	Supplement to: Electron energy partition across interplanetary shocks
2	Lynn B. Wilson III^1 and $et al.^2$
3	¹ NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, Maryland, USA.
4	² Important Place with Important People, Important City, Important State/Province, Important Country.
5	(Received December 20, 2018; Revised Month DD, YYYY; Accepted N/A)
6	Submitted to ApJ
7	ABSTRACT
8	This is supplemental material to the multi-part papers entitled, "Electron energy partition across
9	interplanetary shocks"

¹⁰ Keywords: plasmas — shock waves — (Sun:) solar wind — Sun: coronal mass ejections (CMEs)

11 1. PARAMETERS AND SHOCK ANALYSIS

¹² We use the following notations for any quantity, Q, ¹³ thoughout this paper: $Q_o, \delta Q$, and $\langle Q \rangle_j$, where Q_o is any ¹⁴ quasi-static quantity, δQ is any fluctuating or high pass ¹⁵ filtered quantity, $\Delta Q = \langle Q \rangle_{dn} - \langle Q \rangle_{up}$, and $\langle Q \rangle_j$ is the ¹⁶ time average of any quantity over region j = upstream ¹⁷ (up) or downstream (dn). Note that Q_o is not the same ¹⁸ as $\langle Q \rangle_j$ in this context.

Herein we use the following parameter definitions: \mathbf{B}_{α} 19 is the quasi-static magnetic field vector [nT]; \mathbf{V}_{bulk} is 20 the bulk flow velocity vector $[km \ s^{-1}]; n_s$ is the number 21 density of species $s \ [cm^{-3}]; \ m_s$ is the mass of species 22 $[kg]; T_s$ is the scalar temperature of species s [eV];s23 $W_s = \sqrt{k_B T_s/m_s}$ is the rms thermal speed of species 24 s; $V_A = B_o / \sqrt{\mu_o m_i n_i}$ is the Alfvén speed $[km \ s^{-1}];$ 25 $\delta \mathbf{B}$ is the high pass filtered fluctuating magnetic field 26 due to a whistler precursor $[nT]; \Delta |\mathbf{B}_o|$ is the change in 27 the magnetic field magnitude across a shock ramp [nT]; 28 SCF is the spacecraft rest frame; and SHF is the shock 29 rest frame. 30

All shock parameters used herein were taken from the Harvard Smithsonian Center for Astrophysics' Wind shock database (WSDB), which can be found at:

³⁴ https://www.cfa.harvard.edu/shocks/wi_data/.

³⁵ The WSDB provides tables of numerical solutions to the

³⁶ Rankine-Hugoniot relations (e.g., Koval & Szabo 2008;

37 Szabo 1994; Vinas & Scudder 1986) for eight different

³⁸ methods (see Section 1.1 for definitions). The first table,

Corresponding author: L.B. Wilson III lynn.b.wilsoniii@gmail.com titled *General Information*, on each event webpage lists
the selected best method from which we take the values
for all events examined herein (e.g., second column of
Table 1).

