  I  was  thus  disposed  to

think that all was false, it was absolutely necessary that I who thus thought should

be something; and noting that this truth I think, therefore I am, was so steadfast and

so assured (...) that I might without scruple accept it as being the first principle of

the  philosophy  that  I  was  seeking.”  (p118-119).  Cartesius  judges  that  from  pure

thought  follows  existence:  “Taking,  for  instance,  a  triangle,  while  I  saw  that  its

three  angles  must  be  equal  to  two  right  angles,  I  did  not  on  this  account  see
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three  angles  must  be  equal  to  two  right  angles,  I  did  not  on  this  account  see

anything which could assure me that anywhere in the world a triangle existed. On

the  other  hand,  on  reverting  to  the  examination  of  the  idea  of  a  Perfect  Being,  I

found that existence is comprised in the idea of a triangle that its three angles are

equal  to  two right  angles  (...)”  (p122).  For  us however there are two meanings of

the word “existence”: (1) proper existence in reality, (2) definitions created by the

mind  (to  deal  with  that  reality).  Cartesius  is  at  risk  confusing  those  two.  Cogito

ergo sum is OK, but not everything cooked up exists in reality.

Subsequently  a  more  problematic  role  is  played  by  Immanuel  Kant.  Beaney:

“Whatever  criterion  we  might  offer  to  capture  Kant’s  notion  of  analyticity,  the

fundamental  point  of  contrast  between  ‘analytic’  and  ‘synthetic’  judgements  (...)

lies in the former merely ‘clarifying’ and the latter ‘extending’ our knowledge. (...)

Kant  writes  that  “To  construct  a  concept  means  to  exhibit  a  priori  the  intuition

corresponding  to  it”  (...)  According  to  Kant,  then,  the  whole  process  is  one  of

synthesis.  But  the two activities  mentioned here are  both part  of what the ancient

geometers  called  analysis  (...)  What  is  remarkable  about  Kant’s  conception  is  the

way  that  it  has  inverted  the  original  conception  of  analysis  in  ancient  Greek

geometry  (...)  ‘Analysis’  is  left  with  such  a  small  role  to  play  that  it  is  not

surprising that it is condemned as useless.”

Kant  suggested that  our sense of  space would be a  “synthetic  a  priori”,  meaning

that we arrive at knowledge about space merely because of the concepts involved

and our ability  to grasp those concepts.  This is  a difficult  point.  The Piaget /  Van

Hiele example shows that this ‘grasping’ does not happen by itself. It takes a lot of

effort  in  fact,  when we  see  how hard  children  are  working  each  day.  That  being

said,  at  one  point  most  people  do  indeed  seem  to  develop  a  notion  of  space.

Above, my suggestion was that our definition of space actually is Euclidean, since

when  we  imagine  non-Euclidean  space  then  this  is  within  the  confines  of  an

Euclidean  environment.  Our  definition  arises  in  interaction  with  real  space.  But,

once  it  has  been  formed,  it  is  only  proper  to  distinguish  (1)  the  empirical

experiences  from  (2)  the  mental  construct  that  has  arisen.  The  mental  construct

compactly summarizes earlier notions and experience but is not those themselves.

Hence it  is very much that “synthetic a priori” - but it  is doubtful whether this is

in the same sense as Kant had (and I have read only summaries and I do not have

the time to read the apparently terse original). It is difficult to say that it ‘extends’

knowledge,  since  we  have  not  defined  how  we  measure  knowledge.  Merely

saying  that  we  have  acquired  a  new  notion  is  not  sufficient  since  we  already

concluded that it summarizes and compacts earlier notions and experiences. 

As a  major  conclusion: It  is  useful  that we have (1) technical  terms for geometry,

(2)  didactics,  (3)  model  theory;  and  it  is  useful  that  epistemology  helps  us

verbalize the wonder of it all; but it does not seem that epistemology has more to

contribute  than  just  that  verbalization  of  our  sense  of  wonder  (other  than

confusion with the first 3 aspects).
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15.  Didactics

  

  

  

15.1  Didactics are relevant

Mathematics has developed over the centuries into a great building. The emphasis

was  not  on  didactics  though.  There  are  nooks  and  crannies,  crooks  and  nannies,

weird turns and windy windows. In teaching we must also teach to the standard

so  that  students  can  read  the  relevant  texts.  However,  teaching  comes  with  a

responsibility of its own. Sometimes re-engineering is in order.

15.2  The general approach

15.2.1  Aims of this book

This  paragraph is  only to remind you of the aims set out  on the first  page of the

book and its abstract. This is a primer in the format of a textbook.

A  common  format  for  textbooks  is  that  they  state  accepted  knowledge.  News  is

relegated to the journals, and it may percolate there a few decennia before it sinks

down  into  the  textbooks.  This  textbook  contains  basic  accepted  knowledge  and

then includes the news. Logically there is no harm in this approach since the news

follows  from those  basics.  The  whole  is  presented  as  a  textbook  to  show what  it

means, that it can be done, and that it has a great result. 

15.2.2  The didactic approach

Learning goals are generally knowledge, skills and attitude. In this book there are

hardly  exercises while  attitude  hardly comes from reading a book.  Hence we are

focussed on knowledge. The didactics then are guided by the Van Hiele levels:

† Level 0: visualization and intuition

† Level 1: description, sorting, classification

† Level 2: informal deduction

† Level 3: formal deduction
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Van  Hiele  (1973:177)  gives  the  following  example:  (0)  An  isosceles  triangle  is

recognized  like  an  oak  or  mouse  are  recognized.  (1)  It  is  recognized  that  the

triangle  has  the  property  of  at  least  two  equal  sides  or  angles.  (2)  Relations

between properties  are  recognized:  at  least  two equal  sides  iff  at  least  two equal

sides.  (3)  The logical  reasons for  these relations  are  considered:  why if,  and what

does  it  mean to  reverse  an implication  ?  Van Hiele  (1973:179):  “At each level  we

are explicitly busy with internally arranging the former level.” (my translation)

Van  Hiele  (1973:179)  on  geometry:  “At  the  base  level  we  consider  space  like  it

appears to us; we can call this spatial sense (like common sense). At the first level we

have the geometric spatial sense. (E.g. measuring degrees of an angle / TC.) At the

second  level  we  have  mathematical  geometric  sense;  there  we  study  what

geometric  sense  involves.  At  the  next  level  we  study  the  mathematical  logical

sense; it  then concerns the question why geometric manners of thought belong to

mathematics.” (my translation) Importantly,  at each level the same words may be

used but with different intentions, complicating mutual understanding.

The  levels  do  not  provide  information  about  the  boundaries  of  topics,  and  they

are not strong when it comes to finalizing a topic and switching to a next one (that

builds  upon the  earlier).  In  this  book  we  spend  most  time  in  Level  1  and 2,  and

there  are  some  patches  that  peek  into  possibilities  for  Level  3  -  but  then  for

various subjects that some teachers might rather see as subjects of themselves. For

us,  geometry  is  a  Level  0  for  moving  towards  Level  1  and  higher  in  analytic

geometry. It  may be that a reader picks up some properties on isosceles triangles

that  move  the  reader  up  to  level  2  in  geometry  on  isosceles  triangles,  but  for  us

that  would  be  a  happy  circumstance  and  not  our  prime  target.  Chapter  1  on

geometry does contain some deductions but these merely rekindle what is known,

wet the appetite and set the stage.

In moving from one level  to the next,  Van Hiele (1973:149+) identifies  phases: (1)

intake of information (examples), (2) bounded orientation (direct instructions), (3)

explicitation  (making explicit,  verbalization  in own words of  what is  known),  (4)

free  orientation  (extending  the  relationships  in  the  network),  (5)  integration

(summarizing  and  compacting  what  has  been  learned,  often  old  fashioned

learning).  Van  Dormolen  recognizes  similar  stages:  Orientation,  Sorting,

Abstraction,  Explicitation,  Processing  &  Internalisation  (OSAEP/I).  A  teacher

using this book would have to dose these.

We reject Freudenthal’s “realistic math” in its more extreme interpretation. This is

best discussed in separate paragraphs.

15.2.3  It hinges on what counts as experience

Van  Hiele  and  Freudenthal  overlap  in  the  starting  point  in  experience.  The

question remains what kind of experience we choose. Working in the plane itself
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question remains what kind of experience we choose. Working in the plane itself

is  seen  by  Freudenthal  as  too  abstract  while  Van  Hiele  in  principle  allows  the

notion  that  it  might  be  experience  too.  Mental  thought  is  an  abstract  process  by

nature and we can have experience in that.

Modern  research  on  the  brain  clarifies  many  aspects  of  mental  processes.

Operational definitions of thinking and consciousness however cannot replace the

definition  of  thinking  as  experienced  by  the  conscious  self.  When  we  look  for  a

definition  of  what  thought  is,  in  that  experience  of  being  conscious,  then  we

quickly  arrive  at  a  Platonic  version  of  ideas.  In  the  mind’s  eye  a  triangle  has  a

purity  about  it  that  is  not  caught  in  any  drawing.  Also  mudd  becomes  perfect

mudd.  There  is  no  difference  between  an  image  of  a  triangle  and  an  image  of

mudd, or even an image of a sunset, in the sense that they are constructed out of

the  same  mental  elements  that  can  only  be  pure.  It  are  these  mental  ideas  that

education deals  with,  and experience  in reality  is  only a  tool  to  reach them.  This

does not mean that we have to be full Platonists in assigning an indestructible and

immortal  quality  to  these  ideas.  Thought  and  thinking,  consciousness  and

awareness, are primitive notions for the thinking intellect itself, and up to this day

and  age  of  human  history  they  do  not  generate  any  additional  information  for

more conclusions than their very experience.

15.2.4  What we can assume and build upon

Students  have  sufficient  experience  with  the  plane  since  making  drawings  in

kindergarten.  When  they  think  about  a  triangle  it  is  as  abstract  as  it  can  get

because such thought is abstract by nature. We can draw many triangles on paper

but the notion of  a triangle  in  the mind is an entirely  different matter,  and when

the student thinks about a triangle then it is that notion that is in the mind and not

the drawing on the piece of paper.  What counts are the lingering notions in their

abstract  imagination  that  have  to  be  activated.  When  we  put  labels  to  angles  on

paper and draw supporting lines then we use paper images to enter new concepts

into the mind. It remains an essentially abstract activity, with pen and paper only

tools  for  communication.  It  distracts  and  confuses  when  mental  clarification  is

mixed with the application to reality. Application to reality is relevant but should

be dosed wisely.

15.2.5  Finding the proper dose and perspective

My book A Logic of Exceptions maintains that the force of logic derives from reality.

If a truck approaches and if you do not jump aside then it will hit you. Mimicking

this,  A Logic of  Exceptions  starts  with electrical  switches to  clarify the constants  of

propositional logic. In this case we do not need to explain these constants since we

presume  that  students  already  know  them.  We  only  help  making  them  explicit.

The empirical examples are only intended to highlight the properties and to pave

the road  towards formalization.  Here the  electrical  switches  do not  distract  since
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the road  towards formalization.  Here the  electrical  switches  do not  distract  since

the case is not presented as an exercise in building electrical circuits. The examples

help to focus on the logical properties. Electrical switches are as good an example

as language,  and in a  way a better  example  since the  focus in  logic  is  already so

much on language that it helps to provide another angle.

