
SDN-enabled Application-aware networking for
Datacenter networks

Muzzamil Aziz∗, Amirreza FazelyH.†, Giada Landi‡, Domenico Gallico§, Kostas Christodoulopoulos¶, Philipp Wieder‖
∗Gesellschaft für wissenschaftliche Datenverarbeitung mbH (GWDG), Göttingen

Email:muzzamil.aziz@gwdg.de
†Gesellschaft für wissenschaftliche Datenverarbeitung mbH (GWDG), Göttingen

Email: amirreza.fazely.hamedani@gwdg.de
‡Nextworks, PISA, Italy

Email: g.landi@nextworks.it
§Interoute SpA, Italy

Email: domenico.gallico@interoute.com
¶Communication Networks Laboratory of the Computer Engineering and Informatics Department, University of Patras

Email: kchristodou@ceid.upatras.gr
‖Gesellschaft für wissenschaftliche Datenverarbeitung mbH (GWDG), Göttingen

Email: philipp.wieder@gwdg.de

Abstract—Software-Defined Networking (SDN) is a network-
ing paradigm that decouples the control plane of a network from
its forwarding plane and offers programmability of the data plane
devices to manage and control the ongoing traffic flows. This
paper presents the control plane architecture of a Datacentre
network (DCN) and its operational services being developed
for NEPHELEs optical network infrastructure. The heart of
the proposed control plane overlay is an OpenDaylight SDN
controller, which along-with its north and south-bound interfaces
bridges the gap between the cloud applications and the DC
network configuration at the data plane, in order to automatically
adjust the underlying network to the Quality of Service (QoS)
requirements at the application level. An application based traffic
shaping use case is presented as a proof of concept of application
aware networking in SDN-enabled data center networks.

I. INTRODUCTION

NEPHELE is a multidisciplinary European research project
that aims to develop a dynamic optical network infrastructure
for highly scalable, disaggregated datacentres. The scalability
of a traditional ’fat tree’ datacentre architecture is under
question today due to its non- linear expansion to cope with
the steady increase of traffic [1] in cloud and other content dis-
tribution applications etc. To tackle this problem, NEPHELE
proposes a novel DCN architecture that aims to overcome the
limitations of traditional DC design and drastically reduce the
cost and power consumption of the cloud DCs.

At its control plane level, NEPHELE utilizes the strength of
the emerging SDN paradigm to support an innovative phenom-
ena of application aware networking in cloud data centers. On
one side, it enables the efficient allocation of network resources
in DCNs and, on the other side, it ensures the QoS guarantees
required by the cloud applications running over the virtual
infrastructure and performs real-time optimizations based on
the global traffic matrices generated by those applications.

A. NEPHELE Control Plane Architecture

The objectives of the NEPHELE SDN control plane archi-
tecture are twofold: first, maintaining a topological view of the
underlying existing data plane network and providing resource
optimizations on real-time basis. Second, collaborating and
providing an interface to the cloud orchestration for the de-
ployment and configuration of virtualized networks. Hence, the
proposed architecture is composed of two major components:

• Network control framework: It is the in charge of
coordinate resource allocation in the DCN through an
SDN controller which interacts with the data plane
devices using OpenFlow protocol.

• Cloud orchestration framework: It is responsible for
coordinating and orchestrating the usage of compute,
storage and network resources in the NEPHELE DC.

Figure 1 presents a high level view of NEPHELE SDN
control plane architecture, where OpenDaylight [3] has been
introduced as an NEPHELE SDN controller. At its northbound
interface, the SDN controller interacts with the OpenStack
as a cloud orchestration platform hosting cloud applications.
Here, the interaction is made possible via a REST messaging
interface. From the implementation point of view, the configu-
rations and provisioning of the virtual resources by OpenStack
are carried out by its orchestrator component called Heat.
It is mainly responsible to coordinate and synchronize the
deployment of the different kinds of DC resources (network,
computing, storage). Furthermore, it is also responsible of
managing the real-time and on-demand requests of scaling up
or down the network resources. Other OpenStack components
such as Nova, Swift (also Cinder and Glance) and Neutron
are responsible for configuring compute, storage and network
resources respectively.

