Effects of Graph Transformation Rules
to Design Space Exploration Problems

Andrés Szabolcs Nagy, Déniel Varré
Budapest University of Technology and Economics, Department of Measurement and Information Systems, Hungary
MTA-BME Lendiilet Research Group on Cyber-Physical Systems, Hungary
Email: {nagya, varro}@mit.bme.hu

Abstract—Design space exploration (DSE) aims to explore
different design candidates that satisfies multiple criteria and is
optimal with respect to different quality properties. The strength
of rule-based DSE is that the exploration rules can be tailored to
a specific problem, shaping the design space into a more concise
form than traditional approaches. However, experts may have
several choices to define the exploration rules and choosing the
good one may increase exploration performance significantly. In
this paper, we present several ways to define the exploration rules
of a rule-based DSE problem and investigate the impact of these
rules.

I. INTRODUCTION

As a challenging branch of search based software en-
gineering (SBSE), design space exploration (DSE) aims at
searching through different design candidates to fulfill a set of
constraints and then proposing optimal designs with respect to
certain (multiple) objectives. It frequently supports activities
like configuration design of avionics and automotive systems
or dynamic reconfiguration of systems with high availability
at runtime. Many of such traditional DSE problems can be
solved by using advanced search and optimization algorithms
or constraint satisfaction programming techniques [IL], [2].

In model-driven engineering (MDE), rule-based DSE [3],
[4], [S] aims to find instance models of a domain that are
1) reachable from an initial model by applying a sequence
of exploration rules, while 2) constraints simultaneously in-
clude complex structural and numerical restrictions. A so-
lution of such a problem is a sequence of rule applications
which transforms the initial model to a desired model. Multi-
objective rule-based DSE (MODSE) may also include multiple
optimization objectives [4] which help to distinguish between
solutions.

One of the major characteristics of rule-based DSE against
traditional techniques is that the domain expert can define
the atomic steps the exploration process can use to modify a
candidate solution. These exploration steps have a high impact
on the actual design space that an algorithm has to explore and
thus it will affect the overall performance of the exploration.
However, the exploration steps can be defined in multiple ways
even for a relatively small problem and affecting the design
space and thus the performance differently.

This paper is partially supported by the MTA-BME Lendiilet 2015 Research
Group on Cyber-Physical Systems.

The objective of this paper is to give an insight to newcomer
DSE users through an example how the exploration rules can
impact the performance of the exploration and to help decide
on defining the exploration rules.

The paper is structured as follows: briefly presents
a motivating example and introduces the most important
concepts of rule-based DSE, provides an insight of
the effects of transformation rules and [Sec. V] concludes the

paper.
II. RULE-BASED DESIGN SPACE EXPLORATION

Case study: The motivating example of this paper is
the class responsibility assignment problem from the 9th
Transformation Tool Contest (TTC16) [6].

The exploration task is taken from a reengineering challenge
of object-oriented programs: create classes for a set of initially
given methods and attributes (features) where methods can
depend on other methods and attributes, in such a way that
the resulting class model is optimal with respect to a software
metric called CRA-Index (a metric derived from cohesion and
coupling).

Besides the CRA-Index, there are two important constraints
that the resulting class model has to satisfy: 1) there should be
no empty classes in the resulting model and 2) all the features
have to be assigned.

Domain model and instance model: Model-driven system
design (MDSD) aims to lift the abstraction level of a problem
allowing a better overview of it. For this purpose a domain
model is created which describes the possible elements of the
problem, their properties and their relations. For example the
domain model of the CRA problem defines classes, features
(methods and attributes) and relations between them. Domain
models are also called metamodels as a metamodel describes
the possible components of a semantic model, also called an
instance model. In a metamodel fypes (or classes) describe
objects from the domain which can have atfributes, while
references specify the relations between types.

Graph patterns and matches: A common task is to obtain
data from instance models using queries. For this, graph
patterns provide a good formalism which can be seen as a
small, deficient instance model that we search for as part of the
actual instance model. A graph pattern can capture elements,
relations, negative or positive conditions on attributes and

multiplicity. A graph pattern can have multiple matches on
an instance model similarly as a database query can return
multiple rows.