For analytic geometry it may be argued that a bucket and a faucet that adds a liter

per minute would be a similar good starting point. This is dubious however. If the

objective  is  to  distinguish  linear  processes  from  other  processes  then  indeed

examples in  reality  are the stepping stones, but  that is  another  issue than linking

up  with  geometry.  The  example  distracts  from  the  very  abstract  notion  that  we

want  to  establish.  “Realistic  math”  might  require  a  student  to  spend  a  sizeable

part of the lesson time on realistic examples trying to figure out what is the point.

When  supporters  of  “realistic  math”  argue  that  students  of  geometry  do  not

understand a linear process without such examples as the bucket, then the reply is

that  those teachers  have not  spent  sufficient effort  in  providing  the abstract  tools

to perform the mental process.

It  are  different  mental  processes:  imagining  a  bucket  and  faucet  and  imaging  a

graph  of  a  linear  function.  The  bucket  and  faucet  have  been  learned  in

kindergarten.  The graph and its  geometric  interpretation  first  have  to  be  learned

before  they  can  be  imagined  and  linked  up  to  the  bucket  and  faucet.  Once  we

have the graph then it is OK to say, and indeed we ought to say, as this book does,

that  the  bucket  and  faucet  are  an  interpretation  and  application,  and  only  then

there  can  be  that  flash  of  understanding  that  shows  that  the  link  has  been

achieved.  Once  an  aspect  of  the  plane  has  been  conquered  then  abstract

understanding can be easier related to those other cases from reality, which means

that  those  other  examples  are  relevant  for  the  Van  Dormolen  Processing  &

Internalisation stages. But first we must develop the geometry of that graph, using

the mental images of geometry itself.

In the same vein this book is hesitant with respect to angles and trigonometry. We

first get a firm grounding in the horizontal  and vertical  axes before we introduce

trigonometry.  Perhaps  this  has  to  do  with  my  own  experience  that  economic

research relies  on lags  to  generate  a  business cycle  so  that  angles  are  nowhere to

be  seen  unless  you  start  deriving  them.  Students  in  electrical  engineering  and

music might want to start out with angles right away. In the current set-up angles

and trigonometry appear when they start making sense in the story as it develops,

and hopefully that is a convincing argument for the little wait.

15.2.6  The challenge

There  is  a  challenge  though.  Eudlid’s  Elements  and  his  axiomatics  have  been  the

standard  for  more  than  two  millenia.  They  are  at  Van  Hiele’s  highest  level.

Perhaps 12-year  olds  can deal  with those abstractions,  as  they actually  are  rather

simple.  But it  becomes a bit  different when we try to incorporate the advances in
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simple.  But it  becomes a bit  different when we try to incorporate the advances in

analytic  geometry  and  calculus.  Here  are  concepts  that  better  be  developed  at  a

lower level  and Van Hiele then wins from Euclid.  Here Freudenthal  steps in and

resorts  to  the  richness  of  reality,  and  at  first  that  seems  like  a  golden  solution.

Indeed,  axiomatic  geometry  is  at  Level  3  and  not  at  Level  0  !  However,  as

explained Freudenthal’s approach is not convincing since it  neglects that thought

is  abstract  by  nature.  Rather  than  going  sideways  into  reality  we  should  focus

more on the processes of thought and thinking itself.

15.2.7  A missing link

We should provide for an abundance of words and concepts in the abstract plane,

so  that  the  student  has  enough  to  hold  on  to  for  visualization  and  intuition.   A

missing link in geometry appears to be that those anchors are rather absent.

When you visit  a new city then you tend to like  it  when the streets already have

names.  Suppose  that  you  would  be  forced  to  invent  your  own  labels,  like  “that

crooked  street  with  the  blue  shop”  and  then  hope  that  other  people  understand

you.  Current  textbooks  on  geometry  send  out  students  to  conquer  the  plane  but

present it  as a  verbal  desert,  without conceptual  guidance other than the x and y

co-ordinates.  The  Van  Hiele  Level  0  requires  them  to  visualize  and  to  activate

their  intuition,  yet  that  also  requires  a  richness  of  words  and  concepts  -  that

currently  are  lacking.  Euclidean  geometry  has  a  poverty  of  points  and  lines  that

can  intersect,  be  parallel  or  overlap:  and  though  it  is  a  great  exercise  in  logic  it

must  be  admitted  that  Freudenthal  has  a  point  that  Euclid’s  approach  is  not  so

appealing to the average student over the last two millenia. Conventional analytic

geometry  is  an  improvement  since  drawings  are  supported  with  formulas,  and

vice versa,  yet  again,  its  richness is  only developed over time,  and at the Level  0

and 1 there still isn’t much to visualize and intuite and verbalize.

In particular, it will be useful to extend the plane with a nomenclature of “named

lines”.  Chapter  4  opens  with  them  and  then  builds  up  -  see  there  to  check  what

this means. A quick reply will be that we already have names, such as x = 1, x = 2,

....  for vertical  lines for example.  Those names derive from a formal development

however. Instead we rather first create standard names that fit the experience with

the  plane.  This  will  provide  the  fertile  ground,  where  the  coin  can  drop  when

experience is morphed into abstract understanding. 

It may be argued that it is fairly simple to draw a line and determine the starting

value  on  the  vertical  axis  and  its  slope.  Exercises  and  realistic  examples  then

provide  for  learning.  However,  experience  shows  that  students  later  have

difficulty with the horizontal and vertical lines. Why a line works as it does tends

to remain elusive. A conclusion is that it is better to start with named horizontals

en verticals and then awaken the motivation that a general formula will be useful. 

Thus  the  didactic  suggestion  here  is  that  the  notion  of  “named  lines”  can  be  the

missing  link  that  resolves  the  issues  in  the  choice  between  dropping  Euclid  and
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missing  link  that  resolves  the  issues  in  the  choice  between  dropping  Euclid  and

moving towards analytic geometry and calculus (and not just Descartes but along

the lines of Van Hiele). The notion of these named lines caused the very layout of

Chapter 4 on lines and subsequently from there the layout of the whole Conquest of

the Plane.

Pierre Marie van Hiele argued most of his life (May 4 1909 - November 1 2010)  in

favour  of  the  use  of  vectors  already  in  elementary  school.  Though  he  has  been

greatly  valued for  his  ideas  on the didactics  of  mathematics,  he never  succeeded

in  overcoming  the  opposing  views.  Vectors  even appear  late  in  highschools.  The

missing  link  suggested  here  is  hopefully  helpful.  Logically,  if  this  is  indeed  the

missing  link  that  has  been  provided  only  now,  then  teachers  seem  to  have  been

right  in  resisting  Van Hiele’s  suggestion,  since  the picture  is  complete  only  now.

Alternatively,  the suggestion of named lines is not really  a missing link and only

one of the possible bridges, and we are underestimating the capabilities  of pupils

and students all over the board.

Clearly,  the proof of  the pudding is in the eating,  and only empirical  testing will

show whether students indeed learn faster following the approach presented here.

If  this  book  would  be  mistaken,  and  “realistic  math”  would  still  be  needed  to

propel the more practically minded students, then, the lame argument becomes, it

would  suffice  to  include  it  in  this  book  as  well,  and  the  advantage  of  this  book

would remain to be its logical order and novel concepts.

15.2.8  A longer discussion

See Elegance with Substance for a longer discussion on the didactics of mathematics.

A  Logic  of  Exceptions  has  much  more  historical  discussion  than  this  present

Conquest  of  the  Plane.  This  has  the  -  historical  -  explanation  that  logic  has  been

besettled with paradoxes while planar geometry has been relatively calm since the

issue of non-Euclidean geometry could be settled a little more than 100 years ago.

It  is  a  point  of  attention  for  a  possible  next  edition  that  good  stories  may  be

included here too at one point of time.

A final point of note is that I do not have clear ideas about what would motivate a

12 or 14 year old kid to be interested in analytic geometry and calculus. Van Hiele

(1973) rightly remarks that students and pupils hardly can be motivated for what

they learn since they do not know yet what they will  learn. A common ground is

that  man  is  a  curious  ape  and  cherishes  the  flash  of  insight.  Mathematics  is  a

language  and  it  can  be  fun  to  learn  a  new  language  and  a  new  world.  Paul

Goodman  (1962,  1973)  Compulsory  miseducation  remains  sobering  though.  While

Conquest of the Plane  concentrates on knowledge the didactic  setting naturally is a

complex whole, in which motivation plays a key role, and it is mandatory to keep

that in focus.
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15.3  Proportions

15.3.1  The issue

Proportion  space  is  presented  in  Elegance  with  Substance  (2009:21).  A  proportion

(ratio) is a point in proportion space. A proportion (ratio) 1 : 2 associates with the

point {2, 1} in proportion space. The fraction 1 / 2 is the slope of the ray through {2,

1}  and  the  origin.  These  concepts  are  well-defined.  Proportion  (ratio)  is  two-

dimensional while fraction is a number on the real number line (also found at x =

1  intersecting  with  a  ray).  EwS is  a  bit  short  and implicit  but  in  the  body  of  this

present book explicit definitions and clarification on proportion space are given. 

H. Pot (2009abcd) calls attention to the confusion in education on proportions and

fractions.  He  lists  examples  in  teaching  material  –  even  for  the  training  of

elementary school teachers – where it  is  suggested that proportions and fractions

would be the same, while they are not.

In the Dutch TAL project, see KNAW (2003) and Freudenthal Instituut (2009), it is

stated for  an audience  of  students  who want to  become primary  school  teachers:

“Fractions,  percentages,  decimal  numbers,  and  proportions  are  different

descriptions  of  something  that  we  can  regard  in  some  respect  as  the  same.”  (my

translation  from  Pot  (2009d)  and  my  italics).  The  italized  qualifier  makes  this

alright (though vague) but the surprise is that Pot reports that the authors did not

want  to  go  into  detail  “because  of  the  targetted  readership”.  This  is  surprising

since  we  definitely  would  want  primary  school  teachers  to  understand  the

distinction between proportion and fraction.

The  issue  adds  support  to  the  conclusion  on  the  need  for  re-engineering  math

education.  This  concerns  not  just  improved  education  for  elementary  school

teachers  (at  least  in  the  Netherlands),  but  we  have  to  deal  with  the  Euclidean

legacy  in  our  culture  and  language,  and  we  have  to  deal  with  the  two-

dimensionality (the Van Hiele argument on vectors).

15.3.2  History

Fractions  are  important.  The Egyptians  had only fractions ½,  1/3,  2/3 and ¾,  and

their mathematics stagnated for 3000 years on this.  

The  distinction  between  proportions  and  fractions  is  influenced  heavily  by

history.  Pythagoras  assumed that  all  phenomena could  be  measured in  ratio’s  of

natural numbers and was horrified when one of his students showed that this was

impossible  for  2  (the  student  apparently  didn’t  survive  this).  Henceforth,  the

Greeks solved their problem by focussing on geometry where such quantities can
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Greeks solved their problem by focussing on geometry where such quantities can

be  dealt  with,  with  some  ingenuity.  By  consequence,  the  Greeks  developed  a

theory of geometric proportions and did not develop the theory of arithmetic and

subsequently algebra.

Another  consequence  is  that  the  Greek  theory  of  proportions  entered  the

textbooks on mathematics, likely to stay there forever, even though there is now a

better  theory  of  arithmetic.  Instead  of  just  referring  to  slope  and  fraction,

textbooks  on  mathematics  also  employ  proportion  and  if  proper  explain  that

Euclid intended the ray itself rather than just the slope.