43 In the tables that follow on each event webpage of WSDB, some parameters are listed by name while 44 others use symbols or abbreviations. In the follow-45 ing we will state our definition followed by the WSDB equivalent label in parentheses and italicized text. 47 Rather than repeated state that $\langle Q \rangle_j$ corresponds to the quantity Q averaged over the j^{th} region, we will 49 simply imply it for brevity. These parameters we used 50 ⁵¹ are: $\langle W_s \rangle_i (Ws)$ is the rms thermal speed of species s $[km \ s^{-1}]; \langle V_A \rangle_i (Alfven Speed)$ is the Alfvén speed av-52 eraged $[km \ s^{-1}]; \ \langle C_s \rangle_j (Sound \ Speed)$ is the sound or ⁵⁴ ion-acoustic sound speed, defined here as $\sqrt{\frac{5}{3}} \langle W_i \rangle_j$; $\langle \beta_{Tot} \rangle_j (Plasma Beta)$ is the "total" plasma beta, define 55 here as $(3/5)C_s^2/V_A^2$; $\hat{\mathbf{n}}(Nx, Ny, \text{ and } Nz)$ is the shock 56 normal unit vector [GSE]; $\mathcal{R}(Compression)$ is the shock 57 density compression ratio, defined as $\langle n_i \rangle_{down} / \langle n_i \rangle_{up}$; $\langle \theta_{Bn} \rangle_{up} (ThetaBn)$ is the shock normal angle, defined 59 as the acute reference angle between $\langle \mathbf{B}_o \rangle_{up}$ and $\hat{\mathbf{n}}$; 60 $|V_{shn}|$ (Shock Speed) is the upstream shock normal speed 61 ⁶² in the SCF (determined numerically from Equation 4d); $\langle U_{shn} \rangle_j (dV)$ flow speed along shock normal in the SHF 63 $[km \ s^{-1}]$ (defined in Equation 7); $\langle M_A \rangle_i$ (not shown) is ⁶⁵ the Alfvénic Mach number, defined as $\langle |U_{shn}| \rangle_j / \langle V_A \rangle_j$; and $\langle M_f \rangle_i$ (Fast Mach) is the fast mode Mach number,

Δ

98

99

100

101

102

103

104

105

106

107

108

109

⁶⁷ defined as $\langle |U_{shn}| \rangle_j / \langle V_f \rangle_j$ where V_f is the MHD fast mode phase speed given by:

$$\frac{2V_{f}^{2} = \left(C_{s}^{2} + V_{A}^{2}\right) + \sqrt{\left(C_{s}^{2} - V_{A}^{2}\right)^{2} + 4C_{s}^{2}V_{A}^{2}\sin^{2}\theta_{B_{R}}}$$
(1a)

$$= (C_s^2 + V_A^2) + \sqrt{(C_s^2 + V_A^2)^2 - 4C_s^2 V_A^2 \cos^2 \theta_{Bn}}$$
(1b)

⁶⁹ where C_s is the sound speed (e.g., see Equation 1.9.1 in ⁷⁰ Krall & Trivelpiece 1973), which is formally defined as:

$$C_s^{\ 2} \equiv \frac{\partial P}{\partial \rho_m} \tag{2a}$$

which is often approximated by assuming an adiabatic equation of state to give:

$$=\frac{\gamma P}{\rho_m} \tag{2b}$$

and in a plasma where the ions and electrons carry different polytrope indices, we have the ion-acoustic sound speed:

$$C_s^{\ 2} = \frac{k_B \left(Z_i \gamma_e T_e + \gamma_i T_i \right)}{M_i + m_e} \tag{2c}$$

⁷¹ where k_B = Boltzmann constant, Z_i = ion charge state, ⁷² and one generally assumes that either $\gamma_e = 1$ (isother-⁷³ mal) and $\gamma_i = 2$ or 3, or $T_e \gg T_i$ and $\gamma_e = 1$ such that ⁷⁴ $C_s^2 \sim \frac{k_B T_e}{M_i}$.

The sound speed reported on the WSDB is, as stated 75 above, give by $\langle C_s \rangle_j = \sqrt{\frac{5}{3}} \langle W_i \rangle_j$, the total plasma beta 76 77 relies only upon ion data.

78

1.1. Conservation Relations

In the case of a planar shock, we can define the 79 conservation relations called the Rankine-Hugoniot re-80 lations across the shock ramp. If we define $\Delta[X] =$ 81 $\langle X \rangle_{dn}$ - $\langle X \rangle_{up}$, where the subscript u(d) corresponds 82 ⁸³ to upstream(downstream). Then we have the follow⁸⁴ ing Rankine-Hugoniot relations (Koval & Szabo 2008; 85 Szabo 1994; Vinas & Scudder 1986):

$$\Delta \left[G_n\right] \equiv \Delta \left[\rho \left(V_n - V_{shn}\right)\right] = 0 \tag{3a}$$

