
Boosting Software Verification with
Compiler Optimizations

Gyula Sallai∗ and Tamás Tóth†
Budapest University of Technology and Economics,

Department of Measurement and Information Systems,
Fault Tolerant Systems Research Group

Email: ∗salla@sch.bme.hu, †totht@mit.bme.hu

Abstract—Unlike testing, formal verification can not only prove
the presence of errors, but their absence as well, thus making it
suitable for verifying safety-critical systems. Formal verification
may be performed by transforming the already implemented
source code to a formal model and querying the resulting model
on reachability of an erroneous state. Sadly, transformations from
source code to a formal model often yield large and complex
models, which may result in extremely high computational
effort for a verifier algorithm. This paper describes a workflow
that provides formal verification for C programs, aided by
optimization techniques usually used in compiler design in order
to reduce the size and complexity of a program and thus improve
the performance of the verifier.

I. INTRODUCTION

As our reliance upon safety-critical embedded software
systems grows, so does our need for the ability to prove their
fault-free behavior. Formal verification techniques offer reli-
able proofs of a system’s correctness. These algorithms operate
on formal models which describe the semantic behavior of
the system under verification and are able to answer queries
on its properties. However, model-driven design can be rather
difficult and the financial and time constraints of a project
often do not make it a viable choice for development.

Many projects start right at the implementation phase
without sufficient planning and modeling. In the domain of
embedded systems, implementation is usually done in C.
Although there are many tools that can be used to generate
C code from a formal model (model-to-source), the reverse
transformation (source-to-model) is far less supported.

Another difficulty with this process is the size of the
state space of the model generated from the source code.
As most verification algorithms have a rather demanding
computational complexity (usually operating in exponential
time and beyond), the resulting model may not admit efficient
verification. A way to resolve this issue is to reduce the size of
the generated model during source-to-model transformation.

The project presented in this paper proposes a transforma-
tion workflow from C programs to a formal model, known
as control flow automaton. The workflow enhances this trans-
formation procedure by applying some common optimization
transformations used in compiler design [1]. Their application
results in a simpler model, which is then split into several

†This work was partially supported by Gedeon Richter’s Talentum Foun-
dation (Gyömrői út 19-21, 1103 Budapest, Hungary).

smaller, more easily verifiable chunks using the so-called
program slicing technique [2]. This allows the verification
algorithm to handle multiple small problems instead of a single
large one. At the the end of the workflow, the resulting sim-
plified slices are verified using bounded model checking [3]
and k-induction [4].

Measurements show that the applied transformations re-
duced the models’ size considerably, making this technique a
promising choice for efficient validation. Benchmarks on the
execution time of the verifier algorithm suggest that breaking
up a larger program into several smaller slices may also speed
up the verification process.

II. BACKGROUND AND NOTATIONS

There are several program representations with formal se-
mantics suitable for verification. In this paper we shall focus
on the one called control flow automaton (CFA) [5]. A CFA
is a 4-tuple (L,E, `0, `e), where
• L = {`0, `1, . . . , `n} is a set of locations representing

program counter values,
• E ⊆ L×Ops×L is a set of edges, representing possible

control flow steps labeled with the operations performed
when a particular path is taken,

• `0 ∈ L is the distinguished entry location, and
• `e ∈ L is the special error location.
During verification we will attempt to prove that there is

no feasible execution path which may reach `e, thus proving
that the input program is not faulty. Let π be a path in a CFA
(L,E, `0, `e). We say that π is an error path iff its last location
is `e. π is an initial path iff its first location is `0. The path
π in a CFA is an initial error path iff its both an initial path
and an error path.

The verification algorithms used in our work are bounded
model checking and k-induction. A bounded model checker [3]
(BMC) searchers for initial error paths with the length of
k (the bound) and reduces them to SMT formulas. If the
resulting formula is satisfiable, then its solution will serve
as a counterexample to correctness. If no satisfiable formula
was found for a length of k, then the algorithm increases
the bound to k + 1. It repeats this process until it finds a
counterexample or reaches a given maximum bound. Bounded
model checking is not complete, and can only be used for



finding counterexamples in erroneous programs, as the BMC
algorithm always runs into timeout for safe programs.