To  understand  the  distinction  between  proportions  and  fractions  we  thus  need

this  historical  overview,  where  (1)  the  theory  of  proportions  is  a  more  primitive

but intellectually  more complex theory while (2) arithmetic  is more powerful and

develops  (a)  number  theory  and  (b)  division  (giving  fractions)  as  the  inverse  of

multiplication.  When  these  two  theories  (frames  of  reference)  are  not

distinguished then confusion enfolds.

It  is  a  moot  question  whether  it  is  wise  to  teach  these  two  theories  and  their

history  in  primary  school  indeed.  But  proportions  are  endemic  in  our  language

and culture, and relevant when we scale items up or down, and thus it seems that

the issue cannot be avoided.

PM.  With  the  burden  of  history,  we  cannot  avoid  tradition  and  convention.  The

mathematical  symbol  p  is  defined on a  circle  as  the  ratio  of  the  circumference  to

the  diameter.  Radians  are  the  arc  divided  by  the  radius.  This  follows  the

convention  of  using  the  ratio  instead  of  concentrating  on  the  number  on  the

number  line.  This  is  no  problem  once  it  is  obvious  that  a  ratio  can  be  projected

into  a  number.  But  it  may  be  confusing  when that  is  not  understood.  There  is  a

discussion  of  a  dimensionless  number  or  ratio  versus  the  idea  that  when  we

measure we always use a unit, see §15.4 below.

15.3.3  Theory

In  itself  the  distinction  between  one  and  two-dimensional  might  not  quite  hold.

Babylonian  numbers  (degrees,  minutes,  seconds)  might  be  seen  as  a  somewhat

multidimensional  phenomena  as  well.  But  in  standard  theory  we  start  with

natural  numbers,  and  then  include  zero,  negatives,  fractions  (rational  numbers)

and irrationals to create the number line.

There  is  a  problem  with  the  concept  of  “same”.  Since  the  point  {5,  3}  is  not  the

same  point  as  {10,  6}  we  may  wonder  whether  3  :  5  and  6  :  10  are  the  “same”

proportions. For fractions it  is standard that 3 / 5 = 6 / 10 are identically  the same

number, but for the two-dimensional ratio’s we need the expression 3 : 5 ›  6 :  10

to show equivalence, or “equality other than pure identity”.

Thus, the primitive but complex theory of proportions (frame of reference) comes

with  a  notion  of  equivalence  or  equality  that  differs  from  identity.  Two  line
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with  a  notion  of  equivalence  or  equality  that  differs  from  identity.  Two  line

sections of the same length need not be identically the same line sections but their

lenghts would be identically the same. In the more advanced theory of arithmetic

this is replaced by a notion of equality that is identity. 

These  (theory-dependent)  definitions  for  proportion,  fraction,  identity  and

equality  (other  than  identity)  are  pure  theoretical  developments  and  suffice  for

theory.  Next  there  is  education,  and  education  may  require  additional  terms  for

the communication between teacher and student.  

15.3.4  Education

Pupils  at  elementary  school  tend  to  learn  about  proportions  and  fractions  from

cutting up pies and cakes. Adding up fractions can become an intricate  matter in

that manner. Their understanding might be helped by having access to the graphs

in proportion space. Van Hiele has explained that pupils at elementary school can

already  deal  with  vectors  and  co-ordinates.  Who  sees  the  display  in  proportion

space for dealing with fractions will tend to agree that we should not withhold it.

Thus much of our discussion on analytic geometry would in the future be done in

elementary  school.  One  supposes  that  “evidence  based  education”  can  clarify

what  kids  can  handle.  However,  such  research  needs  to  be  subtle.   We  need

research that does clearly distinguishes the different aspects.

Of course, the addition of slopes is different from the addition of vectors, and thus

the pupils better grow aware that it matters what labels are on the axes. Thus it is

not wise to add {1, 2} and {1, 3} to {2, 5} in proportion space. If it is introduced then

it  seems  necessary  to  introduce  it  at  the  same  time  with  a  vector  diagram,  to

prevent future confusion.  

It  is  useful  to  remind  here  that  Van  Hiele  (1973:196-204)  is  rather  convincing  on

the suggestion that elementary school spends too much time on fractions (and too

little on vectors). 

15.3.5  Terms

The  words  we  use  ought  to  be  well-defined.  The  body  of  the  text  has  been

extended with good definitions for  proportion and fraction.  These definitions are

also  important  for  a  good  understanding  of  the  dynamic  quotient  and  its

consequences for calculus.

Thus  the  educational  terms  must  be  used  so  that  they  do  not  create  new

confusions.  Pupils  and  students  must  be  made  aware  of  these  aspects:  form,

action, result. 

There  are  aspects  that  some  regard  as  calculation  but  that  are  algebra.  Possibly

calculation is algebra anyway. For algebra, it is useful to manipulate y / x or y // x

as a form. If it is thought of as a number only then it might be hard to see how it
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as a form. If it is thought of as a number only then it might be hard to see how it

can be manipulated. For example (2 p) / p is a fraction of two irrationals and thus

would  seem  to  be  irrational  too,  but  algebra  shows  that  it  is  rational.  Such

manipulations are important. Thus it remains useful to distinguish both form and

number. But only as aspects to consider the same expression  y / x.

Some pupils  or  students  will  regard  the  decimal  expansion 0.5  as  the number  so

that the fraction 1 /  2  is  only a form, or  instruction for  calculation.  This  issue has

been discussed in the body of the text above. Mathematica does the same, with N[ ]

the operator for the change to the decimal system (the line at  denominator  = 1 in

proportions space).  Indeed, educational simplicity for primary school arises when

this approach is adopted. At that level of educational simplicity  we might indeed

forget  about  the  distinction  between  proportions  and  numbers  and  only  use

proportion  or  ratio  1  /  2  and  number  0.5.  We  then  only  have  numerical  equality

and  forget  about  identity.  The  only  problem  might  be  that  textbooks  in  primary

education use different definitions than textbooks in secondary education and up. 

PM. Its seems that (1) “ratio” is a verb in the Greek theory of Proportions, and (2)

“dynamic quotient” is a verb in the theory of arithmetic. Perhaps there is didactic

advantage  in  translating  or  projecting  the  historical  distinction  into  a  distinction

into  verb and noun.  This  is  not  a question that  we can resolve  just  here.  Perhaps

this book should have adopted the term “ratio” instead of “dynamic quotient” but

that  would  have  occluded  the  historical  meanings  with  the  new  interpretation

with respect to seeming division by zero and its link to calculus.

15.3.6  Choosing axioms in proper primitives

Pot  (2009abcd)  suggests  to  take  proportionality  as  a  basic  concept,  primitively

understood  by  the  human  mind,  and  to  subsequently  develop  the  notion  of

number  from  there.  This  is  converse  to  the  now  standard  approach  to  take

number  as  basic  and  subsequently  develop  proportionality.  However,  when  the

confusion  has  been  resolved  by  better  understanding  the  historical  development

of  the  rational  and irrational  numbers,  and the  distinction  between the  theory  of

proportions  and  the  theory  of  arithmetic,  then  there  is  no  need  to  change  the

standard approach.

15.3.7  Conclusion

Proportion and fraction (number) are well defined, and have their related but own

theories.  A  highschool  graduate  and  by  implication  a  primary  school  teacher

should  be  able  to  understand  and  reproduce  these  theories  and  definitions.  It

remains a choice what is taught at what phase in education. Given good didactics

and  following  Pierre  van  Hiele,  it  should  be  possible  for  a  large  section  of  the

population  in  primary  school  to  learn  both  vectors  and  the  dimensional

distinction between proportion and fraction (number). 
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15.4  Trigonometry

15.4.1  Trig rerigged

The  presentation  of  trigonometry  in  this  book  is  based  upon  my  paper  Trig

Rerigged  (2008).  The advantage of this book is that trig is  discussed in the context

of  analytic  geometry,  while  the  few years  that  have  passed  have  allowed a  fresh

look and some angles  to  be polished  up.  Personally  I  found it  rewarding to  now

reformulate  the cosine rule as the key theorem of analytic geometry.  Putting that

at the center, after Pythagoras and the introduction of the co-ordinates, clarifies to

the  student  much  better  that  a  sound formulation  for  trigonometry  is  key  in  the

conquest of the plane.

Another key step in this present book was to select the capitals {X, Y} for the unit

circle as opposed to {x, y} on the plane in general. This small step only built on the

earlier  choice  of  Xur  and  Yur  but  it  did  simplify  notation  and  enhanced  clarity

overall,  for  example  for  the  expression  of  the  derivatives.  I  found  it  still

enlightening myself  to present  xur  and yur  from the bottom up, as know-how still

differs from do-how. 

The  paper  Trig  rerigged  combines  both  formulas  and  didactic  evaluation.  In  this

section we will  only do the latter  since the formulas are  in  the body of  the book.

Sometimes  the  text  here  may  come  across  as  unsubstantiated  since  there  is  no

direct support in formulas. However that substance has been provided above and

you are referred to the specific elaboration in the body of the text.

To repeat: Independently, Bob Palais also judged the selection of p over Q to be a historical error.
See Palais, R. (2001a), “p Is wrong!”, The mathematical intelligencer, Vol 23, no 3 p7-8.

15.4.2  Abstract of Trig Rerigged

Didactic  issues  in  trigonometry  concern  the opaque names of  sine  and cosine  and the
cluttering of questions with p or 360 whereas a simple 1 suffices. The solution is to use
the  ‘unit  turn’  or  ‘unit  of  measurement  (meter)  around’  (UMA)  as  the  yardstick  for

angles. This gives the xur  and yur  functions for the {X, Y} co-ordinates on the circle with

unit radius. The relevant mathematical constant is  Q = 2p (capital  theta, reminiscent of
a circle)  rather than p  and it  comes into  use much less when we use UMAs instead of
radians.  The  sine  and  cosine  remain  relevant  for  the  derivative.  The  common  term
‘dimensionless’  appears  to  confuse  ‘no  unit  of  measurement specified’  (with  a metric,
in  planimetry  and  trigonometry)  with  ‘no  dimension’  (a  pure  number,  in  number
theory).

15.4.3  Establishing the relevance of trigonometry

The  trigonometric  functions  and  their  properties  are  presented  in  this  book  only

when the need arises. They are not a subject that lives by itself and for which some
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when the need arises. They are not a subject that lives by itself and for which some

day  the  relevance  might  suddenly  appear.  In  this  book,  the  cosine  rule  is  used,

and  only  implicitly,  when  we  establish  the  key  theorem  of  analytic  geometry.

Only then it  gains a lease on life.  The proof that Sin at 0 has slope 1 is only used

when it  appears  relevant  to  calibrate  the  derivatives.  As  trigonometry  can create

typical formulas and concepts, this gradual approach appears very attractive. The

general idea is the conquest of the plane, not how to handle waves.

15.4.4  Angles and arcs

Using radians  to  measure  angles  is  economic  in  terms  of  concepts  but  appears  a

setback in terms of didactics. It is useful to speak about angles and arcs as separate

aspects.  Angles  are  the  pointy  bits  and  turns  around,  and  arcs  are  those  curves.