At the southbound interface, the SDN controller interacts
with the NEPHELE switching devices, such as TORs, POD

Fig. 1. High level view of NEPHELE SDN Control Plane

switches and NICs. The interaction here is made via the
device specific OpenFlow agents, which behave like proxies
to actual devices at the data plane level. The interaction
with the data plane optical devices pose several challenges
to the standardized implementation of OpenFlow agents. A
standardized OpenFlow agent based on OpenFlow version-
1.3 supports electrical Ethernet switches only, hence, contains
no ability to manage NEPHELE specific optical resources.
Therefore, the proposed NEPHELE specific OpenFlow agents
need to introduce extensions at three different levels:

• Advertisement of active ports, switching capabilities
and available wavelengths of the data plane devices.

• Operational configuration of the devices from the Con-
troller (e.g. adding flows, creating cross-connections)

• Asynchronous notifications from the data plane to the
controller and retrieval of counters from the controller
to the data plane.

B. NEPHELE control plane features and applications

The heart of the NEPHELE control plane architecture is the
SDN controller, which hosts the necessary DCN core services
and programming applications required for the seamless oper-
ation of the whole NEPHELE architecture. Figure 2 presents
a functional view of the NEPHELE SDN controller. At the
bottom level, the NEPHELE DCN southbound drivers group
all the components that manage the interaction with the data-
plane forwarding devices. The intermediate level, namely the
NEPHELE DCN core services, consists of the components
providing a set of core services of an SDN-enabled network.
The top level comprises of the specialized NEPHELE services
which are in charge of managing the interaction with the
orchestrator.

The services implemented in the NEPHELE SDN aplica-
tions are exposed by REST APIs over the HTTP protocol at the
controller’s NBI, modeling resources which are manipulated
through Create, Read, Update, Delete actions. The providers of
the services implement an HTTP server, while the consumers
implement an HTTP client. The messages exchanged on the
NBI are HTTP requests and replies, where the URL of the
HTTP message identifies the resource, while its attributes are
carried in the message body in a JSON format. The information

models associated to these resources are described through
the YANG language. In the following a brief description of
the main NEPHELE SDN applications and controller core
services, together with the REST APIs is provided:

Fig. 2. NEPHELE SDN Controller functional components

• Application Affinity Service: provides the highest en-
try point in the DCN control plane which is invoked by
the Cloud Orchestrator (OpenStack) to create, modify
or destroy network connections when provisioning,
instantiating or removing virtual networks for cloud
applications. The list of APIs is specified in Table I.
It triggers the online computation engine for obtaining
a path and reserves the required resources. It also
notifies the traffic matrix engine about the expected
application profile to enable an application-aware and
global DCN optimization in the medium-long term.

HTTP
Method

URI Description

POST /affinity/connection Establish a new DCN connection.
GET /affinity/connections Get the list of all the connections.
GET /affinity/connection/connectionID Get the details of an existing con-

nection.
DELETE /affinity/connection/connectionID Terminate an existing connection.

TABLE I. APPLICATION AFFINITY SERVICE REST APIS

• NEPHELE DCN Topology Manager: provides a read-
only service to query the current topology of the DCN,
in terms of nodes, ports and links, together with their
up-to-date resource availability and constraints. Table
II refers to the API supported by DCN Topology
Manager.

HTTP
Method

URI Description

GET /toplogymanager/topology Get the current topology.

TABLE II. DCN TOPOLOGY MANAGER REST APIS

• NEPHELE DCN Flow Manager: provides mecha-
nisms to add, remove, modify and query flows in the
DCN data plane devices. Table III refers to the APIs
supported by DCN Flow Manager.

• NEPHELE DCN Statistics Manager: provides a read-
only service (Table IV) to query the monitoring

HTTP
Method

URI Description

POST /flowmanager/flow Create a new flow.
GET /flowmanager/flows/nodeID Get the list of all the flows config-

ured in a node.
GET /flowmanager/flow/nodeID/flowID Get the details of an existing flow.
DELETE /flowmanager/flow/nodeID/flowID Remove an existing flow.

