
Towards Model-Based Support
for Regression Testing

Anna Gujgiczer, Márton Elekes, Oszkár Semeráth, András Vörös
Budapest University of Technology and Economics

Department of Measurement and Information Systems
Budapest, Hungary

Email: gujgiczer.anna@gmail.com, marci543@gmail.com, semerath@mit.bme.hu, vori@mit.bme.hu

Abstract—Software is a continuously evolving product: modifi-
cations appear frequently to follow the changing requirements or
to correct errors. However, these modifications might introduce
additional errors. Regression testing is a method to verify
the modified system, whether the development introduces new
problems into the system or not. Regression testing involves
the execution of numerous tests, usually written manually by
the developers. However, construction and maintenance of the
test suite requires huge effort. Many techniques exist to reduce
the testing efforts. In this paper we introduce a model-based
approach to reduce the number of regression tests by using
abstraction techniques and focusing on the changing properties
of the unit under test.

I. INTRODUCTION

The development of complex, distributed and safety-critical
systems yield a huge challenge to system engineers. Ensuring
the correct behavior is especially difficult in evolving environ-
ments, where the frequent changes in demands lead to frequent
redesign of the systems. This rapid evolution raises many
problems: the new version of the system has to be verified
in order to detect if it still fulfills the specification, i.e. the
developments do not introduce additional problems or unde-
sired modifications in the existing functionality. Regression
testing is selective retesting of a system or component to verify
that modifications have not caused unintended effects and
that the system or component still complies with its specified
requirements. [5] It uncovers newly introduced software bugs,
or regressions. Regression testing can determine whether a
change in one part of the software affects other parts or
functionalities.

Supporting regression testing is an important though diffi-
cult task. Creating a model for the desired behavior of the
system could significantly help regression testing and would
enable the application of model-based testing approaches.
However developers usually do not have time and effort to
create the specification model during the development and it
is costly to construct the model afterwards from the source
code and configuration files.

In this paper we introduce a model-based approach to
support the regression testing of software components. We
developed a methodology to automatically synthesize behavior
models by using automata learning algorithms. However, tra-
ditional automata learning algorithms proved to be insufficient
for this task, as they are unable to handle the sheer complexity

of existing software components. Therefore some kind of
abstraction framework is required to simplify the observable
behavior of the unit under learning: these improvements can
support the construction of a behavior model of even complex
software components, which the state-of-the-art learning algo-
rithm fails to learn. In our approach we use a feature model
based abstraction on the interface of the software component.
Based on the learned models we automatically generate a
set of test sequences. Additionally, comparing the behavior
models of the different versions of the software components
is able to highlight unwanted changes. We also implemented
the proposed approach in a prototype framework to prove its
feasibility.

The structure of the paper: first of all, in Section II we
introduce the required preliminaries and an example to guide
the reader through the paper, later, Section III recommends a
general approach for regression testing. Section IV introduces
language support for defining the relevant behavior of the
analysed software component. Section V shows preliminary
measurements. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Example

A chess clock software used at the System Modeling Course
[2] at BME serves as a motivating example. This chess clock
has two main functionalities, let call them menu and game
function. The game function enables the switch of the active
player and descending its remaining time. In the menu the
players can configure the settings of the game. The input
interface of this chess clock contains four buttons (Start, Mode,
White and Black) and the output interface consists of three
displays (Main, White time, Black time).

B. Feature Model

Feature models [6] are widely used in the literature to
provide a compact representation for software product lines.
A feature model contains features in a tree structure, which
represents the dependencies between the features.

The possible relations between a feature and its child- or
subfeatures are categorized as:

• Mandatory: in this case the child feature is required.
• Optional: in this case the child feature is optional.



• Or: at least one of the subfeatures must be active, i.e.
contained in the input or output, if the parent is contained
in the message.

• Alternative (Xor): exactly one subfeature must be se-
lected.

Beside that, cross-tree constraints can be represented by addi-
tional edges.

A feature model configuration is a concrete set of features
from a feature model which satisfies the constraints expressed
by the relations of the feature model: a valid configuration
does not violate any parent-child dependency or any cross-
tree constraint.

