
Towards Language Independent
(Dynamic) Symbolic Execution

Stefan Klikovits∗†, Manuel Gonzalez-Berges†and Didier Buchs∗
∗University of Geneva, Software Modeling and Verification Group

Geneva, Switzerland, Email: {firstname.lastname}@unige.ch
†European Organization for Nuclear Research (CERN), Beams Department

Geneva, Switzerland, Email: {stklikov,mgonzale}@cern.ch

Abstract—Symbolic execution is well-known for its capability
to produce high-coverage test suites for software source code. So
far, most tools are created to support a specific language. This
paper elaborates on performing language independent symbolic
execution and three ways to achieve it. We describe the use
of one approach to perform dynamic symbolic execution using
translation of a proprietary language and show the results of the
tool execution on a real-life codebase.

I. INTRODUCTION AND BACKGROUND

Software testing is a popular technique amongst software
developers. The recent advance of computing power increased
the usability of dynamic symbolic execution (DSE) [1] to a
point where it is now even included in commercial tools [2].
DSE implementations are mostly designed to support one
specific language (e.g. Java, C), or their underlying low-level
language (e.g. x86 byte code). While the advantages of having
such tools are indisputable, software developers working with
proprietary or less popular languages often cannot benefit. Our
research focuses on proposing a solution for languages that do
not have dedicated (D)SE tools. The drive for our explorations
comes from a practical application at CERN, which uses a
proprietary scripting language to control and monitor large
installations.

A. Motivation

The European Organization for Nuclear Research (CERN)
uses a proprietary software called Simatic WinCC Open Ar-
chitecture (WinCC OA) to control its particle accelerators
and installations (e.g. the electrical power grid). To support
the design of such systems the BE-ICS group maintains and
develops the Joint COntrols Project (JCOP), as set of guide-
lines and software components to streamline developments.
JCOP is based upon the WinCC OA SCADA platform which
is scriptable via Control (CTRL), a proprietary programming
language inspired by ANSI C.

Until very recently CTRL code did not have a dedicated
unit test framework. The development of such a testing library
filled this need, but after over a decade of development the
CTRL code base of JCOP sizes some 500,000 lines of code
(LOC). This code has to be manually (re-)tested during the
frequent changes of operating system versions, patching or for
framework releases. Over the decades-long lifetime of CERN’s
installations, this testing is repeatedly (often annually) required

and involves a major overhead. To overcome this issue, the use
of automatic test case generation (ATCG) was decided.

B. Symbolic Execution

Symbolic execution (SE) is a whitebox ATCG methodology
that analyses source code’s behaviour. The approach works
by constructing the code’s execution tree. The program’s
input parameters are replaced with symbolic variables, their
interactions recorded as operations thereon. The conjunction
of all symbolic constraints of an execution tree branch,
provides a path constraint. Finding a solution for it, e.g.
using a satisfiability modulo theories (SMT) solver, provides
inputs that will lead the program to follow this branch. SE
experiences shortcomings when it comes to uninstrumentable
libraries, impossible/infeasible constraints (modulo, hashes) or
too complex constraints. To overcome these limitations, dy-
namic symbolic execution has been introduced. DSE switches
to concrete value execution in cases where SE reaches its
limits. We refer the reader to [1] for an overview of SE and
DSE.

This paper is organised as follows: Sect. II introduces
language independent SE. Sect. III describes an implemen-
tation to bring SE to CTRL. Sect. IV presents results of the
implemented solution. Sect. V explores related work and Sect.
VI concludes.

II. LANGUAGE INDEPENDENT SYMBOLIC EXECUTION

Most SE and DSE tools operate on low-level (LL) rep-
resentations (LLVM, x86, .NET IL) of popular high-level
languages (Java, C, C#). The reason is that LL representations
are simpler, leading to fewer operations types that have to
be treated by the symbolic execution engine. This means that
only source code which compiles into these LL representations
is supported. Other languages miss out on the functionality.
Another disadvantage of using a specific low-level repre-
sentation are implicit assumptions on data types. Only data
types supported by the operating language are supported. This
voids the possibility to use own or modified data types and
languages.