Graph transformation rules: Modifications to an instance
model are often described as graph transformation rules. A
rule consists of a precondition or a left hand side (LHS'), which
is captured by a graph pattern and a right hand side (RHS),
which declaratively defines the effects of the operation. A rule
is applied on a model by 1) finding a match of graph pattern
LHS (also called an activation of the rule), then 2) removing
elements from the model which have an image in LHS\ RHS,
then 3) changing the value of attributes which are reassigned
in RHS and finally 4) creating new elements LHS \ RHS. A
rule can have multiple activations or non at all as expected.

Rule-based design space exploration problem: The aim
of rule-based DSE is to evolve a system model along trans-
formation rules and constraints to find an appropriate system
design. The state space of design candidates is potentially
infinite but usually it also has a dense solution space.

The input of a rule-based DSE problem consists of
three elements RDSFE = (Mg, G, R): 1) an initial model
My, 2) a set G of goals given by graph patterns, which
should be satisfied by the solution model Mg; and 3) a
set R of transformation rules (r1,rs,...7,.) which define
how the initial model M, can be manipulated to reach a
solution model Mg;. As a result it produces several solutions
(Mso, Mgy ... Mgy,) satisfying all of the goals and each of
them is described by a sequence of rule applications (or
trajectories) (750,751 ...75y,) on the initial model M.

Furthermore, there are two optional inputs: global con-
straints GC' and objectives O. Global constraints have to
be satisfied on the model along each valid execution path
(i.e., trajectory) and are usually defined by graph patterns.
An objective defines a function over either the model or the
trajectory to derive a fitness value (e.g., cost, response time,
reliability) which can be used to distinguish between solutions
in quality.

Design space: To solve an RDSE problem a search of
the design space has to be conducted in accordance with an
exploration strategy. The design space is a directed graph
where the nodes represent the different states of the model
and edges represent the rule applications (activations). There
is one initial node that represents the state of the initial model
and usually there are multiple goal states that satisfy the
goal constraints. Depending on the RDSE problem, a model
state can be reached in multiple trajectories (e.g., there are
independent rule activations) and the design space can have
cycles in it (e.g., one of the rule applications creates an element
and the other deletes it).

IIT1. EFFECTS OF EXPLORATION RULES

In this section, we show six approaches to define the graph
transformation rules for the CRA problem and discuss the
properties of these approaches. We find this research relevant
as it is a recurring problem in rule-based DSE to create new
elements (classes) and to connect them (assign features to

c:Class
cm: Cla§sModeI create | cm: ClagsModeI :Class
A
create f: Feature create forbid
v forbid | create
c: Class [c:Class «—— f:Feature

: Class

rule createClass | rule assignFeature rule createClassWithFeature

cl:Class cl: Class cl:Class
create create " create ‘
f: Feature f: Feature f : Feature
forbid
c2: Class c2: Class ~ :Feature c2 : Class

rule reassignFeature | rule reassignFeatureAndRemoveClass | rule mergeClasses

Fig. 1: Graph transformation rules used to solve the CRA
problem

classes) and it is not trivial if either approach is better or
worse than the other. With this research, we help newcomers
to identify different approaches and to decide between them
with the help of this evaluation.

In [Fig. 1] we present the different graph transformation
rules. First, we describe them and then we will refer to them
in the next paragraphs.

Rule 1 createClass: creates a class and inserts it to the
model.

Rule 2 assignFeature: assigns an unassigned feature to an
existing class.

Rule 3 createClassWithFeature: creates a class for a feature
that is not assigned yet.

Rule 4 reassignFeature: reassigns a feature from a class to
an other existing class.

Rule 5 reassignFeatureAndRemoveClass: reassign a feature
and remove the class if it has no features.

Rule 6 mergeClasses: reassign all the features to a target
class and remove the source class.

a) Atomic Modifications with Bounds: The idea of the
first approach is to create classes and assign features separately
(createClass rule] and |assignFeature rule). Using such atomic
modifications, one can easily see that all the possible solutions
are reachable (it is complete) and probably this is the first
to think of when defining a DSE problem as these are the
simplest rules. However, having a transformation rule that can
create objects (e.g., classes) without upper bound can make
the exploration strategy to create too many of them and in
different order.

To overcome this issue, we incorporate an upper bound for
creating classes to the condition of the[createClass rule] In our
example, this bound is the number of features available in the
model as creating more classes is unnecessary.