The problem of measuring the pointy bits is solved by using turns, also expressed

in  an  arc  measure,  but  the  latter  does  not  obliterate  the  terms  and  concepts

involved. Hence, this book uses angles a and b and arcs j and y.

15.4.5  The order of presentation

  1.  The traditional approach takes angle º arc j as primitive, introduces degrees, 

Cos and Sin, then the co-ordinates x and y, and as a third step generates the 

inverses j = ArcCos[x / r] and j = ArcSin[y / r]. 

  2.  We start with geometric angle a and analytic geometric co-ordinate Xv and 

our second step is j = ArcX[Xv], so that Xv = Cos[j] is the inverse. Since vectors 

v differ from arcs j there will be no confusion in writing Xv = Xj for Cos. There 

may be confusion between arc j and angle a so Xv = �a = �[a] = xur@aD = Xur[a] 

uses another symbol. This abundance of symbols helps emphasizing the 

aspect that is relevant at a point of discussion: dependence of Xv upon the 

vector, of �a upon the angle, range of xur@aD upon the unit circle, and the 

procedure of calculation Xur[a] e.g. within Mathematica. 

15.4.6  Cause and effect

Functions are written as y = f[x] and for definitions f[x] := procedure with x. Then:

  1.  The traditional method is to define Cos = x / r. Later extended into Cos[j] = x / 

r. There however is no j on the right hand side. This turns cause and effect 

around. This is not a proper definition but an equation to solve.

  2.  The proper relation is x = r Cos[j]. Given an arc we calculate the co-ordinate.

Perhaps historically  tables for Cos and Sin were constructed on the measurement

of  angles  and  sides  of  the  triangle  yet  this  is  not  a  valid  argument  for  reversing

causality or reason.
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15.4.7  Sloppiness is never good. Do not underestimate students

Traditional books and presentations on the internet are often a bit vague about the

meaning  of  Cos  and  Sin.  They  may  say  it  but  do  not  hammer  it  down  or  forget

about it. They even write Cos[x] and Sin[x] so that when you write x / r = Cos[x] as

you thought to have learned then you get stuck. The proper expressions are x  = r

Cos[j] and y = r Sin[j] but some books think that you can learn about Cos and Sin

but are unable to learn the Greek alphabet.

15.4.8  Information and algorithm

  1.  A definition of Cos[j] = x / r is also  uninformative as to what to do. OK, now I 

have defined a “Cos”. What, in all goodness, is it ? Students tend to get sums 

with x and r to make the division x / r which they learn to call Cos, which is 

essentially an exercise in arithmetic. In the unit circle r = 1 and x = Cos[j] so 

there is nothing to divide. If you have such an x then saying that this is Cos is 

only another way of saying that you have that x. That r = 1 cannot be seen as 

an exception since the unit circle is the very place where the action is, the 

circle of all ratios. It is a defining element in understanding what you are 

doing.

  2.  In this book, if you have x and r then you use j = ArcX[x / r]. Cos is not 

needed, you can directly use the arc function on the co-ordinate. The division 

x / r is a short intermediate step of normalization, which step you understand 

because you have the proper definitions; and the renormalization disappears 

directly in the function input call. Possibly, as an intermediate step, you write 

the equation x = r Cos[j] and solve for j. There is no logical need for this 

intermediate step, but you may do this to relate what you learned in this book 

to what you read on the internet.

To  recognize  that  x  is,  or  requires,  Cos  is  only  relevant  in  current  practice  since

you  must  find  the  proper  inverse  (since  that  name  is  ArcCos  that  has  Cos  in  it).

But:  you  only  need  to  do  that  because  Cos  differs  in  name  from  the  x  that  you

already have. There is no X in the name of Cos. And ArcCos had no X in its name

either.  To  shorten  the  path  of  all  that  coding  and  decoding,  Xj  and  ArcX  are

definitely faster.

15.4.9  Directionless Cos and Sin

The prime didactic  question with respect to Cos and Sin concerns their  relevance

for any angle,  with whatever  direction,  versus  their  role  in  the  triangles  fixed by

the  unit  circle.  If  students  learn  to  associate  them  with  any  direction,  then  they
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the  unit  circle.  If  students  learn  to  associate  them  with  any  direction,  then  they

must  unlearn  and  readjust  towards  co-ordinates.  If  they  learn  to  associate  them

with co-ordinates then they must unlearn and adjust to arbitrary direction.

  1.  Traditionally, Cos and Sin are introduced without a system of co-ordinates, 

for right triangles in any direction. We can use that ratio to expand from a 

triangle and given a larger radius we can calculate the other sides.

  2.  This book avoids the introduction of Cos and Sin without a system of co-

ordinates. For triangles with arbitrary direction we have not sought to 

calculate angles and sides. We wait with doing so till the proper tools have 

been developed. With a system of co-ordinates we feel better equiped to 

introduce specific names since now we can orient the triangle in the proper 

position towards axes that have names.

The  choice  is  difficult  to  decide  on.  What  would  be  best  might  transpire  in  a

randomized controlled trial, perhaps running over several generations. We would

also  need  to  define  what  is  ‘best’  and  how  to  balance  the  spatial  sense  with  the

handling of the co-ordinates.

However, it  is the impression of this author that the spatial  sense is basic,  so that

the  tradional  order  of  presentation  of  triangles  without  co-ordinates  is  best.  This

approach  is  followed  in  this  book  by  having  the  first  chapter  on  geometry  in

directionless space. This is the Van Hiele Level 0. The first step after that however

are the angles counted by turns (UMA) and in the second step there are xur and yur.

Starting with triangles in any direction does not mean that Cos and Sin have to be

introduced  at  that  stage.  For  proportional  expansion  there  is  no  need  for  the

specific names of Cos and Sin,  since proportions will  do by themselves.  Only the

mix of angles and sides causes their use, but, that is a very specific learning target

that  must  be  evaluated  within  the  context  of  the  whole,  and  then  it  drops  in

importance; even becomes counterproductive.

There  is  no  strong  objection,  though,  to  the  traditional  method  of  using  Cos and

Sin  for  right  triangles  of  arbitrary  direction.  For  that  matter  the  Hypotenuse,

Adjacent and Opposite sides can be used, including the SOHCAHTOA rule (sine

equals opposite over hypotenuse, cosine equals adjacent over hypotenuse, tangent

equals opposite over adjacent).

Note  though  that  it  should  be  AHCOHSOAT because  of  the  order  of  both  cause

and effect  and x and y.  Preferable  also AHXOHYOAT for xur  and yur  alongside.  I

would  prefer  to  use  Radius  and  Slope  too  so  that  we  arrive  at  ARCORSOAs or,

finally,  proper  ARXORYOAS.  (Adjacent  divided  by  radius  equals  Xur,  opposite

divided by radius equals Yur, opposite divided by adjacent equals slope.)

It  needs  to  be  considered  though  whether  learning  a  rule  like  that  differs

essentially from reorientating the triangle so that it fits in a system of co-ordinates.
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essentially from reorientating the triangle so that it fits in a system of co-ordinates.

In  a  textbook  for  3rd  year  advanced  highschool  co-ordinates  are  used  already  in

chapter 1 while trig is discussed much later. There seems little  loss and only gain

to include orientation.

Both methods could be good practice  in  understanding what the orientation  of  a

triangle actually is. Triangles would have to be rotated correctly anyway. There is

only  so  much  that  you  can  do  at  a  certain  age.  For  example,  the  plot  on

proportionality  uses  a  two-dimensional  function:  if  you  would  want  to  explain

proportionality  in  elementary  school  then  you  likely  don’t  have  those  concepts.

Nevertheless  we  should  beware  of  thinking  that  deep  exercises  in  geometric

trigonometry are required before making the step towards analytic geometry.

Still, once the co-ordinates have been introduced, the names of the cosine and sine

functions do not link up to the already known expressions for the horizontal  and

vertical  axes,  i.e.  the  x  and  y  values.  Students  have  to  calculate  these  x  and  y

values  but  when  the  instructions  use  the  names  Cos  and  Sin  then  they  are  not

explicitly  told  to  calculate  these  co-ordinates.  They  are  asked  to  calculate  some

weird  sounding  names  that  seem  as  something  completely  different.  Surely,

textbooks  have  a  line  that  explains  that  Cos  and  Sin  are  the  values  on  the  unit

circle.  Subsequently  though  all  work  is  done  in  those  names.  Students  then

observe the Morning Star  and the Evening Star,  thinking that  those are  different,

out of the blue that it is the same old Venus. We can blame students for forgetting

about  that  single  line  of  clarification.  It  will  be  much  and  much  better  to  use

functions Xur and Yur defined on the unit circumference circle and that range on

the X and Y values of the unit radius circle.

Hence,  if  you  intend  to  use  Cos  and  Sin  at  a  lower  educational  level  then  it  is  a

good investment for later courses to use Xur and Yur instead (even when you do

not use a system of co-ordinates).

15.4.10  Quadrants

In  the  traditional  approach  the  awareness  of  the  quadrants  is  relatively  weak.  It

may not matter much since the whole exercise is already burdened by squeezing a

2D problem into 1D functions (or having it 4D, in the mapping from the Euclidean

plane  to  the  polar  plane).  The  procedure  in  this  book  is  to  stick  to  the  standard

plane as  long as possible  and this  really  drives  home that  those curious  Cos and

Sin only render co-ordinates and that you have to check the quadrants.

15.4.11  The xur or cosine rule

  1.  The traditional approach first derives the cosine rule for the addition of arcs 

and uses this to define the multiplication of vectors. This approach is 

conceptually centered on the polar co-ordinates. Arcs are seen as important 
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conceptually centered on the polar co-ordinates. Arcs are seen as important 

while it is neglected that the student is still struggling with co-ordinates.

  2.  Here we take the standard system of co-ordinates as basic. We only 

investigate the role of addition of arcs once the issue of vector multiplication 

arises. Trigonometry gets only introduced once the need for it arises and that 

need can be understood.

In terms of results it does not not matter where you start but it is thought here that

working  with  Xv  better  relates  to  the  system  of  co-ordinates  than  Cos[j]  (even

though Cos[j] is only an opaque way of writing Xv). 

There  seems  to  be  an  argument  that  angles,  Cos  and  Sin  are  analytically  more

basic than the vector notation, see the generation of the complex numbers. This is

however a matter of preference on how to build the argumentation on conquering

the  plane.  Defining  something  and  then  giving  an  existence  proof,  as  done  here,

may  be  judged  to  be  more  elegant  and  transparant  than  following  the  way  how

everything was historically discovered and put together.

15.4.12  Measuring angles and arcs

The units of measurement of angles are degrees (max 360) or radians (max 2p) or

grad  (max  400)  instead  of  a  clear  1  (unit  unspecified)  or  1  unit  of  measurement

(unit specified).

The conventional measures are ratios and obscure the point that the angle (pointy

section  of  the  plane)  is  de  facto  measured  by  length  of  arc  in  some  system  of

measurement.  For  length  there  has  already  been  defined  a  standard,  namely  the

meter,  so  why  not  use  it  again  for  the  circumference  ?  An  angular  circle  with  a

circumference of 1 meter better clarifies that we are measuring length. The unit of

measurement then is ‘unit meter around’ (UMA). This can be made dimensionless

as  a  ‘turn’  (as  a  fraction  of  that  maximal  unit  length  around)  or  as  ‘unit  of

measurement around’, where a turn is one unit.