$$\Delta[B_n] \equiv \Delta[\hat{\mathbf{n}} \cdot \mathbf{B}] = 0 \tag{3b}$$

$$\Delta \left[\mathbf{S}_{t} \right] \equiv \Delta \left[\rho \left(V_{n} - V_{shn} \right) \mathbf{V}_{t} - \frac{B_{n}}{\mu_{o}} \mathbf{B}_{t} \right] = 0 \qquad (3c)$$

$$\begin{bmatrix} \mathbf{E}_t \end{bmatrix} \equiv \Delta \left[(\hat{\mathbf{n}} \times \mathbf{V}_t) B_n - (V_n - V_{shn}) (\hat{\mathbf{n}} \times \mathbf{B}_t) \right] = 0$$
(3d)

$$\Delta[S_n] \equiv \Delta\left[P + \frac{\mathbf{B}_t \cdot \mathbf{B}_t}{2\,\mu_o} + \rho\left(V_n - V_{shn}\right)^2\right] = 0 \quad (3e)$$

$$\begin{split} \Delta\left[\varepsilon\right] \equiv &\Delta\left[\rho\left(V_{n} - V_{shn}\right)\left\{\frac{1}{2}\left(\mathbf{V}_{sw} - V_{shn}\ \hat{\mathbf{n}}\right)^{2}\right. \\ &+ \frac{\gamma}{\gamma - 1}\frac{P}{\rho} + \frac{\mathbf{B}\cdot\mathbf{B}}{\rho\ \mu_{o}}\right\} \\ &- \frac{B_{n}\left(\mathbf{V}_{sw} - V_{shn}\ \hat{\mathbf{n}}\right)\cdot\mathbf{B}}{\mu_{o}}\right] = 0 \end{split}$$
(3f)

where we have defined:

 $Q_n = \mathbf{Q} \cdot \hat{\mathbf{n}}$ (4a)

$$\mathbf{Q}_t = (\hat{\mathbf{n}} \times \mathbf{Q}) \times \hat{\mathbf{n}} \tag{4b}$$

$$= \mathbf{Q} \cdot (\mathbb{I} - \hat{\mathbf{n}}\hat{\mathbf{n}}) \tag{4c}$$

$$V_{shn} = \frac{\Delta \left[\rho \ \mathbf{V}_{sw}\right]}{\Delta \left[\rho\right]} \cdot \hat{\mathbf{n}} \tag{4d}$$

and ρ is the mass density, P is scalar total (ion plus 87 electron) thermal pressure, and γ is the ratio of specific 88 heats or polytrope index. We note that $\mathbf{P} = \hat{\mathbf{n}} \cdot \mathbb{P} \cdot \hat{\mathbf{n}} =$ $1/3 \operatorname{Tr}[\mathbb{P}] \sim n_o k_B (T_e + T_i)$ for an ideal gas.

The Harvard Smithsonian Center for Astrophysics' 91 Wind shock database (WSDB), which can be found at: 92 https://www.cfa.harvard.edu/shocks/wi_data/

provides tables of numerical solutions to the Rankine-94 Hugoniot relations (e.g., Koval & Szabo 2008; Szabo 95 1994; Vinas & Scudder 1986) for eight different methods, 96 where the labels are defined as: 97

- 1. MC: Magnetic Coplanarity (e.g., Abraham-Shrauner & Yun 1976; Russell et al. 1983; Vinas & Scudder 1986):
- 2. VC: Velocity Coplanarity (e.g., Abraham-Shrauner & Yun 1976; Russell et al. 1983; Vinas & Scudder 1986);
- 3. MX1: Mixed Mode Normal 1 (e.g., Abraham-Shrauner & Yun 1976; Russell et al. 1983);
- 4. MX2: Mixed Mode Normal 2 (e.g., Abraham-Shrauner & Yun 1976; Russell et al. 1983);
- 5. MX3: Mixed Mode Normal 3 (e.g., Abraham-Shrauner & Yun 1976; Russell et al. 1983);