For this reason we propose the use of language indepen-
dent symbolic execution. Apart from the development of a
dedicated (D)SE engine for a programming language, there

exist three possibilities for language independent symbolic
execution.

First, a SE tool that operates on a generic abstract syntax
tree (AST). SE already performs operations on symbolic
variables, which are either subtypes of or proxies for real data
types. Hence, a tool operating on a model of the source code,
i.e. an AST, could perform truly language independent SE.
This approach comes with two difficulties: a) specifying an
AST generic enough for all targeted languages and their par-
ticular features and differences, b) deterministically translating
a language parser’s representation into the generic AST.

The second approach is a symbolic execution engine based
on callback functions. The source code under test is parsed
using a modified version of its native parser. The parser
triggers actions in the symbolic execution tool when it comes
across the variable interactions. The advantage of this approach
is that existing parsers for the source language can be adapted
to issue the required calls, leading to an easily implemented SE
framework. The caveat is a large number of messages being
issued by the parser, potentially leading to low performance.

Lastly, a translation into the operating language of an
existing tool. This solution, while similar to the first, is distinct
in that usually the target language and the tool cannot be
modified. The target language has to offer similar concepts
as the source, otherwise only a subset of the sources can be
supported without major overhead. It is also necessary to re-
implement any standard-library or built-in functionality that
the source language relies on. A difficulty arises when the
target language has different semantics or data types, requiring
trade-offs and leading to unsupported features.

A. Semantics

The semantics of a language play an important role. In
all three approaches, it is necessary to precisely capture the
meaning of each statement. Failure to do so would lead to
divergences and hence wrongly produced constraints and input
data. As an example one can look at differences of zero- and
one-based list/array indices. This minor change in the language
semantics can lead to severe errors such as out of bounds-
errors, changed loop behaviour, and similar.

It is also important that the source language’s data types
are supported by the symbolic execution tool. Some existing
(D)SE tools such as Microsoft Pex [3] support the use of
own data types (classes). However, these class data types are
treated differently from native types (they are nullable)
and sometimes replaced by stubs. Additionally, existing tools
do not allow for the modification of their native data types,
leading to unsupported features. An example would be that
some languages (e.g. JavaScript) support native implicit cast-
ing between int and string values. This behaviour cannot
be reproduced in C# and is hence not supported by Pex.

A solution would be to define all necessary sorts (data types)
for the underlying SMT solvers (e.g. Z3, CVC4). Current tools
adjust the SMT solver configuration based on their operation
language. An SE framework that supports the specification
and use of user-defined sorts can provide a solution to these

problems. Alternatively, it is possible to abandon SMT solvers
and explore other ways of solving constraints. Term rewriting
systems are well known for their capability to express seman-
tics and offer constraint solving capabilities. This solution,
while offering less performance, provides more flexibility and
support for native data types.

Using term rewriting systems, it would also be possible to
perform SE/DSE on generic models, opening the door to many
different kinds of analyses.

III. IMPLEMENTATION

Since no tool exists that natively supports CTRL code,
CERN is faced with the choice between three solutions:
1) develop an ATCG tool specifically for CTRL; 2) develop a
language independent ATCG tool; 3) translate the CTRL code
into the operating language of an existing ATCG tool.

Given CERN’s practical need, the last option was chosen.
A short evaluation led to Microsoft Research’s Pex tool [3],
a program that performs test case generation through DSE. In
order to use Pex for CTRL code, we developed a tool called
Iterative TEst Case system (ITEC). ITEC translates CTRL
to C#, in order to execute Pex and obtain input values for
automatically generated CTRL test cases. This tool helped
to build up regression tests that can then be reused on the
evolving system to ensure its quality. ITEC works on the
assumption that the current system reached a stable state after
13 years of continuous development and use.