The  traditional  approach  makes  mathematical  courses  more  tedious  than

necessary for understanding angles. The p needlessly clutters the argument in two

ways. Students struggle to find the values 2k * 3.14... on their ruler while it would

be more convenient to use 1 for the full circle around and with k = 0, 1, 2, ... there

is nothing to multiply. Secondly, if a fraction or multiple of p is to be used at all, it

is more convenient to use Q = 2p.

See §9.2 on the measurement  of Q  for  the discussion on the unit  of  measurement

and dimension (-lessness). Here and now is a good place to extend somewhat on

the notion of dimensionlessness.

The  discussion  is  a  bit  complex  since  notions  in  number  theory  tend  to  derive

their  names  from  the  theory  of  space,  so  that  it  may  be  hard  to  keep
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their  names  from  the  theory  of  space,  so  that  it  may  be  hard  to  keep

distinguishing the two. We should distinguish the distance in space, that provides

a metric in space, from the ‘metric’ that may be defined on a set of pure numbers

(0, the next 0', the next 0'', ...). The ‘metric’ for pure numbers can be based upon a

calculation scheme ||z1  - z2|| and the metric in space follows from our experience

and conceptualization of space. It is ‘analytic geometry’ to associate the two. Note

though  that  ‘association’  implies  that  there  are  two  different  realms  and  not

necessarily  only  one.  It  is  a  bit  amazing  that  the  fundamentals  of  analytic

geometry  still  clog  up  the  didactics  of  geometry  and trigonometry  but  hopefully

we achieved clarity.

The continuity in measures derives from their spatial extension. Using a ratio is a

mathematical  simplification,  eliminating  the  need  to  construct  a  unit  circle,  but

does not affect the notion that lengths are involved. When we divide a meter by a

meter, or 1 m / (1 m), the dimension drops out, but if we look at the meter that we

have just measured it still is that 1 meter.

These  ‘dimensionless’  numbers  or  ratios  cause  an  epistemological  question.  We

distinguish reality from the human mind. It might be that reality is only granular

and  that  continuity  is  an  illusion  created  in  the  mind,  in  the  same  way  as,

concerning time, the ‘now’ is a construct of the mind for the ephemeral border, or

actually  only  logical  border,  between  ‘past’  and  hypothetical  ‘future’.  It  is  more

conventional  however  to  assume  that  space  in  reality  is  continuous  and  that  we

create  measures  in  number  theory  to  mimic  this  property  of  space.  Thus  we

distinguish  crude  figures  and  lengths  on  paper  from  the  pure  figures  and

‘dimensionless’  numbers  in  the  mind.  On  paper  we  may  take  a  unit  of

measurement  (say,  the  rod  in  Paris)  but  in  the  mind  there  is  no  place  for  such a

physical  object.  In  sum,  in  planimetry,  ‘dimensionless’  stands  for  ‘no  unit  of

measurement specified’.

The  notion  of  ‘dimensionless’  number  interpreted  as  ‘no  dimension’  remains

epistemologically  dubious  when  we  relate  this  to  the  measurement  of  length,

basically on paper and subsequently in the human mind. For, how could it be that

these ‘no dimension’ numbers  are nicely  ordered and apparently  have a distance

metric  such  that  e.g.  halves  are  twice  as  distant  as  quarters  ?  Where  does  the

notion of continuity come from ? In practice we assume that space is continuous.

Apparently, there is a subtle distinction between ‘no dimension’ and ‘unspecified

dimension  (unit)’.  Apparently,  the  mind  thinks  about  space  with  unspecified

dimensions and not quite without dimensions. This is similar as drawing a line on

paper  and  arbitrarily  affixing  0,  1,  2,  ....  numbers  along  it,  with  the  numbers  at

(approximately) the same distance, and writing down that these are meters while

in  fact  they  will  be  something  else,  with  the  true  metric  defined  on  the  spot.

Imagining triangles, circles and line sections in the mind, we must admit that they

all have some apparant ‘size’, albeit ‘size in the mind’, all in (some) proportion to

the  other  things  that  we  may  imagine  for  comparison.  Thus  the  ‘dimensionless’
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the  other  things  that  we  may  imagine  for  comparison.  Thus  the  ‘dimensionless’

numbers  in  trigonometry  still  reflect  length,  with  a  space  metric,  albeit  with

unspecified unit.

The  latter  is  an  important  didactical  conclusion.  Some  mathematicians  tend  to

think that trigonometry deals with ‘dimensionless’ ratios (apparently meaning ‘no

dimension’ as in number theory) and not with length, and they seem to deny that

the  notion  of  ‘ratio’  implicitly  has  a  metric  and  that  this  metric  is  related  to  the

notion  of  length  itself.  This  present  discussion  suggests  to  bring  the  implicit

relation  out  into  the  open  by  explicitly  referring  to  length  and  the  ‘unit  meter

around’ or  ‘unit  of measurement  around’.  Students  in trigonometry  then learn to

switch between actual length with a specified unit and length without a specified

unit (ratios). This would be an advance in clarity compared to the current practice

where  ratios  are  defined  and  where  it  is  suggested  that  we  are  not  measuring

length but merely calculating ‘no dimension’ numbers just like in number theory.

The  basic  point  is  that  our  topic  of  interest  here  is  space,  with  its  figures  and

angles. In trigonometry the space metric is a priori, and abstract numbers without

dimension (and the number ‘metric’) support the analysis, but cannot replace that

notion  of  a  metric  contained  in  the  notion  of  space.  Admittedly,  number  theory

can have its  own origins.  Possibly  we start  counting on our fingers  and toes and

then apply the same technique to spatial distance. But the experience that walking

50  kilometers  is  more  tiring  than  walking  10  meters,  and  other  experiences  with

space, need not depend upon counting. Indeed, in number theory we can define a

set  of numbers  without  dimension,  and there we can define a  ‘metric’  ||z1  -  z2||

on those numbers, but this ‘metric’ is not a metric as in space (real or in the mind).

Perhaps it works the other way around. We can take ratios, i.e. express lengths as

multiples of a standard unit length, and we can abstract from the space metric to

also create such a set of pure numbers, and then what works for space can also be

reflected in those numbers.

A  reader  objected  to  the  use  of  the  UMA,  categorizing  it  as  part  of  “realistic

education  in  mathematics”  as  advocated  by  Freudenthal,  and  arguing  that  this

kind  of  education  is  damaging  to  the  development  of  mathematical  skills  and

abstract  thought.  Only  the  abstract  ‘no dimension’  interpretation  was considered

proper.  This  reader  then does  not  see  the limitations  to  the ‘no dimension’  view,

as  explained  above.  The  objection  also  came  as  a  surprise  to  me,  since  I  had  no

intention  of  introducing  Freudenthalian  ‘realism’  (indeed  with  its  current

excesses).  If  it  is  possible  to  see  the  present  suggestion  as  belonging  to  that

Freudenthal  approach  then  it  is  a  mere  coincidence  and  I  actually  cannot  vouch

for that. And curiously, another reader tends to see some value in the Freudenthal

approach.  The  point  however  is  that  this  book  only  wants  to  clarify  how  angles

can be best dealt with.

Thus, a basic notion of analytic geometry is that there is a distinction between ‘no

dimension’ (number theory) and ‘unspecified unit’ (space). When this is accepted
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dimension’ (number theory) and ‘unspecified unit’ (space). When this is accepted

then there can be no objection when a ‘turn’ is translated as ‘unit of measurement

around’.  There  exists  a  circle  with  unit  circumference,  and  its  distances  have  the

exact  values  as  turns  around.  The  question  then  centers  on  whether  we  should

specify what the unit of measurement is. The SI unit is the meter. My suggestion is

not  to  hide  that  the  unit  of  measurement  might  well  be  that  SI  unit.  What  this

book  proposes  is  that  students  become  capable  in  translating  specific

measurements  into  a  bit  more  abstract  mathematical  constructs  and  vice  versa.

Since  there  is  length  on  an  arc  involved,  it  is  required  that  UMA  is  mentioned.

This  will  help  the  student  to  understand  what  trigonometry  is  about.  Not

mentioning UMA, not explaining what an angle is, withholding the evidence, will

hinder the development of abstract thought. 

PM. See A Logic of Exceptions  for a rejection of Cantor’s theorem on the power set

because  of  its  nonsensical  application  of  selfreference.  In  addition  to  that:  the

diagonal  argument  on  the  decimal  numbers  also  conflicts  with  the  very  manner

how they are created.  Thus �  and �  may be as large,  and we should not express

this argument on continuity as a distinction between � and �. 

15.4.13  Derivatives

We find that 
„

„a
xur[a] = - Q yur[a] and 

„

„a
yur[a] = Q xur[a] because of the scale factor.

When the expression becomes more involved then the additional  coefficient does

not  matter  much  in  added  complexity.  Nevertheless,  where  we  first  saw  a

reduction in mention of Q the derivative appears to be a place where it will show

itself  more  often.  This  property  implies  that  radians  and Cos and Sin  defined on

the radians will remain in use, especially for heavy users of calculus. 

If  one  presents  Cos  and  Sin  first  then  it  must  be  explained  to  students  that  it

would have been feasible to first present xur and yur and then present Cos[j] = xur[j

/  Q]  and  Sin[j]  =  yur[j  /  Q]  as  the  scaled  versions  with  the  sometimes  more

attractive derivatives - but that this order of presentation has not been chosen, for

whatever reason Cos and Sin are presented first.

It  was  an  option  for  this  book  to  systematically  employ  Xuc  and  Yuc  instead  of

Cos and Sin. But there is a risk of confusion with Xur and Yur, while Cos and Sin

are  the  overwhelming  standard  in  books,  calculators  and  internet.  The  present

approach has an optimal ring to it. 

15.4.14  In sum

In  the  traditional  approach  we  see  needless  arithmetic,  an  overcomplexity  in

relabeling,  a  reversion  of  cause  and  effect,  and  a  misdirection  as  to  where  the

place  of  the  action  is.  We  shouldn’t  forget  though  that  mathematics  still  is  a

crowning jewel of human achievement.
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Current  trigonometry  is  needlessly  torturing  our  students.  The  torture  derives

mainly  from  conventional  thinking  and  not  from  the  math  itself.  So  students

arguing for a more transparent trigonometry have math on their side.
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15.5  Calculus

15.5.1  The derivative is algebra

Improving the logical base of calculus on the issue of ‘division by zero’.

The  history  of  this  text  is  as  follows.  A  Logic  of  Exceptions  considers  the  logical

paradoxes. Retyping it in 2007 caused me to consider the paradoxes of division by

zero too, out of a sense of completeness. There still was some lingering doubt with

respect to the lectures in Analysis that I attended as a student back in 1974 and the

Weierstraß  construction  for  derivatives  and  continuity.  In  logic  there  is  the

difference  between  implication  and  inference,  and  inspired  by  the  difference  in

economics between statics and dynamics as ways of analysis I had already in 1980

classified  logic  into  static  implication  and  dynamic  inference.  Hence  in  2007  the

dynamic  quotient  was  born.  The  paradoxes  of  the  derivative  and  the  approach

discussed  here  already  got  a  section  in  A  Logic  of  Exceptions  in  2007.  A  longer

paper with the present title  The derivative is algebra  of July 2007 is on my website.