C. Automata Learning

Automata learning is a method for producing the automaton-
based behavior model of a unit by observing the interactions,
i.e. inputs and outputs with its environment. There are two
main types of automata learning, active and passive learning.
An active automata learning algorithm was chosen in our work,
as it can produce more accurate behavior models.

In active automata learning [1], [9], models of a Unit Under
Learning (UUL) are created through active interaction, i.e.
driving the UUL and by observing the output behavior. For
this procedure the algorithm needs to be able to interact with
the target unit in several ways, such as:

• reset the UUL,
• execute action on the UUL, i.e. drive it with an input,
• observe the outputs of the UUL.
Given the possible input and output alphabets of the soft-

ware component the algorithm learns by constructing queries
composed of input symbols from the alphabet, then these
queries are asked from the UUL which responds by processing
the inputs and providing the outputs.

III. REGRESSION TESTING APPROACH

In this section our regression testing approach and its basic
steps are introduced. The proposed approach is depicted on
Fig. 1. The method uses a user defined version of the software
component as a reference: from this software component
version the algorithm synthesize a behaviour model which can
be used for test generation. Various test coverage criteria can
be supported and many algorithms and tools are available to
perform the test generation. This generated set of tests are then
used for the later versions of the software component to check
its conformance with the reference version.

Behavior	Model Regression	Tests

n. version n+1. version

Test Generation

Development

Fig. 1. Regression testing

Challenges. However, the envisioned approach faces some
challenges. Automata learning algorithms construct the behav-
ior model of the software component which is a complex
task in itself. In addition, as a software usually expresses
data dependent behavior, learning the automata model often
becomes infeasible. Another important issue is that learning
the automata model of the former version of the software
component and generating test from it yields many test cases
which should not hold in the newer version and will lead to
many false positive tests. Our approach supports the learning
algorithm with a specification language and abstraction tech-
nique to:

• enable the automata learning of software components
with even complex, data dependent behaviour, and to

• focus the regression testing into the relevant parts of the
software component, where the test engineer expect no
change.

The overview of this process is depicted on Fig. 2. In the
first step the framework learns the relevant behavior of the unit,
defined by the user using feature models and abstraction. The
result of this process is an automaton describing the behavior
of the unit. Regression test cases can be easily generated using
this automaton: a model-based test generation algorithm or
tool can be chosen arbitrarily at this phase, the only question
is the expected coverage criterion the tester needs.

Automata
Learning

Test Generation
Regression

Testing

Behavior Model Test Cases

Abstraction Modified Unit

Fig. 2. Overview

In the following we introduce the main steps of the approach
– construction of the behavior model and regression testing the
modified component – in more details.

A. Constructing the Behavior Model

The first step of the process is the learning of the behavior
model. In our work, we have integrated an active automata
learning algorithm of LearnLib [8], which produces the be-
havior model as a Mealy machine [7] – a finite-state machine.

We used abstraction during the learning, as it hides the
irrelevant parts of the behaviour and gives the user the means
to focus the testing into the functions which are the scope
of the regression testing. The user of our approach is able to
formulate abstraction rules on the inputs and outputs, i.e. the
alphabet of the learning process.

Figure 3. illustrates the role of abstraction during the
learning process in the communication between the learning
algorithm and the UUL. The queries generated by the learning
algorithm are sequences of input symbols of the abstract



Automata 
Learning

Automata Learning 
Algorithm

Unit Under 
Learning

Abstract input Concrete input

Abstract output Concrete output

Behavior Model

Fig. 3. Automata learning through abstraction

alphabet. These symbols are not directly executable inputs for
the UUL, but they represent equivalence classes defined by the
abstraction rules. Each abstract input needs to be concretized
(choose a concrete executable action). The unit under learning
will produce an answer for that particular action. According
to the abstraction rules, the concrete response provided by
the UUL is mapped to an abstract symbol consumed by the
learning algorithm.

B. Regression Testing

Testing consists of the following steps: at first tests are
generated from the previously learned behavior model. In the
prototype a depth-first-search based test generation method
was implemented which provided full state and transition
coverage. Various test generation algorithms can be chosen to
ensure the desired coverage. These tests can than be executed
on the next version of the software component.

The automata learning algorithm constructs an automaton
which is an abstract model in the sense that inputs and outputs
can not directly drive the software component under test. In
order to gain executable test, the abstraction and concretization
steps used during the learning are saved so the prototype
implementation can use it to produce executable tests.