TABLE III. DCN FLOW MANAGER REST APIS

data collected from the network (e.g. counters) or to
receive notifications about network failures through
subscribe/notification procedures.

HTTP
Method

URI Description

GET /statisticsmanager/nodeID Get the counters for the given node.

TABLE IV. DCN STATISTICS MANAGER REST APIS

• Traffic Matrix Engine: provides mechanisms to build
the traffic matrix based on monitoring data or the
expected application behavior in terms of traffic pro-
file. This service operates continuously to optimize
the usage of the network resources and exposes a
management interface to retrieve the computed traffic
matrixes or to add/remove new traffic profiles.

• Traffic Offline Scheduling Engine: provides mech-
anisms to allocate resources on the DCN in the
medium/long term, optimizing the usage of the whole
network based on the traffic matrix computed by the
related engine (Table V).

HTTP
Method

URI Description

POST /offlinescheduling/networkallocation Computes a new network re-
source allocation.

GET /offlinescheduling/networkallocation
/networkallocationID

Retrieves a network resource al-
location already computed.

TABLE V. OFFLINE SCHEDDULING SERVICE REST APIS

• Online Computation Engine: provides mechanisms
to compute network paths between the DC servers,
required to establish connections for supporting single
cloud services (Table VI). It operates on-demand,
triggered by the Application Affinity Service in case of
new service requests or fast recovery of failed services.

HTTP
Method

URI Description

POST /onlinecomputation/path Commit the computation of a new
connection path.

GET /onlinecomputation/path/pathID Get the computed path.

TABLE VI. ONLINE COMPUTATION SERVICE REST APIS

C. Control Plane Hierarchical Models

The maximum size of the NEPHELE DC network is
targeted as 400 PODs, 1600 TORs and 6400 NICs at the Inno-
vation Zones for a total number of 8400 devices. Considering
the number of virtual machines as 50, each serving around 500

flows, sum up to the total number of about 160 million flows at
a time. Controlling such a big network with a single centralized
controller can pose several scalability concerns to the network.
Thus, the possibility to adopt a distributed deployment model
should be evaluated, taking into account the benefits of a better
load balancing but also, on the other hand, the additional
complexity due to the required coordination between SDN
controllers. Some potential architectural models proposed for
the control plane architecture are as follows (figure 3):

Fig. 3. Different hierarchical models for SDN controllers network

• Per-layer SDN controller: This model recommends
an additional dedicated SDN controller for each type
of switching devices at the data plane level i.e., a
centralized parent controller with two child controllers
for ToR and POD switches. It is worthy to mention
that the model fits well with the classical DCN ap-
proaches exposing the separation of leaf and core,
however, there is a possibility of a scalability concern
in terms of large traffic burden at the TORs’ controller
compared to the traffic burden on PODs’ controller.

• Per-plane SDN controller: This model proposes ad-
ditional child controllers for each single plane. This
modeling approach at least solves the asymmetric
distribution of traffic burden and devices to different
Per-layer controllers. However, the model does not
reflect the hierarchy of the traffic flow i.e., the logical
coherence of the flows can not be met with the
physically distributed controllers between the planes.

• Per-POD SDN controller: This hierarchical model is
considered as a preferable choice for NEPHELE DCN
because of its fair distribution of traffic load among the
child controllers by the parent controller. Moreover,
the partition of the network also resembles the logical
distribution of the flows in this particular design.

D. Application aware networking

The programmability of networking devices has made the
interaction between the network and the applications possible.
The outcome of which has enhanced the network capabilities
to collect the application requirements and perform resource
allocations and optimizations accordingly. Similarly, one of
the objectives of the NEPHELE control and orchestration
framework is to orchestrate the application requirements to
the SDN controller and to provide a monitoring service that
can compare the real time performances to what has been

decided, promised or expected by the applications initially. The
following section presents a business use case of application
aware networking in SDN-enabled DCNs. A similar use case
with the example of Youtube streaming application is presented
here [6].