- 6. RH08: Rankine-Hugoniot with 8 Equations (e.g., 110 Abraham-Shrauner & Yun 1976; Koval & Szabo 111 2008; Russell et al. 1983; Szabo 1994; Vinas & 112 Scudder 1986); 113
- 7. RH09: Rankine-Hugoniot with 9 Equations (e.g., 114
- Abraham-Shrauner & Yun 1976; Koval & Szabo 115 2008; Russell et al. 1983; Szabo 1994; Vinas & 116 Scudder 1986); and 117
- 8. RH10: Rankine-Hugoniot with 10 Equations 118 (e.g., Abraham-Shrauner & Yun 1976; Koval & 119 Szabo 2008; Russell et al. 1983; Szabo 1994; Vinas 120 & Scudder 1986).
- The shock normals for the first five methods are given 122 123 by:

Magnetic Coplanarity (MC)

121

124

$$\hat{\mathbf{n}} = \pm \frac{\left(\langle \mathbf{B}_o \rangle_{up} \times \langle \mathbf{B}_o \rangle_{dn}\right) \times \left(-\Delta \mathbf{B}_o\right)}{\left|\left(\langle \mathbf{B}_o \rangle_{up} \times \langle \mathbf{B}_o \rangle_{dn}\right) \times \left(-\Delta \mathbf{B}_o\right)\right|}$$
(5a)

Velocity Coplanarity (VC)

$$\hat{\mathbf{n}} = \pm \frac{\Delta \mathbf{V}_{bulk}}{|\Delta \mathbf{V}_{bulk}|} \tag{5b}$$

Mixed Mode Normal 1 (MX1)

$$\hat{\mathbf{n}} = \pm \frac{(\Delta \mathbf{V}_{bulk} \times \langle \mathbf{B}_o \rangle_{up}) \times \Delta \mathbf{B}_o}{|(\Delta \mathbf{V}_{bulk} \times \langle \mathbf{B}_o \rangle_{up}) \times \Delta \mathbf{B}_o|}$$
(5c)

Mixed Mode Normal 2 (MX2)

$$\hat{\mathbf{n}} = \pm \frac{(\Delta \mathbf{V}_{bulk} \times \langle \mathbf{B}_o \rangle_{dn}) \times \Delta \mathbf{B}_o}{|(\Delta \mathbf{V}_{bulk} \times \langle \mathbf{B}_o \rangle_{dn}) \times \Delta \mathbf{B}_o|}$$
(5d)

Mixed Mode Normal 3 (MX3)

$$\hat{\mathbf{n}} = \pm \frac{-\Delta \mathbf{B}_o \times (\Delta \mathbf{V}_{bulk} \times \Delta \mathbf{B}_o)}{|\Delta \mathbf{B}_o \times (\Delta \mathbf{V}_{bulk} \times \Delta \mathbf{B}_o)|}$$
(5e)

1.2. Field Transformations

We can define the velocity transformation from any 125 arbitrary frame of reference (e.g. spacecraft frame) to 126 he shock frame of reference as: 127

$$\mathbf{V}_{sh}^{rest} = \mathbf{V}^{arb.} - \left(\mathbf{V}_{sh}^{arb.} \cdot \hat{\mathbf{n}}\right) \hat{\mathbf{n}}$$
(6)

where $\hat{\mathbf{n}}$ is the vector normal to the assumed planar 128 shock front (see Appendix 1.1). For an experimentalist's 129 purposes, $\mathbf{V}^{arb.} \rightarrow \mathbf{V}_{sw}^{SCF}$, where \mathbf{V}_{sw}^{SCF} is the bulk 130 flow velocity (e.g., solar wind velocity) in the spacecraft 131 frame (SCF) of reference. Therefore, let us define V_{shn} 132 as the shock normal speed in the SCF and $\langle U_{shn} \rangle_i$ as the 133 flow speed along shock normal in the shock rest frame 134 (SHF) averaged over the j^{th} region. Therefore, Equation 135 6 goes to: 136

$$\langle U_{shn} \rangle_j = \left[\langle \mathbf{V}_{sw}^{SCF} \rangle_j - (V_{shn} \ \hat{\mathbf{n}}) \right] \cdot \hat{\mathbf{n}} \ . \tag{7}$$