The verification consists of two main steps:
• At first, the generated tests are executed to examine the

new version of the software component.
• If the testing was successful, the framework compares the

behavior model of the new version to the former one.
In the first step of verification we run the previously saved

test cases on the newer version of the unit. If the result of any
tests is an error, manual investigation is needed to decide the
reason for the failing test. The reasons for a failing test can
be the following:

• A real problem is found. The developers have to fix it.
• False positive occurs because of the inaccurate or not

properly defined abstraction.
In order to further increase the efficiency of the analysis, the

framework learns the new version of the software component
to compare it to the former behavior model by using automaton
minimization and equivalence checking.

Message

Button

Operation Player

White BlackStart Mode

Waiting

Or

Xor

Implies

Fig. 4. Feature model

If any of these mentioned verification steps results in failure,
we can assume that the modified unit does not conform to the
desired behavior model.

IV. LANGUAGE SUPPORT FOR REGRESSION TESTING

The presented approach requires the definition of the in-
terfaces of the UUL, i.e. the possible inputs and outputs. In
addition, the user has to define the relevant functionalities for
the regression testing, i.e. the abstraction used in the learning
process. In the framework, the interfaces and the abstractions
are defined with the help of a feature model [6] language.

A. Specifying Communication Interfaces by Feature Models

In our setting, the feature model describes the set of possible
input or output messages. Our feature model representation
supports two types of features:

• Integer features: have a range of possible values from the
integer domain. They can not have child elements.

• Boolean features: have Boolean values.
And it allows one kind of cross-tree constraint:
• Implication: if feature A requires feature B, the selection

of A in an input or output implies the selection of B.
An example feature model is depicted by a feature diagram

in Fig. 4. It defines the input interface of the chess clock, i.e.
the set of all possible input messages. The root is the Message
feature, which contains a Waiting time period, or a Button
(specified by Or dependency). This represents that the players
can wait or push a button to produce a kind of button input.
The Waiting feature is an integer feature. The Button feature
and its children are of Boolean types. The Button feature can
either be an Operation or a Player button press (specified by
Xor dependency).

An example input of the chess clock is the following:
(1) pushing the white button, then (2) waiting 1s. This is
a possible valid configuration for the previously mentioned
feature model.

B. Abstraction and concretization

We have chosen feature model based specification because it
supports the formulation of the abstraction and concretization.
In our work we implemented the following rules:

• Merge: Representing multiple features as an abstract one.
• Remove: The value of the feature will not be observed.



Error in 
Menu 1

Error in 
Menu 2

Error in 
Game 1

Error in 
Game 2 Change

1) Manual 10/18 2/18 1/18 0/18 8/18
2) Without abstraction - - - - -

3)

Game-focused abstr. 1 0/6 0/6 1/6 0/6 0/6
Game-focused abstr. 2 0/51 0/51 9/51 0/51 0/51
Menu-focused abstr. 1 4/6 1/6 0/6 0/6 2/6
Menu-focused abstr. 2 4/6 1/6 0/6 0/6 2/6
Menu-focused abstr. 3 6/6 1/6 0/6 0/6 6/6

TABLE I
COMPARISON OF MANUAL AND GENERATED TEST SUITES

Using the feature model of Fig. 4 we illustrate the effects of
the abstractions: merging the White and Black buttons will
lead to a simple feature model where the merged features
will be represented by the Player button. Removing the Start
button will result that its value is not observed by the learning
algorithms.

V. EVALUATION

In order to evaluate the effectiveness of the proposed
framework executed initial measurements on our prototype
implementation.

Research questions. The goal of the measurements is to
compare the effectiveness of the following sets of tests:

1) Manual test suite
2) Learning and test generation without abstraction
3) Generated test suite using a dedicated abstraction

We are interested in the following questions for each test suite:
RQ1 Is the test suite able to detect randomly injected errors?
RQ2 Is the test suite maintainable? How many modifications

are required upon a change of the software?
Measurement method. For the measurements we used

the previously presented chess clock statechart developed in
YAKINDU [10]. This complex statechart has 12 states and 45
transitions and 9 variables, which results in several billion
states when represented as a Mealy machine. In order to
evaluate effectiveness of the previously mentioned methods
we systematically injected 4 random atomic errors (in different
regions of the state machine) to the state machine – motivated
by [4] – and an intended change. The manual test suite covered
all the transitions of the statechart. For the focused test suite
we used 5 dedicated abstractions, e.g. removing the difference
between the white and the black player.