(Later this was linked to the difference between verb and noun in general - and in

2007/8  in  a  course  on the didactics  of  mathematics  I  discovered  that  Gray & Tall

had  developed  the  term  “procept”.)  It  has  been  polished  up  and  appeared  as

chapter  XI  in  Elegance  with  Substance  2009.  The  chapter  can  be  reproduced  here

with  little  additional  comment  except  for  the  points  that  the  main  body  of  this

Conquest of the Plane (1) improves on the derivative of the exponential function, (2)

extends  with  the  derivatives  of  Cos  and  Sin,  (3)  contains  §  2.3.3  and  2.3.4  with

extensive  definitions  for  the  process  of  division,  (4)  does  not  discuss  the  relative

error that is crucial and is discussed below. You miss some references to pages in

Elegance with Substance but the relevant concepts like the distinction between verb

and noun are also in this present book.

The  text  here  is  intended  for  mathematicians,  since  the  creation  of  the  dynamic

quotient  and  its  application  to  calculus  are  a  novel  contribution  to  mathematics.

The  text  is  also  intended  for  teachers  as  it  clarifies  the  difficulties  in  teaching

calculus. The text is not intended as an introduction to calculus for students since

that  is  presented  in  the  body  of  this  book.  While  the  text  below  develops  the

mathematical  theory  it  has  been  a  challenge  indeed  to  compose  an  introduction

for students from the bottom up. It is satisfactory to see that it indeed can be done

and that calculus in this manner finds a natural place with analytic geometry. The

cost is that the introduction above does not discuss the notion of the relative error

yet,  which  is  explained  in  the  text  below.  It  plays  a  role  in  judging  on  algebraic

form. Reviewing the whole I am again impressed by the contributions of our great

mathematicians who allow us to take this journey.
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15.5.2  Abstract  

Calculus  can  be  developed  with  algebra  and  without  the  use  of  limits  and
infinitesimals.  Define y /  x  as the ‘outcome’ of division and y  //  x  as the ‘procedure’  of
division.  Using y  //  x  with x  possibly becoming zero will  not be paradoxical  when the
paradoxical part has first been eliminated by algebraic simplication. The Weierstraß ¶ >

0 and d > 0 and its Cauchy shorthand for the derivative limDxØ0  Df / Dx are paradoxical
since those exclude the zero values that are precisely the values of interest at the point
where  the  limit  is  taken.  Instead,  using  D  f  //  Dx  and  then  setting  Dx  =  0  is  not
paradoxical  at all.  Much of  calculus might well  do without the limit  idea and it  could
be advantageous to see calculus as part of algebra rather than a separate subject. This is
not  just  a  didactic  observation  but  an  essential  refoundation  of  calculus.  E.g.  the

derivative of |x| traditionally  is undefined at x = 0 but would algebraically be sign[x],

and so on.  

15.5.3  Introduction 

Since  its  invention  the  zero  has  been  giving  trouble.  Mathematicians  solved  the

paradoxes  by  forbidding  the  division  by  zero.  But  the  problem  persisted  in

calculus, where the differential quotient relies on infinitesimals that magically are

both  non-zero  before  division  but  zero  after  it.  Karl  Weierstraß  (1815-1897)  is

credited  with  formulating  the  strict  concept  of  the  limit  to  deal  with  the

differential quotient. However, he did not resolve the paradoxical aspects.

Regard these expressions, three well-known and the fourth a new design. 

  1.  The difference quotient Df / Dx = ( f[x + Dx] – f[x]) / Dx for Dx ∫ 0. Note that one 

would see this as a result and not as a procedure.

  2.  The differential quotient or derivative f ’[x] = df / dx = limDxØ0 Df / Dx.

  3.  The current “theoretical true meaning of the derivative” with outcome value 

L:  " ¶ > 0 $ d > 0 so that for 0 < |Dx| < d we have |Df / Dx – L| < ¶ .

  4.  The new suggestion: f ’[x] = df / dx = {Df // Dx, then set Dx = 0}. This means first 

algebraically simplifying the difference quotient, expanding the domain with 

0, and then setting Dx to zero. NB. “//” is defined in §2.3.4.

Let us consider the various properties.

15.5.4  The old approaches  

The  theory  of  limits  is  problematic.  The  limit  of  e.g.  x  /  x  for  x  Ø  0  is  said  to  be

defined  for  the  value  x  =  0  on  the  horizontal  axis  yet  not  defined  for  actually

setting  x  =  0  but  only  for  x  getting  close  to  it,  which  is  paradoxical  since  x  =  0

would  be  the  value  we  are  interested  in.  Mathematicians  get  around  this  by

defining a special function f[x] = x /x with split domain but this requires a separate

f[0] = 1 statement, while it is faster to write x // x.  
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Also, the interpretation given by Weierstraß can be rejected since that definition of

the limit still excludes the value (at) Dx = 0 which actually is precisely the value of

interest at the point where the limit is taken. This is a conceptual inconsistency.

While  the  Weierstraß  approach  uses  predicate  logic  to  identify  the  limit  values,

the new alternative approach uses algebra, the logic of formula manipulation.

Fermat,  Leibniz,  Newton,  Cauchy and Weierstraß  were trained to  regard y  /  x  as

sacrosanct such that it indeed doesn’t have a value for x = 0. They worked around

that,  so  that  algebraically  y  /  x  could  be  simplified  before  x  got  its  value.  While

doing  so,  they  created  a  new  math  that  appeared  useful  for  other  realms.  These

new results gave them confidence that they were on the right track. Yet, they also

created  something  overly  complex  and  essentially  inconsistent.  Infinitesimals  are

curious constructs with no coherent meaning. Bishop Berkeley criticized the use of

infinitesimals, that were both quantities and zero: who could accept all that, need,

according  to  him,  “not  be  squeamish  about  any  point  in  divinity”.  The  standard

story  is  that  Weierstraß  set  the  record  straight.  However,  Weierstraß’s  limit  is

undefined at  precisely  the relevant  point  of interest.  ‘Arbitrary close’  is  a curious

notion  for  results  that  seem perfectly  exact.  When we look  at  the  issue  from this

new  algebraic  angle,  the  problem  in  calculus  has  not  been  caused  by  the

“infinitesimals” but by the confusion between “ / ” and “ // ”.  

The  present  discussion  can  be  seen  as  reviving  the  Cauchy  approach  but

providing  another  algebraic  interpretation  that  avoids  the  use  of  ‘infinitesimals’.

The impetus comes from the notion of the dynamic quotient in algebra. We cannot

change  properties  of  functions  but  we  can  change  some  interpretations.

Undoubtedly,  the  notion  of  the  limit  and  Weierstraß’s  implementation  remain

useful  for  specific  purposes.  That  said,  the  discussion  can  be  simplified  and

pruned from paradoxes.  

Struik  (1977)  incidently  states  that  Lagrange  saw the  derivative  as  algebraic.  See

there for details and why contemporaries thought his method unconvincing.  

15.5.5  The algebraic approach  

In a way, the new algebraic definition is nothing new since it merely codifies what

people  have  been  doing  since  Leibniz  and  Newton.  In  another  respect,  the

approach  is  a  bit  different  since  the  discussion  of  ‘infinitesimals’,  i.e.  the

‘quantities vanishing to zero’, is avoided.  

The derivative deals with formulas too, and not just numbers (as conventionally).

It uses both that Df // Dx extends the domain to Dx = 0 and that the instruction “set

Dx = 0” subsequently restricts the result to that point.  

Since  we  have  been  taught  not  to  divide  without  writing  down  that  the

denominator  ought  to  be  nonzero,  the  following  explanation  will  help  for  the
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denominator  ought  to  be  nonzero,  the  following  explanation  will  help  for  the

proper interpretation of the derivative: first the expression is simplified for Dx ∫ 0,

then the result  is  declared valid  also for the domain Dx  =  0,  and then Dx  is  set to

the  value  0.  The  reason  for  this  declaration  of  validity  resides  in  the  algebraic

nature  of  the  elimination  of  a  symbol,  as  in  x  //  x  =  1,  and  the  algebraic

considerations on ‘form’.  

The true problem is to show why this new definition of df / dx makes sense. 

15.5.6  Stepwise explanation of the algebraic approach  

Let us create calculus without depending upon infinitesimals or limits or division

by zero.  

  1.  We distinguish cases Dx ∫ 0 and Dx = 0, and the (*) implicit or (**) explicit 

definition of relative error r[Dx].

  2.  Let F[x] be the surface under y = f[x] to the horizontal axis from 0 till x, for 

known F and unknown f that is to be determined (note this order). For 

example F[x] = x2 gives a surface under some f and we want to know that f.

  3.  Then the change in surface is DF = F[x + Dx] - F[x]. When Dx = 0 then DF = 0.

  4.  The surface change can be approximated in various ways. Of these DF º y Dx = 

f[x] Dx is the simplest expression with explicit y. (Alternatives are e.g. DF º f[x 

+ Dx] Dx, or inbetween with Dy = f[x + Dx] - f[x], DF º Dx (y + Dy /2).)

  5.  The error will be a function of Dx again. We can write DF in terms of y = f [x] 

(to be found) and a general error term ¶[Dx], where the latter can also be 

written as ¶[Dx] = Dx r[Dx] where r[Dx] is the relative error. When Dx = 0 and 

thus ¶[Dx] = 0 then the relative error can be seen as undefined and it can be set 

to zero by definition.

  6.  We have these relations where we multiply by zero and nowhere divide by 

zero or infinitesimals.

 

H*L Implicit definition of r H**L Explicit definition of r

Dx ∫ 0 DF = y Dx + ¶@DxD r@DxD ª DF ê Dx – y

Dx = 0 DF = 0 = u Dx + ¶@DxD
for any u; select u = y

r@DxD ª 0 = u – y

for u = y

  7.  Simplify DF / Dx algebraically for Dx ∫ 0 and determine whether setting Dx = 0 

gives a defined outcome. When the latter is the case, take u as that outcome.

  8.  Thus u = {DF // Dx , then set Dx = 0}. (Setting a to a value b is denoted as a := b.)

  9.  We then find u = y = f [x] which can be denoted as F’[x] as well.
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For example, the derivative for F[x] = x2  gives dF / dx = {Hx + DxL2  – x2) // Dx , then

Dx  :=  0}  =  {2x  +  Dx,  then Dx  :=  0}  =  2x.  This  contains  a  seeming ‘division  by  zero’

while actually there is no such division.  

The selection of u = y is based upon ‘formal identity’. This is a sense of consistency

or ‘continuity’, not in the sense of limits but in the sense of ‘same formula’, in that

(*) and (**) have the same form (each seen per column) irrespective of the value of

Dx. By this choice the form is not affected by the value of Dx.

The  deeper  reason  (or  ‘trick’)  why  this  construction  works  is  that  (*)  evades  the

question what the outcome of  ¶[Dx]  //  Dx  would be  but  (**)  provides  a  definition

when the error is seen as a formula.  Thus, (*) and (**) give exactly what we need

for both a good expression of the error and subsequently the ‘derivative’ at Dx = 0.

The deepest reason (or ‘magic’) why this works is that we have defined F[x] as the

surface  (or  integral),  with  both  (a)  an  approximation  and  (b)  an  error  for  any

approximation  that  still  is  accurate  for  Dx  =  0.  When  the  error  is  zero  then  we

know that F[x] gives the surface under the u = y = f[x] = F’[x] which is the function

that we found. There is no approximation but exactness.