For many applications, one may want to know the 137 upstream incident bulk flow speed in the shock frame, 138 which is given by: 139

$$\mathbf{V}_{u}^{SHF} = \mathbf{V}_{sw} - (V_{shn} \ \hat{\mathbf{n}}) \ . \tag{8}$$

2. SHOCK PARAMETER TABLES

 Table 1. IP Shock Parameters

Ramp Time	RH ^a	$\langle V_{shn} \rangle_{up} {}^{\rm b}$	$\langle n_i angle_{up}$ c	$\langle \mathbf{B}_o \rangle_{up}$ d	$\langle M_A \rangle_{up}$ e	$\langle M_{cs} \rangle_{up}$ f	$\langle M_f angle_{up}$ g
[UTC]	Meth.	$[\rm km/s]$	$[cm^{-3}]$	[nT]			
1995-02-26/02:55:41.125	RH08	285.90 ± 4.60	$21.3 {\pm} 0.70$	$8.62 {\pm} 8.66$	$1.43 {\pm} 0.03$	$2.54 \pm \ 0.06$	$1.35 {\pm} 0.03$
1995-07-24/02:23:13.000	RH08	375.20 ± 6.20	$8.80 {\pm} 0.20$	$1.91{\pm}1.96$	$6.24 {\pm} 0.37$	4.41 ± 0.19	$4.00{\pm}0.15$
1995-08-17/02:47:21.925	RH08	463.90 ± 4.80	$2.50 {\pm} 0.20$	$2.00{\pm}2.31$	$2.50 {\pm} 0.20$	$2.07{\pm}~0.14$	$1.74{\pm}0.10$
1995-08-22/12:56:49.250	RH08	381.00 ± 5.30	$3.40 {\pm} 0.20$	$2.11{\pm}2.17$	$2.57 {\pm} 0.13$	$2.47 \pm\ 0.16$	$1.82{\pm}0.04$
1995-12-24/05:57:35.375	RH08	422.80 ± 11.50	$16.4{\pm}1.50$	$6.33{\pm}6.52$	$2.95{\pm}0.26$	$4.30{\pm}~0.23$	$2.52{\pm}0.17$
1996-02-06/19:14:23.700	RH08	383.40 ± 5.90	$7.60{\pm}0.30$	$3.88{\pm}4.25$	$1.71 {\pm} 0.10$	$2.06 \pm \ 0.07$	$1.40{\pm}0.06$
1996-04-02/10:07:57.525	RH09	155.20 ± 5.70	$12.1 {\pm} 0.30$	$2.55 {\pm} 2.77$	$2.29{\pm}0.19$	$1.51{\pm}~0.05$	$1.27{\pm}0.07$
1996-04-03/09:47:17.152	RH08	379.20 ± 3.80	$14.5 {\pm} 0.50$	$4.24{\pm}4.26$	$2.02{\pm}0.06$	$2.52{\pm}~0.07$	$1.59{\pm}0.02$
1996-04-08/02:41:09.765	RH08	182.30 ± 4.00	$15.8 {\pm} 0.20$	$5.69{\pm}5.85$	$2.42{\pm}0.04$	3.89 ± 0.06	$2.08 {\pm} 0.03$
1997-02-09/12:50:21.125	RH08	635.90 ± 12.50	$3.90{\pm}0.20$	$3.38{\pm}3.63$	$3.14{\pm}0.16$	$2.09 \pm \ 0.09$	$1.86{\pm}0.06$
1997-02-27/17:29:09.087	RH08	557.40 ± 30.20	$1.80{\pm}0.10$	$3.99{\pm}4.09$	$1.83{\pm}0.06$	3.42 ± 0.16	$1.71 {\pm} 0.04$
1997-05-15/01:15:21.945	RH08	449.00 ± 11.50	$18.6 {\pm} 0.40$	$7.29{\pm}7.34$	$3.99{\pm}0.14$	$5.06\pm$ 0.11	$3.14{\pm}0.07$