For proving safety, we can use k-induction [4]. A
k-induction model checker applies inductive reasoning on the
length of program paths. For a given k, k-induction first proves
that all paths from `0 with the length less than k are safe,
using bounded model checking. If the BMC algorithm finds
no counterexamples then the algorithm performs an induction
step, attempting to prove that a safe path with the length of
k−1 can only be extended to a safe path with the length of k.
This is done by searching for error paths with the length of k
and proving that their respective SMT formula is unsatisfiable.
If all error paths with the length of k are unsatisfiable then
all initial error paths will be unsatisfiable, thus the safety of
the system is proved. If a feasible error path exists then it is a
counterexample to the induction and the safety of the program
cannot be proved of refuted with the bound k.

In order to reduce the resulting model’s size, we shall use
optimization transformations usually known from compiler
theory. Compiler optimizations transform an input program
into another semantically equivalent program while attempting
to reduce its execution time, size, power consumption, etc [1].
In our work we used these transformations to reduce the result-
ing model’s size and complexity. Many of these optimization
algorithms are present in most modern compilers. The project
presented in this paper focuses on the following algorithms:
• constant folding,
• constant propagation,
• dead branch elimination,
• function inlining.
Constant folding evaluates expressions having a constant

argument at compile-time. Constant propagation substitutes
constants in place of variables with a value known at compile-
time. Both algorithms operate on local and global constants.
In many cases, these two algorithms are able to replace one or
more branching criteria with the boolean literals true or false.
Dead branch elimination examines these branch decisions and
deletes inviable execution paths (e.g. the true path of a branch
decision always evaluating to false). Function inlining is the
procedure of replacing a function call with the callee’s body.
In this work we shall use function inlining to support simple
inter-procedural analysis, as an inlined function offers more
information of its behavior than a mere function definition.

This work also makes use of an efficient and precise
program size reduction technique known as program slicing.
Weiser [2] suggested that programmers, while debugging a
complex program, often dispose code pieces irrelevant to
the problem being debugged. This means that programmers
usually mentally extract a subset from the entire program
relevant to some criteria. He called these subsets program
slices. Attempting to formalize this practice, Weiser defined
a program slice P ′ as an executable subset of a program P ,
which provides the same output and assigns the same values
to a set of variables V as P at some given statement S. This
statement S and the variable set V is often put together into a
pair which will serve as the slicing criterion. By using slicing

with multiple criteria, it is possible divide a larger program
into several smaller executable slices.

III. CONTRIBUTION

The project presented in this paper implements a verification
compiler, that is a compiler built to support verification. This
is done by using a complex workflow which transforms C
source code to control flow automata, applying optimization
transformations and program slicing during the process. The
resulting model(s) can then be verified using an arbitrary
verification algorithm. An overview of the workflow can be
seen in Figure 1.

C code AST CFG CFA

DT PDT UD-chains

PDG

Fig. 1. Transformation workflow.

As an input, the compiler takes a C source code file, which
is then parsed and transformed into an abstract syntax tree
(AST), representing the syntactic structure of the program.
This AST is then transformed into a control flow graph (CFG),
representing the instructions and control flow paths of the
program. Optimization algorithms and program slicing are
performed on the CFG, resulting in multiple smaller CFG
slices of the program. These slices then are transformed into
control flow automata. Currently the slicer criteria are the
assertion instructions in the control flow graph (which are calls
to the assert function in C), meaning that each assertion
gets its own CFA slice. In the resulting CFA, the error location
represents a failing assertion.

Several helper structures are required for these transforma-
tions, such as call graphs (for function inlining), use-definition
chains for data dependency information, dominator trees
(DT) and post-dominator trees (PDT) for control structure
recognition [1]. The program slicing algorithm requires the
construction of a program dependence graph (PDG), which is
a program representation that explicitly shows data and control
dependency relations between two nodes in a control flow
graph. The control dependencies show if a branch decision in a
node affects whether another instruction gets executed or not.
Data dependencies tell which computations must be done in
order to have all required arguments of an instruction. Slicing
is done by finding the criteria instruction S in the PDG and
finding all instructions which S (transitively) depends on [6].

IV. IMPLEMENTATION AND EVALUATION

The implemented system has three main components: the
parser, the optimizer and the verifier. The parser component
handles C source parsing and the control flow graph con-
struction. The optimizer module performs the optimization
transformations and program slicing and is also responsible for



building the control flow automata from the CFG slices. The
verifier component (implemented as a bounded model checker
with k-induction) performs the verification on its input model.

Parser Optimizer Verifier

Optimization
algorithms

Dependency
analysis

Fig. 2. Architecture of the implemented program.