A. Architecture

CERN’s focus mainly lies in the test case creation for CTRL
code. Hence, in a first step, the re-use of existing software
is preferred over the creation a generic ATCG framework.
ITEC relies heavily on an existing CTRL parser, which has
been implemented in Xtext [4] during a previous project at
CERN. ITEC’s workflow is separated into six consecutive
steps: 1) code under test (CUT) selection1 2) semi-purification
3) C# translation 4) test input generation 5) test case creation
6) test case execution.

ck] (start) – (one);
In the initial task, the CUT selection, the user or the tool

automatically (in bulk execution mode) chooses which code
is to be tested. ITEC analyses the sources for dependencies
(global variables, database values, subroutines) which are to
be replaced, if necessary.

Listing 1. SP doubles: Before
get15OrMore (x) {

a = dependency (x)
re turn a > 15 ? a : 15

}
dependency (x) {

r = randomValue () + 5
re turn r ∗ x

}

Listing 2. SP doubles: After
get15OrMore (x , b) {

a = dependency (x , b)
re turn a > 15 ? a : 15

}
dependency (x , b) {

observe(x)
re turn b

}

1we use to code under test instead of system under test, as we focus on
individual functions or code segments rather than systems

Pex

SP param values

param values

observations

Test Input Set

mock specification

call to CUT

assertions

/∗ Mock (func) r e t u r n (. . .) ∗/
void t e s t _ c a s e _ 1 () {

param1 = . . .
param2 = . . .
r e s = CUT(param1 ,
param2)
a s s e r t (" check " , r e s == . . .)

}

Test case

Fig. 1. Test case generation from Pex output

Following the CUT identification, a process called semi-
purification (SP) [5] is applied. Semi-purification replaces a
CUT’s dependencies with additional input parameters. SP is
required as CTRL, similar to most other procedural languages,
does not support mocking. The result of SP is a modified
version of the CUT, where the function is only dependent on
its input parameters. The benefit is that it is possible to use any
form of ATCG (random testing, combinatorial approaches),
independent of them being white- or black-box techniques.
Replacement of subroutines with semi-purification doubles (an
adapted form of test stubs [6]) allows for the specification of
additional observation points. The observations can later be
used for the definition of assertions in test cases. Listing 1
shows a short program that returns a random value ≥ 15.
During the SP process the dependency is replaced with a
SP double of same name. The resulting code is displayed in
Listing 2. The additional parameter b was added to replace the
return value in the SP double and simulate the CUT behaviour.
Additionally an observation point was inserted2.

ITEC uses Microsoft’s Pex tool to generate test input. As
Pex operates on the .NET Intermediate Language, the semi-
purified CTRL code has to be translated to a .NET language.
C# was chosen since it is syntactically similar to CTRL.

After the translation, the CUT is added to other artefacts
and compiled into a .dll file. The required resources are:

• PUT: Parameterized unit tests (PUTs) are entry points
for Pex’ exploration. They also specify observation points
and expectations towards parameter values.

• Pex factories: Factories are manually created, annotated
methods that serve as blueprints for data types. They help
Pex generate input values. ITEC uses factories to teach
Pex how to generate certain CTRL data types.

• Data types: Many CTRL data types are not natively
present in C# , e.g. time, anytype or CTRL’s dynamic
list-types. They were re-implemented in C#.

• Built-in functions: CTRL’s standard library provides
functions for various actions (e.g. string operations).
They had to be re-implemented to ensure the source
code’s compatibility.

• Other: Some additional libraries were developed to sup-
port the generation. One example is a Serializer for
generated values.

Following the compilation, Pex is triggered on the resulting
executable.

CTRL test cases are created from the results of Pex’s
exploration. Each set of values generated by Pex represents

2The observation is not required here, but added to show the functionality

a test case for the semi-purified CUT. These values can be
classified into three different categories:

1) Parameter values: The parameter values for the original
CUT are used as arguments for the test’s function call to
the CUT.

2) SP parameter values: Additional parameters introduced
by the SP process are used to specify test doubles for the
test case execution. The values for semi-purified global
variables are assigned before the call to the CUT.