In  summary:  The  program  is  F’[x]  =  dF  /  dx  =  {DF  //  Dx  ,  then  set  Dx  =  0}.  The

definitions  (*)  and  (**)  give  the  rationale  for  extending  the  domain  with  Dx  =  0,

namely form.

(PM 2011: Select e.g. DF  º y2  Dx as the approximation. Then (*) suggests form u =

y2  . But (**) has form DF / Dx - y2  and in DF / Dx there is no suggestion of a square

so  the  choice  u  =  y2  is  problematic.  The  relative  error  features  as  a  criterion

because  it  allows  an  identification  of  DF  /  Dx  as  a  separate  form,  and  an

identification of its outcome as the y that we are looking for.)

15.5.7  Implications  

The  proper  introduction  to  calculus  is  to  start  with  a  function  that  describes  a

surface  and  then  find  the  derivative.  Since  we  only  use  equivalences,  this  also

establishes  that  the  reverse  operation  on  the  derivative  gives  a  function  for  the

surface.

The relation to the slope only arises in point (4) above. Traditionally the derivative

is  created  from  the  question  to  find  the  slope  at  some  point  of  a  function.  This

tradition also suggests a separate development for the integral, e.g. with Riemann

sums.  This  traditional  approach  tries  to  be  as  ‘simple’  as  possible.  However,  it

makes things more complex.   Instead, here we find that the slope comes as a fast

corollary – seeing that DF // Dx would be the tangent if it is defined. 

Let  us  look  closer  into  the  difference  between  starting  from  slopes  or  from

surfaces.
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The  derivative  of  |x|  is  traditionally  undefined  at  x  =  0  but  would  algebraically

become sign[x]. For x ∫ 0, we can consider the various combinations and find the

normal result, sign[x]. For x = 0 the dynamic quotient gives (|0 + Dx| - |0|) // Dx =

|Dx| // Dx = sign[Dx]. Setting Dx = 0 gives 0. Hence in general |x|’ = sign[x].

The traditional approach to |x| is a bit complicated. Cauchy naturally gives 0 at 0

too.  Traditionally  the  derivative  is  used  for  finding  slopes  and  then  the

amendment  on Cauchy was to  hold that  the right  derivative  differs  from the left

derivative,  hence traditionally  there is  no general  derivative.  However,  there is  a

multitude  of  ‘tangent’  lines  at  0,  that  is,  when tangency is  not  defined as  having

the same slope as the function (which slope seems undefined at 0) but as having a

point in common that is no intersection. 

In  our  approach,  when  we  are  interested  in  slopes,  then  it  remains  proper  to

consider these left and right derivatives. We do not need to speak about limits but

merely  can  point  to  the  different  values  of  the  derivative  sign[x]  in  the  intervals

(–¶,  0),  [0],  (0,  +¶).  Depending  upon  the  definition  of  ‘tangent’:  (a)  “Tangent”

lines  that  have  the  point  {0,  0}  in  common  without  intersection  then  can  have

slopes from –1  to  1.  (b)  “Tangent” lines  that  have  the  same slope  as  the function

however have only the three slopes –1, 0, 1.

The dynamic quotient is the leading impetus here and the issue starts with algebra

so that slopes come in only second. |x| is the surface under some function f. Any

approximation of changes in the surface, when the surface value is | 0 | = 0, finds

a perfect answer with zero relative error by requiring f[0] = 0. The general function

appears to be sign[x]. The choice to extend the domain of Dx with value 0 at x = 0

derives  from  a  notion  of  consistency  of  the  form  of  the  relative  error  in  the

approximation.  This  is  sufficient  though not  necessary.  One could  argue  that  the

relative  error  is  not  defined  when  Dx  =  0  but  this  runs  counter  to  our  choice  to

define it as 0. This choice again relates to the form of the relations in step (6).

15.5.8  Students  

Generations  of  students  have  been  suffering.  Teachers  of  math  seem  to  have

overcome their own difficulties (mainly by stopping to think) and thereafter don’t

seem to notice the inherent vagueness.

Students  not  only  suffer  from  the  vagueness  but  also  from  the  notation  .  Many

forget  to  write  “lim(Dx  Ø  0)”  as  the  first  part  of  each  differential  quotient,  each

separate line again and again for each step of the deduction, assuming that stating

it once should be sufficient to express that they are taking the limit. Some ‘take the

limit’ so that for them Dx has become 0, and then, just to be sure, they still mention

“…  +  Dx“  arguing  that  it  should  not  matter  when  you  add  0.  Those  ‘official

mathematical errors’ will be past.
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Conversely,  if  the  new  notation  of  dynamic  division  is  adopted  also  for  general

purposes,  then  the  algebraic  origin  of  the  derivative  will  be  sooner  recognized,

strengthening  the  insights  in  logic  and  algebra.  Time  can  be  won  for  more

relevant issues.

Teachers may be less tempted to distinguish between ‘those who know the truth’

(Deep Calculus, the ¶ and d) (who thus actually are wrongfooted) and ‘those who

only learn the tricks’ (Superficial Calculus ).

Didactics  remain  an  issue.  Above  nine  steps  are  somewhat  elaborate  while  the

short  program {DF  //  Dx  ,  then set  Dx  =  0}  sums it  up and suffices. Possibly  some

randomized controlled trials in education would bring more light in the question

what explanation works where.

15.5.9  The chain rule  

The chain rule is an important result and can found directly as follows.

d f / dx = {Df // Dx, then set Dx = 0}

                              = {D f // Dg * Dg // Dx for (Dx = 0 ñ  Dg = 0), then set Dx = 0 }  

                            = {Df // Dg, then set Dg = 0} * {Dg // Dx, then set Dx = 0}

        = df / dg  * dg / dx 

15.5.10  The derivative of an exponential function  

[NB.  Added comment  in  February  2011:  The key deduction  is  improved  upon in

the  main  body  of  the  book  in  §12.1.8.3,  notably  by  moving  from  the  dynamic

quotient to the surface identity. The text of this paragraph can remain here for the

didactic aspects.]

The  derivative  of  an  exponential  function  follows  from  the  chain  rule  and  the

presumption that exp[x] = ‰x is the fixed point in differentiation:

∑ ax

∑x
=
∑ ‰x rex@aD

∑x
= ‰x rex@aD rex@aD = ax rex@aD

The reasoning thus is:  

  (i)  All functions can be expressed as an exponential function for any nonnegative 

base number b, as f[x] = exp[b , rex[b , f [x]]].

  (ii)  We presume that in this class of all possible bases there is a fixed point in 

differentiation. Call this base the number ‰. Thus by definition ( ‰x )’ = ‰x .

  (iii)  We can calculate ‰ from the property ‰x ª d‰x / dx = {‰x (‰h – 1) // h, set h = 0}. 
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  (iii)  We can calculate  from the property    / x = {  (  – 1) // h, set h = 0}. 

This gives 1 = {(‰h – 1) // h, set h = 0}. By setting (‰h – 1) = h and solving ‰ = (1 + 

h)^(1/ h ) we find the approximate value of ‰ by taking h close to zero.

  (iv)  That there is an actual number ‰ with ‘infinite accuracy’ follows from (iii) 

and from notions of continuity (‘there are no holes between 2 and 3’).

  (v)  From the chain rule we find in general rex[a] = {(ah – 1) // h, set h = 0}.

Thus, the dynamic quotient (ah  – 1) // h = (‰h rex@aD  – 1) // h does not simplify easily.

However,  when  we  use  the  chain  rule  then  we  can  avoid  using  this  explicit

expression and actually find its value by implication.

Some meta-comments are:  

  a.  The number ‰ remains an algebraic concept like the number p .

  b.  The procedure to first presume ‰ and its property, and only then calculate / 

approximate it, and thus prove its existence by calculation, summarizes an 

intricate historical development, but does not invalidate the existence proof.

  c.  In this case approximate values for ‰ are found as we would normally take a 

limit. But the limit is not applied for the derivative.

  d.  The notion of a limit by itself still has its advantages, e.g. for the limit to 

infinity, and thus for 1 // 0 again. It would not be right not to mention limits in 

education.

  e.  There remains a distinction however between algebraic simplification and 

extension of the domain on the one hand and the traditional concept of a limit 

on the other hand. This distinction causes the insight that the derivative is an 

algebraic notion rather than dependent upon infinitisemals.

  f.  Given that limits can be defined in acceptable manner suggests that calculus 

can be developed by using limits. Indeed, complex ways can be used for what 

is simple.

15.5.11  Conclusion  

History  is  a  big  subject  and  we  should  be  careful  about  drawing  big  historical

lines.  But  the  following  seems an acceptable  summary  of  the  situation  where  we

currently find us after the historical introduction of the zero.

The introduction  of  the zero  in Europe  around AD 1200 gave  so  many problems

that  once  those  were  getting  solved,  those  solutions,  such  as  that  one  cannot

divide by zero, were codified in stone, and pupils in the schools of Europe would

meet  with  bad  grades,  severe  punishment  and  infamy  if  they  would  sin  against

those sacrosanct rules. Tragically,  a bit later on the historical timeline, division by
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those sacrosanct rules. Tragically,  a bit later on the historical timeline, division by

zero  seemed  to  be  important  for  the  differential  quotient.  Rather  than

reconsidering what ‘division’  actually  meant,  and slightly  modifying our concept

of  division,  Leibniz,  Newton,  Cauchy  and  Weierstraß  decided  to  work  around

this,  creating the concepts  of  infinitesimals  or  the limit.  In  this  way they actually

complicated the issue and created paradoxes of their own.

The Weierstraß ¶  > 0 and d  > 0 and the derivative’s  shorthand limDxØ0  Df  /  Dx  are

paradoxical  since  those  exclude  the  zero  values  that  are  precisely  the  values  of

interest at the point where the limit is taken.

Logical  clarity  and  soundness  can  be  restored  by  distinguishing  between  the

(formal)  act  of  division  and the (numerical)  result  of division.  Using Df  //  Dx  and

then enlarging the domain and setting Dx = 0 is not paradoxical at all.

The distinction between static  and dynamic division suggests that the Weierstraß

purity may be overly pedantic for the main body of calculus. The exact definition

of the limit  is  of great  value but not necessarily for all  of calculus.  Indeed,  ‘most’

derivatives  can  be  found  without  the  Weierstraß  technical  purity  and  ‘many’

courses  already  teach  calculus  without  developing  that  purity.  Thus  there  is

ample cause to bring theory and practice more in line.

[NB. Added comment in February 2011: There is a paradox that I may refer to but

have  not  developed  further.  In  the  Weierstraß  definition  of  continuity  around

some x0  it may be that there is some begging of the question, as the ¶ > 0 and d > 0

that are used may require their own infinitesimals.]
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16.  The news

 

 

16.1  Introduction 

My hero, original physicist and later economist Jan Tinbergen, once noted that so

much was published that every author had the duty to succinctly state what was

new. These are points for  Conquest of  the Plane,  including points refined here that

were  already  stated  earlier  in  A  Logic  of  Exceptions  and  Elegance  with  Substance,

assuming that you have not read all works by this author.

Tinbergen: http://nobelprize.org/nobel_prizes/economics/laureates/1969/

16.2  Major

16.2.1  Calculus

Definition of the dynamic quotient and redefinition of calculus using the dynamic

quotient.  Solution  of  the  paradoxes  of  division  by  zero  precisely  at  the  point  of

interest  (bishop  Berkeley).  Clarification  of  pitfalls  when  using  the  dynamic

quotient (new paradoxes ?). Historical explanation.