1997-05-20/05:10:47.400	RH08	349.60 ± 2.60	$8.60{\pm}0.30$	$3.39{\pm}3.52$	$1.92{\pm}0.13$	$2.02{\pm}~0.16$	$1.50{\pm}0.08$
1997-10-24/11:18:09.966	RH08	490.90 ± 13.00	$11.0 {\pm} 0.70$	$9.14 {\pm} 9.91$	$1.92{\pm}0.07$	$3.71 {\pm}~0.23$	$1.73 {\pm} 0.06$
1997-11-30/07:15:44.250	RH08	360.60 ± 4.40	$19.2 {\pm} 0.50$	$4.81{\pm}5.00$	$3.01{\pm}0.08$	$3.67{\pm}~0.08$	$2.48 {\pm} 0.05$
1997-12-10/04:33:14.664	RH08	391.20 ± 12.40	$10.2 {\pm} 0.90$	$7.10{\pm}7.35$	$2.73 {\pm} 0.17$	3.89 ± 0.26	$2.26 {\pm} 0.10$
1997-12-30/01:13:43.921	RH08	423.40 ± 8.10	$7.70 {\pm} 0.20$	$5.37 {\pm} 5.82$	$2.47{\pm}0.07$	$2.94{\pm}~0.07$	$1.89{\pm}0.03$
1998-01-06/13:29:00.368	RH08	$408.40 {\pm}~10.00$	$9.70{\pm}0.40$	$6.53{\pm}6.86$	$2.41{\pm}0.07$	$3.40 \pm\ 0.29$	$1.97{\pm}0.05$
1998-01-31/15:53:43.500	RH09	$418.50 {\pm}~20.20$	$6.70{\pm}0.50$	$9.81{\pm}9.87$	$1.06{\pm}0.06$	$3.62{\pm}~0.37$	$1.04{\pm}0.02$
1998-03-04/11:02:45.500	MX3	455.50 ± 3170	$4.70 {\pm} 0.20$	$3.17 {\pm} 3.20$	$3.48 {\pm} 0.15$	3.18 ± 0.16	$2.57{\pm}0.04$
1998-04-07/16:53:35.700	RH08	368.80 ± 4.00	$9.30{\pm}0.30$	$6.87{\pm}6.94$	$2.02{\pm}0.04$	$3.98 \pm \ 0.15$	$1.92{\pm}0.03$
1998-04-23/17:29:02.500	RH08	401.70 ± 9.80	$14.3{\pm}0.80$	$4.18{\pm}4.22$	$3.22{\pm}0.10$	$2.32 \pm \ 0.06$	$1.98{\pm}0.05$
1998-04-30/08:43:15.291	RH08	$331.20 \pm \ 6.30$	$11.6{\pm}0.60$	$1.04{\pm}1.57$	$15.61{\pm}4.14$	$6.91 \pm\ 0.37$	$6.39{\pm}0.34$
1998-05-03/17:02:20.425	RH08	$499.60 {\pm}~11.10$	$3.80{\pm}0.40$	$3.50{\pm}3.72$	$1.91{\pm}0.11$	$5.50{\pm}~0.42$	$1.85{\pm}0.09$
1998-05-15/13:53:46.000	RH08	328.50 ± 2.10	$12.3{\pm}0.10$	$2.85{\pm}2.87$	$4.61{\pm}0.06$	$4.51 \pm\ 0.15$	$3.40{\pm}0.04$
1998-06-13/19:18:10.950	MX2	257.70 ± 8.00	$3.70{\pm}0.40$	$4.45{\pm}4.50$	$1.86{\pm}0.13$	$4.70 \pm\ 0.47$	$1.83{\pm}0.08$
1998-08-06/07:16:07.587	RH08	$478.80 {\pm}~36.50$	$10.9{\pm}1.00$	$10.3{\pm}10.4$	$1.66{\pm}0.10$	$5.11 \pm \ 0.39$	$1.58{\pm}0.08$
1998-08-19/18:40:41.450	RH08	$334.70 \pm \ 6.20$	$7.80{\pm}0.30$	$3.54{\pm}3.91$	$2.80{\pm}0.17$	$3.35\pm$ 0.17	$2.32{\pm}0.13$