3) Observations: Observations are transformed into asser-
tion points. Additionally to return and reference pa-
rameter values there is the possibility to assert database
writes and similar commands.

Figure 1 visualises the split of this information and shows how
the values are used in the test cases.

The last step is the test case execution. To run the tests it
is necessary to wrap them inside a construct of functions that
will permit the observation of success or failure. Note that in
our case, success means that the observations during the CTRL
execution match the observations made by Pex. Additionally,
test doubles are generated from their specifications and the
code is modified to call the stubs instead of the original
dependencies.

B. Challenges & Lessons Learned

There are several challenges we faced during the creation
of ITEC. One challenge is the translation of CTRL code
to C#. Small changes in semantics have big impacts on the
generated values. For example, list indices in C# are zero-
based, while in CTRL they start at one. This means, that
these lists had to be re-implemented, adding to constraint
complexity, as Pex is optimised to native types. Additionally,
C# is incapable of dealing with index or casting-expressions
as reference parameters. These statements had to be extracted
and placed before the function call, the resulting values written
back after. There are numerous similar differences, leading
to re-implementation of data types and functionality, while
increasing the complexity of path constraints.

The validation of the translation is an important challenge.
In [7] we give one proposal to solve this problem. The full
list of challenges has been described in more detail in [8].

The lesson learned during implementation of the translator
is that re-implementation of data types can be time-consuming
and difficult. Often an increase in applicability and translation
validity comes with a drop in performance. Finding a solution
to these issues is one of the big challenges of our approach.

Despite the effort of implementing a translator, SP engine
and TC generator, we believe that the implementation of a
DSE tool for CTRL would be more costly.

IV. CURRENT RESULTS

We executed the tool on 1521 functions in the CTRL
framework. For 52.0 % (791) of the functions ITEC was able
to execute Pex. The other 48.0 % failed due to one of the
following reasons:

CTRL Functions
1521

499
Unsupported Feature

45
SP Error

SP SP Functions
977

186
Translation Error

Translation C# Code
791

Test Inputs
5060

A
T

C
G

(Pex)

Test Cases
5060 TCGen

24
Exec Error

4138
matching oracles

898
mismatching oracles

Fig. 2. Sankey diagram displaying the test generation and execution for the
JCOP framework

− use of unsupported features, data types and functionality
(32.8%): We explicitly excluded some functionality due to
their complexity. Example: user interface interactions.

− errors due to unresolvable resource links (3.0%): The
CERN-developed CTRL IDE occasionally has problems
linking function invocations to the correct definitions.

− compilation errors of the translated C# (12.2%): The
translator actively does not account for some language
differences as they can be seen as “bad coding practice”.
ITEC serves as a motivation to avoid/alter these parts of
the code base. Other concepts, such as the casting of native
C# data types as explained above, cannot be translated.

For the 791 former functions, ITEC generated between 0
and 104 test cases (mean: 6.37; median: 4; first and third
quartile: 2 and 7). Figure 2 displays the process and numbers.

The execution of these test cases lets us look at the line
coverage data, as produced by WinCC OA’s CTRL interpreter.
The coverage shows a distribution as follows: 76% of the
functions are fully covered, 9.9% have a coverage higher than
75%, for 7.2% of the functions the coverage is above 50%,
the rest has either a coverage under 50% or no recorded data
due to errors during the execution.

One result we observed during our analysis is that the
coverage drops for long functions. While routines with less
than 40 LOC are covered to a large extent (over 75 % line
coverage), more than half of the functions longer than 40
LOC achieve less coverage. This suggests that it is harder to
generate covering test suites for long functions, due to higher
complexity in the path constraints. This theory is supported
by the fact, that in general longer functions produce fewer
test cases and that long routines with smaller test suites have
bad coverage metrics.

We refer the reader to the technical document [8] for a more
detailed breakdown of the test case generation and a thorough
analysis of the test case execution results.