Deduction  with  the  dynamic  quotient  of  the  rules  like  chain  rule  and  also  the

more  complex  derivatives  of  ‰x  and  the  trigonometric  functions.  Clarification  of

the  distinction  between  the  algebraic  meaning  of  ‰  and  the  manner  how  it  is

numerically  approximated.  Subsidiary:  Didactic  presentation  at  this  level  of

education of ‰x as a fixed point for derivatives in function space.

Demonstration that it is possible and better to start with surfaces instead of slopes.

Via the change in surface there is a direct connection to the slope, which otherwise

must  be established separately  again.  Subsidiary:  Consistent  joint  presentation of

primitive and derivative.

Relatively  minor  but  important  for  didactics:  Surfaces  under  constant  and  linear

functions  can  be  introduced  using  only  elementary  tools,  and  thus  allow  the

introduction of the notions of primitive and derivative without complexity. These

are stepping stones towards complexity, and not examples (given after a complex

introduction).  Once  these  concepts  are  understood  then  the  idea  to  generalize
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introduction).  Once  these  concepts  are  understood  then  the  idea  to  generalize

makes it acceptable to introduce some more complexity. 

PM.  David  Tall  now  suggests  for  didactics  to  use  a  computer  to  zoom  in  on  a

function and show graphically that it can be stretched to become linear - whence it

would be possible to create a tangent line. This is a serious mistake to be avoided.

That  mistake  uses  slope  instead  of  surface,  it  uses  numbers  instead  of  algebra,  it

still  neglects the very point where the derivative is taken, it neglects the clarity of

the  dynamic  quotient,  it  does  not  educate  students  to  the  proper  use  of  a

computer language and decimal expansion. Strikingly, that proposal is offered by

David  Tall  himself,  who  as  one  of  the  conceivers  of  the  “procept”  ought  to  be

sensitive to the notion of the dynamic quotient.

David Tall, draft at http://www.warwick.ac.uk/staff/David.Tall/pdfs/chapter11_calculus.pdf

16.2.2  Trigonometry

Definition of  the unit  circumference circle  or  angular  circle  and functions xur  and

yur on it, that range on the unit radius circle.

Angle  first  measured  as  plane  section.  Unit  1  stands  for  the  whole  plane.

Subsequently  refined  into  Turn  or  Unit  of  Measurement  Around  (UMA),

measured along the circle with unit circumference.

Consistent  development  of  trigonometry  from  the  Euclidean  co-ordinates,  with

proper X and Y names, and demonstration that Cos and Sin are inverse functions.

Definition of Q = 2 p.

Using radians  to  measure  angles  is  economic  in  terms  of  concepts  but  appears  a

setback in terms of didactics as it appears useful to speak about angles and arcs as

separate  aspects.  Angles  are  created  by  the  pointy  bits  and  turns,  and  arcs  are

those round curves.  The problem of measuring the pointy bits is  solved by using

turns also expressed in an arc measure but this does not obliterate  the terms and

concepts involved. Hence, this book uses angles and arcs.

Clear  discussion  of  the  didactics  of  trigonometry  with  respect  to  these  new

findings.

Clarification  for  students  that  Cos  and  Sin  are  important  only  because  of  their

derivatives.  Presentation  of  an  optimal  compromise  with  respect  to  the  use  of

angles and their unit measure.

16.2.3  Didactics in general

Explanation and clarification that western culture and language, and certainly the

teaching  in  mathematics,  still  is  infused  with  Euclids  view  on  proportions,  and

that we have not yet adapted fully to the development of arithmetic and algebra. 
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Clarification of the distinction between no dimension and no specified dimension.

Named lines as a crucial  step in didactics as a missing link between teaching The

Elements and teaching analytic geometry. As explained in the didactics section this

relatively  innocuous  idea  formed  the  core  around  which  the  other  ideas  on

calculus  and  trigonometry  coalesced  into  the  layout  of  this  book,  allowing  also

other suggestions from Elegance with Substance to find a place in the logical order.

Presentation of the key theorem of analytic geometry. The issue is already known

as the addition rule for the cosine, and its key role between Euclidean co-ordinates

and the polar plane and trigonometry is known too. Yet this role does not clearly

transpire  in  textbooks.  It  is  now put  in place.  PM. I  constructed the proof  in  §6.2

myself, consider it very clear and am not aware of a similar format elsewhere.

16.3  Minor

Didactic  emphasis  on  the  verb  and  noun  use  in  mathematics.  (Parallel

development with the Gray & Tall “procept” - a less accessible term.)

2 + ½ is the proper form (noun) instead of 2½.

Definition that 0.25 = 1/4, instead of that the decimal would be an approximation.

Subsidiary:  Explanation  how  this  relates  to  how  computer  scientists  program

decimals on a computer. 

The use of a tilde for rounding down to 0.5
è
 or up to 0.5è .

DoSqrt  as  a  stepping  stone  between  Sqrt  (noun)  and  solving  (verb)  a  quadratic

equation.

Recovered exponent (rex) as a better name than logarithm.

Proportion  space.  Within  a  set  of  clear  definitions  for  proportion,  ratio,  fraction,

division, number.

Inclusion  in  a  textbook  of  the  place  of  the  derivative  of  rex[x]  between  the

polynomials (with thanks to Richard Fateman for making me aware of this).

16.4  Matter of taste

A fast  track from geometry  and arithmetic  and algebra  to  analytic  geometry  and

calculus.  Discussion  of  geometry  in  succinct  manner  to  allow  spatial  sense  to

awaken  with  some  proofs  but  also  relying  on  mere  seeing  and  paper  cutting,

leaving the more serious treatment to analytic geometry. 

The mix  and steps  in  this  book  from co-ordinates  to  vectors  to  complex  plane  to

linear  algebra.  While  a  traditional  treatment  develops  each  area  separately  and
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linear  algebra.  While  a  traditional  treatment  develops  each  area  separately  and

then  proves  the  same  things  but  in  a  different  language  so  they  only  appear

different,  confusing  students,  the  present  approach  emphasizes  that  these  are

mere  different  languages,  so  that  there  is  little  lost  in  moving  quickly  from  one

version to the other, but in fact gained in allowing each language to do the proof

that  it  does  best.  This  approach  provides  a  better  base  for  subsequent

specialization.

Discussion of the role of the Pythagorean Theorem in all its forms met throughout

this  book.  Explanation  that  the  book  is  essentially  a  contemplation  about  the

meaning of this theorem - that can also be a matter of definition.

Clarification to students how algebra is developed from arithmetic.

Using the general form of a line rather than only the functional form. Introduction

of the notion of correspondence at this level of teaching.

Clarification  also  in  an  introductory  textbook  of  the  duality  in  solving  two

equations either for the points or the coefficients. 

An  elegant  way  to  introduce  linear  and  matrix  algebra.  First  a  demonstration

what results  can be obtained purely  as  a  matter  of  logic,  and only at  a  late  stage

look in detail how matrix multiplication would be defined.

Clearer focus on the role of the four quadrants for the trigonometric functions.

The derivatives  of  the  trigonometric  functions  are  found by  analysis  with  only  a

very limited role for geometry - though the geometric interpretation is shown.

Presentation  of  linear  regression  and  partial  derivatives  as  key  applications  that

belong  in  an  introduction  to  analytic  geometry  and  calculus.  Link  up  with  the

determinant of a matrix as a measure of association. Link up with the geometry of

correlation and the cosine as the correlation coefficient.

The  role  of  the  parabola  as  something  of  relatively  small  interest.  The  relevant

concepts like intersection, vertex and slope can also be shown by more elementary

forms like line and circle. When the complex plane is quickly introduced then the

Quadratic  Formula  is  less  of  an  issue.  The  parabola  reduces  to  an  example

application,  at  a  late  stage.  It  mainly  supports  vector  analysis  in  the

decomposition  of  vertical  and  horizontal  movement  when  calculating  the  length

of the arc.

Calculation of the arc of a circle using the general formula for calculating an arc.

Development  of  the  textbook  within  the  environment  of  Mathematica,  and

attractive application and own new additions.

234



Conclusion

One  of  the  main  points  of  Elegance  with  Substance  is  rather  sober:  “Didactics

require  a  mindset  sensitive  to  empirical  observation  which  is  not  what

mathematicians are trained for.” EwS contains suggestions on how to re-engineer

the  industry.  This  will  require  involvement  from  various  parts  of  society.  That

being  said,  it  still  are  the  teachers  of  mathematics  who  currently  are  given  the

responsibility to judge what is mathematically  sound to teach the students. Being

locked in tradition it is difficult to get out. While Elegance with Substance contains a

shopping  list  for  improvements  and  should  be  enough  if  a  reader  only  lets  the

imagination roam freely, it is not a textbook, and a reader and especially a teacher

may  judge  that  the  suggestions  are  dispersed  and  do  not  add  up  to  a  useful

whole. Conquest of the Plane then provides this textbook format. My fellow teachers

in  mathematics  now have  an example of  what  it  may become.  It  still  is  a  primer

only, and it does not cover all material required for a decent education, but it does

fulfill  the  promise:  it  allows  students  to  conquer  the  plane  and  it  is  a  didactic

existence proof for teachers. 

For  students:  The  aims  of  this  book  are  modest.  A  student  completing  this  book

may  still  not  know  how  to  “construct  an  equilateral  triangle  on  a  line  section

using only a ruler and a compass”, as simple as a geometry question can get. This

book  does  not  train  in  geometry.  It  does  not  train  in  any  of  the  other  subjects

discussed  either.  The  book  aims  at  understanding.  It  aims  at  removing  the

traditional  clutter  in  mathematical  textbooks  that  block  understanding.  What

students are capable of once completing this book - what is stated on the opening

page - remains vague and would need to be established in practice.  What is clear

however  is  that  students  would  be  able  to  select  their  area  of  specialisation.  Or

know that  different  methods  are  valuable  for  their  own strengths  and  that  more

training is required to grow competent. The aims set out at the beginning still are

proper, and ought to have been achieved.

For  teachers:  Given the sorry  state  of  mathematical  education it  is  not  likely  that

my  fellow  teachers  of  mathematics  will  pick  up  this  book  quickly.  An  addict  to

smoking  is  not  cured  easily.  Teaching  math  does  not  only  affect  the  teacher  but

has  an  impact  on  others.  An  addict  with  a  social  impact  needs  feedback  and

restraint  from  outside.  It  is  not  wise  to  let  mathematicians  be  the  only  ones  in

charge to decide  what proper math is and how it  should be taught.  They are not
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charge to decide  what proper math is and how it  should be taught.  They are not

empirical  scientists.  If  mathematicians  are  to  live  up  to  the  ethic  of  mathematics

and  science  in  general  to  respect  the  evidence  then  they  apparently  must  be

reminded  of  it.  Fortunately  there  are  many  professions  where  mathematics  is

used,  in  physics,  engineering,  biology,  economics,  evidence  based  medicine,

psychological  research,  while  also  language  teachers  can  have  a  say  for  example

on  verbs  and  nouns.  How  this  could  fit  together  is  discussed  in  Elegance  with

Substance. The present book Conquest of the Plane can play a role in that process. It

allows  the  other  professions  to  compare  traditional  math  textbooks  with  the

present layout and hence better see the responsibility of the sciences to control the

mathematical addiction to tradition for tradition only.
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