1) Use case - Application based traffic shaping: Traffic
shaping is a known traffic management technique used by
the network administrators for traffic optimizations in the
network. This section presents how an SDN control plane
solution can help the network administrators to set traffic
shaping rules in the network with just few number of clicks.
A prototype application is developed for campus data center
networks in this regard. The end users of a campus network
can be broadly categorized as employees, students and guests.
The application GUI lets the employees record the timings
of their important project meetings or conference calls in a
calendar. Based on this calendar data, the application allows
the network administrators to set the traffic shaping rules in
order to offload some of the traffic from the students and
guests accounts in the event of important employees meetings.
Currently, the application supports two different operations to
offload network traffic. First, the reduction in bandwidth of
a given link, and second, as to deny access to certain type
of application traffic. Once the rules are saved by the network
administrator, they are automatically converted into REST API
calls to insert corresponding static flows in the OpenFlow
switches.

The above mentioned shaping operations are possible with
the help of RESTCONF APIs (/restconf/config/) [4] of
OpenDaylight (Lithium) SDN controller. As the NEPHELE
data plane devices are still being developed, the application
prototype is tested with OpenVSwitch and OpenFlow 1.3
[2]. The testbed topology is created with Mininet network
emulator, consisting of 30 client machines (10 Employee, 10
Students and 10 Guest) and 3 server hosts (HTTP, UDP and
TCP). For prototyping, a simple DC design with two level
switches in tree-leaf architecture is considered, allocating the
clients’ network to one leaf of switch and the servers’ network
to another leaf.

Figures 4 and 5 depict the network performance compar-
ison of a TCP session in a normal and restricted evaluation
modes. Out of 30 clients machines sending concurrent traffic
requests (10 TCP, 10 UDP and 10 HTTP), the performance
results of a single machine is computed with the help of iperf
[5] network utility. The figures show that the available network
bandwidth in restricted mode is much bigger than the one in
the normal mode. This is because of the reason that the link
bandwidth for guests and students accounts is reduced to 1
MB only in the restricted evaluation mode compared to 20
MB link in the normal mode. Similarly, figures 6 and 7 present
the results of a UDP session in the same manner as of TCP.
The overall behavior of the network in this case is same as
TCP, although there is no much difference between the network
bandwidth of normal and restricted evaluation mode.

II. CONCLUSION

The application aware networking is an advanced network
provisioning service of DCNs that includes the collection
of application requirements from the cloud orchestrator and

Fig. 4. Network Performance of a TCP session in normal evaluation mode

Fig. 5. Network Performance of a TCP session in restricted evaluation mode

performs two activities in return: 1) To ensure the provisioning
of demanded networking resources at the data plane level 2)
To perform real-time traffic optimization in the network in
order to enhance the QoS of the running applications to the
level of agreed SLAs. This paper presents the SDN based
control plane architecture of a NEPHELE European project
that aims to increase the efficiency of the cloud DCNs with
the introduction of a hybrid electronic-optical architecture for
DCNs. The paper explains how the above identified activities
of an application aware monitoring service are performed with
the proposed control plane for NEPHELE DCN.

ACKNOWLEDGMENT

This work has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 645212 (NEPHELE).

REFERENCES

[1] Cisco, Cisco Global Cloud Index: Forecast and Methodology, 2014-2019,
2015.

[2] Open Networking Foundation, OpenFlow Switch Specification. Version
1.3.0, ONF TS-006, June 2012.

[3] S. Rao. SDN Series Part Six: OpenDaylight, the Most Documented
Controller.

[4] A. Bierman and M. Bjorklund and K. Watsen, RESTCONF Protocol -
draft-bierman-netconf-restconf-02, IETF 88, November2013.

[5] A. Tirumala and F. Qin and J. Dugan and J. Ferguson and K. Gibbs, The
TCP/UDP bandwidth measurement tool, May 2005, http://NANAR.net

[6] M. Jarschel and F. Wamser and T. Hhn and T. Zinner and P. Tran-Gia,
SDN based Application Aware Networking on the Example of YouTube
Video Streaming

Fig. 6. Network Performance of a UDP session in normal evaluation mode

Fig. 7. Network Performance of a UDP session in restricted evaluation mode