Unused objects (e.g., empty classes) is an other problem
of this approach and can be handled in two ways (without
modifying the exploration rules). Besides the essential goal
constraints (all features are assigned) additional goal con-
straints (no empty classes) can be added that forbids unused
objects in solutions. However, the exploration may fail to

remove these unused objects and thus fail to return with a valid
solution. Alternatively, these objects can be easily removed
after the exploration has finished but in this case the found
solutions may vary only in the number of unused objects.

b) Atomic Modifications with Maximum One Bound:
This approach is the very same as the previous one, except
that we incorporate a stronger bound to the
maximum one unused class can be present in the model and
a second one cannot be created.

¢) The Generative Approach: A similar approach to the
previous ones is to design the rules in such a way to never

have an unused object (e.g., classes). Using the
WithFeature rule| instead of [createClass rule] a newly created

class will instantly have an assigned feature resulting in two
advantages: 1) there is an upper bound for creating classes
(number of features) and 2) the “no empty class” constraint is
fulfilled automatically.

An interesting property of this approach is that the
[ClassWithFeature rule| has more activations (number of unas-
signed features) as opposed to the first approach (maximum
one activation) and it can affect the performance and the results
of the exploration depending on the algorithm.

d) The Preprocess Approach: Another approach is to
initially create the maximum number of required objects (e.g.,
one class for each feature) in a preprocess phase and then use
rules that connects the elements (assignFeature rule)).

While in overall, there will be less transitions in the search
space than the first approach as the classes are already created,
there will be many activations available in the same state on
average as any feature can assigned to any class. Also a post
process is required to remove empty classes.

e) The Initial Solution Approach: The fifth approach is
to create a valid initial model and use transformations that
keeps the model valid throughout the exploration. In our
example, this means to initially create and assign a class for
each feature and use the [reassignFeatureAndRemoveClass rule|
(InitialSolution).

f) Initial Solution with [mergeClasses rule} Alternatively
to the [reassignFeatureAndRemoveClass rule] the [mergeClasses|
can be used instead, which allows to merge two classes
that have more than one features assigned (InitialSolution-
MergeClasses).

IV. EVALUATION

We carried out measurements for each approaches by 1)
traversing the full search space with a depth-first search algo-
rithm for initial models containing 3-7 features to understand
the characteristics of the search space and by 2) searching for
optimal solutions with the NSGA-II [4] algorithm for an initial
model containing 18 features (initial model B introduced in
the TTC case). The NSGA-II algorithm was configured with
population size of 20 and with a mutation rate of 0.8.

The measurements were executed on a Intel® Core”
i5-2450M CPU @2.5 GHz desktop computer with 8 GB
memory. The approaches were implemented in the open-
source VIATRA-DSE framework [7]].

M

shows the first set of measurements with the num-
ber of states, transitions and the transitions-states ratio of
the search space by model size (number of features). The
measurements show that using atomic modifications without
significant bound of creating objects results in a huge state
space compared to other approaches. In the other hand, prepro-
cessing the initial model and using carefully crafted rules (e.g.,
[nergeClasses rule) may shrink the state space significantly.

The results of running an NSGA-II algorithm with different
exploration rules shows interesting results. depicts the
median and the maximum found CRA-Index and the median
time taken by different approaches where each point is an
aggregation of ten separate runs. Points are missing where
there were at least one run that couldn’t return a valid solution,
i.e., there were unassigned features remaining. The horizontal
axis shows the number of allowed fitness evaluations during
exploration (250, 500, 750, 1000, 2000, ..., 7000).

While the InitialSolutionMergeClasses approach has the
smallest state space, after 2000 evaluations it could not in-
crease the CRA-Index significantly and was slower than most
of the approaches. On the contrary, the AfomicModifications-
MaxOne could improve consistently by passage of time and
was the fastest among the others.

It is clear that AtomicModificationsBounded was the least
effective approach of all and Preprocess was the best on
average, however the best solutions are found by the slowest
approach: [InitialSolution. The Generative approach has the
best trade-off: it found good solutions in reasonable time.

The InitialSolution approach was probably slow because the
nature of the activations: there are relatively lot of them in
each state and a good portion of them changes (disappears or
appears). The used VIATRA-DSE framework evaluates a solu-
tion by transforming the initial solution and then backtracking
to reuse the model. While the framework stores the activations
(and activation codes) incrementally, it still has a lot of work
maintaining them.