All components are implemented in Java 8, with dependen-
cies on certain Eclipse1 libraries. The program also makes
use of the theta formal verification framework, developed
at the Fault Tolerant Systems Research Group of Budapest
University of Technology and Economics. It defines several
formal tools (mathematical languages, formal models) and
algorithms. It also provides a set of utilities for convenience,
such as expression representations and interfaces to SAT/SMT
solvers, which are used in the project’s implementation. The
work discussed here extends this framework with an interface
and toolset for C code verification.

The parser module utilizes the parsing library of the Eclipse
C/C++ Development Tools plug-in (CDT). The CDT library
performs lexing and parsing and returns an abstract syntax
tree, which is then transformed into a control flow graph.
Currently only a small subset of the C language is supported.
The current implementation only allows the usage of control
structures (such as if-then-else, do-while, switch, while-do,
break, continue, goto) and non-recursive functions. Types are
only restricted to integers and booleans. Arrays and pointers
are not supported at the moment.

The optimizer module handles optimization transformations
and program slicing. The implemented transformation algo-
rithms are constant folding, constant propagation, dead branch
elimination, function inlining and program slicing. After fin-
ishing with the optimization and transformation passes, the
optimizer generates a list of control flow automata from each
extracted slice. These smaller slices then later will be used as
the verifier’s input.

Currently the verifier is implemented as a simple bounded
model checker extended with a k-induction algorithm. The
verifier operates on a collection of control flow automata,
with each automaton being a slice extracted from the input
program. If a CFA was deemed faulty, then the whole program
is reported as erroneous. Currently the verifier may report one
of the following statuses: FAILED for erroneous programs,
PASSED for correct programs and TIMEOUT if it was not
able to produce an answer in a given time limit.

To evaluate the effects of the optimizations mentioned previ-
ously, we shall use two types of measurements: the size of the
control flow automata used as the verifier input and the results
of a benchmarking session on the verifier execution time. The
size of an automaton is currently measured by two factors:

1http://www.eclipse.org/

the number of its locations and edges. The performance
benchmarking was performed by measuring the execution time
of the verifier on every input CFA. Due to the slicing operation,
a single input model may get split into several smaller slices,
which then can be verified independently.

The verification task sets are divided into three categories,
two of them are taken from the annual Competition on Soft-
ware Verification (SV-COMP) [7]. The first task set, trivial,
contains trivially verifiable tasks, such as primitive locking
mechanisms and greatest common divisor algorithms. The
task sets used from the SV-COMP repertoire are the ones
called locks and eca. The locks category consists of pro-
grams describing locking mechanisms with integer variables
and simple if-then-else statements.The eca (short for event-
condition-action) task set contains programs implementing
event-driven reactive systems. The events are represented by
nondeterministic integer variables, the conditions are simple
if-then-else statements.

The results are shown with two different optimization levels.
The first level only uses function inlining, as it is needed
for verifying some interprocedural tasks. The second level
utilizes all optimizing transformations presented in this paper,
including function inlining and program slicing.

The measurement results for each optimization level are
shown in different tables. The first column always contains the
task name, while the other columns contain the measurement
and benchmarking data for a given slice. The legend of column
labels is shown in Table I.

TABLE I
COLUMN LABELS AND THEIR ASSOCIATED MEANINGS.

Label Description
L CFA location count
E CFA edge count
R Verification result (FAILED/PASSED/TIMEOUT)

ER Expected verification result (F/P)
T Verification execution time (average of 10 instances, in ms)
S Slice count (for sliced programs)

SL Average location count (for sliced programs)
SE Average edge count (for sliced programs)

All models were checked with the timeout of 5 minutes on
a x86 64 GNU/Linux (Arch Linux with Linux Kernel 4.7.6-1)
system with an Intel i7-3632QM 2.20 GHz processor and
16 GB RAM.

TABLE II
BENCHMARK RESULTS WITH INLINING ONLY.

Task L E R ER T
triv-lock 8 8 F F 5

triv-gcd0 11 11 F F 4
triv-gcd1 9 9 F F 18

locks05 62 86 T P -
locks06 53 73 T P -
locks10 98 138 T P -
locks14 136 194 F F 33
locks15 145 207 F F 36

eca0-label00 391 459 T F -
eca0-label20 391 459 T F -
eca0-label21 391 459 T F -



The benchmark results without any optimization algorithms
(except inlining) are summarized in Table II. As it can be seen,
the erroneous tasks can usually be verified rather fast, except
for the eca task set. This set contains models with large if-else
constructs inside loops. This yields an exponential number of
possible error paths. The bounded model checking algorithm is
rather ineffective for such problems and thus, it cannot handle
these models in a reasonable amount of time, resulting in a
timeout in all cases. It is also worth noting that the k-induction
algorithm could not prove the non-faulty models’ correctness
within the given time frame.