V. RELATED WORK

Test case generation through symbolic execution has been
researched by others before us. Cseppentő et al. compared
different SE tools in a benchmark [9], supporting our choice
of Pex. [10] shows an approach to isolate units from their

dependencies, similar to semi-purification. Bucur et al. [11]
perform SE on interpreted languages by adapting the inter-
preter instead of writing a new engine. Bruni et al. show their
concept of lightweight SE for Python, by using Python’s op-
erator overloading capabilities in [12]. The testing of database
applications via mock objects was presented in [13].

VI. SUMMARY AND FUTURE WORK

This paper shows our considerations for automated test case
generation for CTRL, a proprietary, ANSI C-like language.
We describe different approaches for language independent
symbolic execution, before we explain our particular approach.
Our solution involves the translation from CTRL to C#, which
is supported by Microsoft’s Pex dynamic symbolic execution
tool. We explain the tool’s general workflow and present
lessons learned and results from the tool execution on our
main codebase.

In future, we aim to extend the tool’s applicability by
lowering the number of unsupported features and executing
it on additional parts of CERN’s codebase. We also aim to
enhance our analysis by comparing coverage to code complex-
ity measures. Orthogonal to this effort our efforts will evaluate
other (D)SE tools and approaches such as the ones described
in the first part of this paper.

REFERENCES

[1] C. Cadar and K. Sen, “Symbolic Execution for Software Testing: Three
Decades Later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, Feb. 2013.

[2] N. Tillmann, J. de Halleux, and T. Xie, “Transferring an Automated
Test Generation Tool to Practice: From Pex to Fakes and Code Digger,”
in Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2014, pp. 385–396.

[3] Microsoft Research, “Pex, Automated White box Testing for .NET,”
http://research.microsoft.com/en-us/projects/pex/.

[4] L. Bettini, Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing, 2013.

[5] S. Klikovits, D. P. Y. Lawrence, M. Gonzalez-Berges, and D. Buchs,
“Considering Execution Environment Resilience: A White-Box Ap-
proach,” in Software Engineering for Resilient Systems, vol. 9274.
Springer LNCS, 2015, pp. 46–61.

[6] G. Meszaros, “Test Doubles,” in XUnit Test Patterns: Refactoring Test
Code. Addison Wesley, 2011.

[7] S. Klikovits, D. P. Y. Lawrence, M. Gonzalez-Berges, and D. Buchs,
“Automated Test Case Generation for the CTRL Programming Language
Using Pex: Lessons Learned,” vol. 9823. Springer LNCS, 2016, pp.
117–132.

[8] S. Klikovits, P. Burkimsher, M. Gonzalez-Berges, and D. Buchs,
“Automated Test Case Generation for CTRL,” Report EDMS 1743711,
2016. [Online]. Available: https://edms.cern.ch/document/1743711

[9] L. Cseppentő and Z. Micskei, “Evaluating Symbolic Execution-based
Test Tools,” in Proceedings of the IEEE Int. Conf. on Software Testing,
Verification and Validation (ICST). IEEE, 2015.

[10] D. Honfi and Z. Micskei, “Generating unit isolation environment using
symbolic execution,” in Proceedings of the 23rd PhD Mini-Symposium.
IEEE, 2016.

[11] S. Bucur, J. Kinder, and G. Candea, “Prototyping symbolic execution
engines for interpreted languages,” in Proceedings of the 19th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2014, pp. 239–254.

[12] A. D. Bruni, T. Disney, and C. Flanagan, “A Peer Architecture
for Lightweight Symbolic Execution,” Tech. Rep., 2011. [Online].
Available: https://hoheinzollern.files.wordpress.com/2008/04/seer1.pdf

[13] K. Taneja, Y. Zhang, and T. Xie, “MODA: Automated test generation
for database applications via mock objects,” in Proceedings of the 25th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2010, pp. 289–292.

http://research.microsoft.com/en-us/projects/pex/
https://edms.cern.ch/document/1743711
https://hoheinzollern.files.wordpress.com/2008/04/seer1.pdf