V. CONCLUSION

In this paper, we presented several ways to define the explo-
ration rules of a rule-based DSE problem and investigated the
impact of these rules. Based on the class responsibility assign-
ment case, our observation is that using atomic modifications
(creating single elements and connecting them separately) as
exploration rules without any adjustments can be the worst
choice. Instead, preprocessing the initial model and defining
exploration rules that maintains the correctness of the model
(and with that reducing the state space) may have significant
positive impact on the exploration process. When using a
genetic algorithm the best approach was either to create objects
one at a time, maybe connecting them immediately to other
elements, or creating the required amount of objects ahead of
the exploration.

However, we investigated this observation only with a
simple example and other problems may behave differently
when modifying the exploration rules. Still, experimenting

10.0-

30000 - 3e+05-
Approach
787 AtomicModificationsBounded
" 20000~ & 2e+05- —A— AtomicModificationsMaxOne
i) o
% E % —#- Generative
n s x ")
[50- —+ InitialSolution
= X
—#- InitialSolutionMergeClasses
10000 - le+05- PreProcess
A 2.5~
0- 0e+00- # —N——
l l l l l l l l l l 1 1 l) i
3 4 5 6 7 3 4 5 6 7 3 4 5 6
ModelSize ModelSize ModelSize

(a) Explored number of states

(b) Explored number of transitions

(c) Ratio of explored number of transitions and states

Fig. 2: Comparison of approaches by model size using exhaustive search

Median

—4- 0-

4000 6000

Evals

4000 6000 0 2000

Evals

0 2000

(a) Median of reached CRA-Index

(b) Maximum reached CRA-Index

60000~

Approach
AtomicModificationsBounded
—A- AtomicModificationsMaxOne
40000 -
—#- Generative
—+ InitialSolution
-5% InitialSolutionMergeClasses

PreProcess

TimeMedian

20000- Allvalid
FALSE

e TRUE

4000 6000

Evals

0 2000

(c) Time taken to finish the exploration

Fig. 3: Comparison of approaches using NSGA-II by allowed number of evaluations. Each point is an aggregation of ten runs.

with different approaches is highly recommended for rule-
based DSE problems to find the best system designs.

As for future work, more rule-based DSE problems could
be investigated to derive a set of best practices for defining
exploration rules when faced with a certain type of problem.
Furthermore, based on the goal constraints and precondi-
tions on the initial model, different set of exploration rules
(approaches) could be generated automatically along with
corresponding measurement skeletons.

REFERENCES

[1] T. Basten, E. van Benthum et al., “Model-driven design-space exploration
for embedded systems: The Octopus toolset,” in Leveraging Applications
of Formal Methods, Verification, and Validation, ser. LNCS, 2010, vol.
6415, pp. 90-105.

[2] J. Denil, M. Jukss, C. Verbrugge, and H. Vangheluwe, “Search-based
model optimization using model transformations,” McGill University,
Canada, Tech. Rep., 2014.

[3] A. Hegediis, A. Horvith, and D. Varrd, “A model-driven framework for
guided design space exploration,” Automated Software Engineering, pp.
1-38, 08/2014 2014.

[4] H. Abdeen, D. Varr6, H. Sahraoui, A. S. Nagy, A. Hegediis, A. Horvath,
and C. Debreceni, “Multi-objective optimization in rule-based design
space exploration,” in 29th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2014).

[S] M. Fleck, J. Troya, and M. Wimmer, “Search-based model
transformations with momot,” in Proceedings of ICMT 2016. [Online].
Available: |http://dx.doi.org/10.1007/978-3-319-42064-6_6

[6] ——, “The class responsibility assignment case,” in 9th Transformation

Tool Contest (TTC 2016), 2016.

“The VIATRA-DSE framework,” https://wiki.eclipse.org/VIATRA/DSE,

Accessed: 2017-01-23.

[7

—

http://dx.doi.org/10.1007/978-3-319-42064-6_6
https://wiki.eclipse.org/VIATRA/DSE

	Introduction
	Rule-Based Design Space Exploration
	Effects of Exploration Rules
	Evaluation
	Conclusion
	References