TABLE III
BENCHMARK RESULTS WITH FULL OPTIMIZATION.

Task S SL SE R ER T
triv-lock 1 8 8 F F 6

triv-gcd0 1 11 11 F F 4
triv-gcd1 1 9 9 F F 20

locks05 6 18 23 P P 9
locks06 5 17 21 P P 9
locks10 10 22 29 P P 14
locks14 16 33 45 F F 25
locks15 17 33 47 F F 27

eca0-label00 1 309 377 T F -
eca0-label20 1 309 377 T F -
eca0-label21 1 309 377 T F -

Benchmark results with optimization are listed in Table III,
which shows the number of produced slices, their average
location and edge count (rounded to the nearest integer) and
also the verifier running time. As it is sufficient to find one
failing assertion among all slices for reporting that the input
program is faulty, the running time for erroneous programs
is the time until the verifier found the first failing slice. For
correct programs, the running time is equals to the sum of the
running time for all slices.

Table III shows that while the optimization transformation
have little to no effect on trivial programs, it reduces the size of
larger programs considerably. While the non-faulty programs
of the locks category have all ran into timeout without opti-
mization, their verification finished almost instantly after the
optimization transformations. Due to the small running time,
the other running time measurement differences are within the
margin of error.

The tasks of the eca set were also reduced considerably,
location count is reduced by 21%, edge count is reduced
by 17%. Sadly, the verifier algorithm was not able to cope
even with the reduced programs of this set, still timing out
during verification. As the verification method is completely
replaceable and this bounded model checking was merely
implemented for the workchains completeness, this is not
a large issue. However, further investigation is required for
execution time evaluation.

V. CONCLUSIONS AND FUTURE WORK

In this paper we described a transformation workflow for
generating multiple smaller optimized formal models from
a single C program. To achieve this, the workflow uses

optimization algorithms known from compiler theory and the
program slicing technique.

The resulting models are then verified using a simple
bounded model checking and k-induction algorithm. The de-
veloped project was built as modular components, therefore
any module can be replaced for further improvement.

The evaluation of the above methods showed that program
slicing is promising technique for program size reduction
especially for verification. It is also worth noting that split-
ting a larger problem into multiple ones may allow efficient
parallelization of the verification algorithm. As the runtime
evaluation proved to be difficult because of the implemented
verifiers performance, further evaluation is in order with other,
more effective verification algorithms.

The project has several opportunities for improvements and
feature additions. Some of them are listed below.
• Extending the support for more features of the C lan-

guage. Such features could be arrays, pointers, structs.
• Introducing other optimization algorithms into the work-

flow, such as interprocedural slicing, or more aggressive
slicing methods such as value slicing [8].

• Currently the counterexample is only shown in the ver-
ified formal model. The additions of traceability infor-
mation would allow showing the counterexample in the
original source code.

• The LLVM compiler infrastructure framework2 provides
a language-agnostic intermediate representation (LLVM
IR) for several programming languages. Adding support
for the LLVM IR would extend the range of supported
languages and would also implicitly add multiple fine-
tuned optimizations into the workflow.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1986.

[2] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. IEEE Press, 1981,
pp. 439–449.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Tools and Algorithms for the Construction and
Analysis of Systems, ser. Lecture Notes in Computer Science. Springer,
1999, vol. 1579, pp. 193–207.

[4] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties us-
ing induction and a sat-solver,” in Proceedings of the Third International
Conference on Formal Methods in Computer-Aided Design, ser. FMCAD
’00. Springer-Verlag, 2000, pp. 108–125.

[5] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani,
“Software model checking via large-block encoding,” in Formal Methods
in Computer-Aided Design. IEEE, 2009, pp. 25–32.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, Jul. 1987.

[7] D. Beyer, “Reliable and reproducible competition results with benchexec
and witnesses (report on SV-COMP 2016),” ser. Lecture Notes in Com-
puter Science, M. Chechik and J.-F. Raskin, Eds. Springer Berlin
Heidelberg, 2016, vol. 9636, pp. 887–904.

[8] S. Kumar, A. Sanyal, and U. P. Khedker, “Value slice: A new slicing
concept for scalable property checking,” in Proceedings of the 21st
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems - Volume 9035. Springer-Verlag New York,
Inc., 2015, pp. 101–115.

2http://llvm.org/