Measurement result.: Table I summarizes the test results.
Each row represents a testing method (denoted by 1)–3) in
the research question). The columns represent various modifi-
cations in the software component: the first four are different
kind of errors and the last one is an intended change. The cells
represent the number of failed test cases in the form of failed
tests / all tests. ’-’ represents timeout as we were not able to
generate test cases without abstraction, because learning the
unit timed out.

Analysis of the results: RQ1 The manually created tests
were successfully executed and were able to detect several
errors. However, when no abstraction was used, the technique

was unable to learn the chess clock unit, thus it can not be
directly used to generate test cases. But finally, when using
suitable abstractions, the method was able to detect those kind
of errors with less test cases. An error can remain hidden from
both the manual and the generated test suites. In this case we
can assume that we used a too coarse abstraction.
RQ2 Changes in the specification (in the functions of a
program) invalidate many of the manual test cases, which
have to be (partially) rewritten. However a suitable abstraction
will reduce the number of false positive test cases so the test
engineering efforts can be decreased.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a model-based regression testing
approach utilizing an automata learning algorithm to produce
behavior model of a software component. A feature model
based language is provided to support the definition of the
relevant aspects of the interfaces and serve as the basis of the
abstraction. User defined abstractions can drive the learning
to focus on those parts of the software component that can
be used as a specification model for the testing of the later
versions. Our initial experiments showed that the direction is
promising and hopefully it can reduce the regression testing
efforts needed for testing software components.

In the future we plan to use an automatic abstraction
refinement technique – based on the well-known CEGAR [3]
– to automatically calculate abstractions.

ACKNOWLEDGMENT

This work was partially supported by the MTA-BME
Lendület Research Group on Cyber-Physical Systems and
the ÚNKP-16-1-I. New National Excellence Program of the
Ministry of Human Capacities. Finally, we thank to Zoltán
Micskei for his insightful comments.

REFERENCES

[1] Dana Angluin. Learning Regular Sets from Queries and Counterexam-
ples. Information and computation, 75(2):87–106, 1987.

[2] Budapest University of Technology and Economics. System Modeling
course (VIMIAA00). https://inf.mit.bme.hu/en/edu/courses/remo-en.

[3] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-Guided Abstraction Refinement. In International
Conference on Computer Aided Verification, pages 154–169. Springer,
2000.

[4] SC Pinto Ferraz Fabbri, Márcio Eduardo Delamaro, José Carlos Mal-
donado, and Paulo Cesar Masiero. Mutation Analysis Testing for Finite
State Machines. In Software Reliability Engineering, 1994. Proceedings.,
5th International Symposium on, pages 220–229. IEEE, 1994.

[5] ISO/IEC/IEEE. 24765:2017 Systems and Software Engineering-
Vocabulary.

[6] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak,
and A Spencer Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical report, DTIC Document, 1990.

[7] George H Mealy. A Method for Synthesizing Sequential Circuits. Bell
System Technical Journal, 34(5):1045–1079, 1955.

[8] Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: A Library
for Automata Learning and Experimentation. In Proceedings of the
10th international workshop on Formal methods for industrial critical
systems, pages 62–71. ACM, 2005.

[9] Bernhard Steffen, Falk Howar, Malte Isberner, et al. Active Automata
Learning: From DFAs to Interface Programs and Beyond. In ICGI,
volume 21, pages 195–209, 2012.

[10] Yakindu Statechart Tools. Yakindu. http://statecharts.org/.

https://inf.mit.bme.hu/en/edu/courses/remo-en
http://statecharts.org/

	Introduction
	Preliminaries
	Example
	Feature Model
	Automata Learning

	Regression Testing Approach
	Constructing the Behavior Model
	Regression Testing

	Language Support for Regression Testing
	Specifying Communication Interfaces by Feature Models
	Abstraction and concretization

	Evaluation
	Conclusion and Future Work
	References
	References