1998-08-26/06:40:24.972	RH08	687.40 ± 26.80	$4.90{\pm}0.40$	$6.48{\pm}6.64$	$6.20{\pm}0.39$	$7.30{\pm}~0.28$	$4.74{\pm}0.18$
1998-10-02/07:06:02.475	RH08	620.30 ± 77.00	$2.80{\pm}1.10$	$6.48{\pm}7.15$	$2.88{\pm}0.91$	$4.02{\pm}~0.94$	$2.66{\pm}0.41$
1998-10-23/12:58:20.505	RH09	$584.60 \pm \ 7.90$	$2.60{\pm}0.10$	$4.22 {\pm} 4.53$	$2.27{\pm}0.11$	$2.08 \pm \ 0.10$	$1.66{\pm}0.05$
1998-11-08/04:41:17.290	RH08	$644.50 \pm \ 64.30$	$4.40{\pm}0.70$	17.4 ± 17.6	$1.51{\pm}0.14$	6.47 ± 1.11	$1.49{\pm}0.14$
1998-12-28/18:20:16.211	RH08	$465.20 \pm \ 30.20$	$6.90{\pm}0.90$	$6.88{\pm}8.53$	$1.75{\pm}0.27$	$2.28 \pm \ 0.55$	$1.42{\pm}0.16$
1999-01-13/10:47:45.119	RH08	433.10 ± 22.40	$9.70{\pm}1.10$	$5.06{\pm}6.24$	$2.48{\pm}0.27$	$2.69 \pm \ 0.27$	$1.85{\pm}0.20$
1999-01-22/20:21:37.150	RH08	$668.90{\pm}146.50$	$2.90{\pm}0.10$	$9.56{\pm}10.1$	$1.44{\pm}0.04$	$2.31 \pm\ 0.10$	$1.40 {\pm} 0.03$
1999-02-18/02:48:15.800	RH08	$699.00 {\pm}~19.70$	$3.30{\pm}0.40$	$7.08{\pm}7.43$	$3.55{\pm}0.25$	5.05 ± 1.16	$3.05{\pm}0.38$
1999-04-16/11:14:11.089	RH09	479.80 ± 14.50	$4.00{\pm}0.50$	$6.60{\pm}6.63$	$1.60{\pm}0.11$	$3.62{\pm}~0.37$	$1.49{\pm}0.08$
1999-05-18/00:32:39.625	RH08	442.40 ± 3.80	$8.00{\pm}0.50$	$5.56{\pm}5.66$	$2.37{\pm}0.11$	$3.38 \pm \ 0.19$	$2.25{\pm}0.07$
1999-06-26/19:30:58.154	RH08	467.20 ± 9.70	$15.6 {\pm} 1.00$	$11.9{\pm}12.9$	$2.22{\pm}0.07$	$2.93 \pm \ 0.14$	$1.83{\pm}0.03$
1999-07-02/00:27:24.060	RH08	$635.90 {\pm}~36.00$	$1.30{\pm}0.00$	$4.59{\pm}5.05$	$2.05{\pm}0.07$	$2.83 \pm \ 0.29$	$1.81{\pm}0.04$

140

Table 1 continued

ELECTRON ENERGY PARTITION SUPP

Table 1 (continued)

Ramp Time	RH ^a	$\langle V_{shn} \rangle_{up}$ b	$\langle n_i angle_{up}$ c	$\langle \mathbf{B}_o \rangle_{up} \mathrm{d}$	$\langle M_A \rangle_{up}$	$\langle M_{cs} \rangle_{up}$ f	$\langle M_f \rangle_{up}$ g
[UTC]	Meth.	$[\rm km/s]$	$[cm^{-3}]$	[nT]			
1999-07-06/14:24:56.625	RH08	475.70 ± 20.80	$2.90{\pm}0.20$	$5.59{\pm}5.99$	$1.86{\pm}0.07$	$6.50{\pm}~0.55$	$1.83 {\pm} 0.05$
1999-07-26/23:50:17.327	RH08	426.80 ± 8.80	$2.30 {\pm} 0.20$	$3.85{\pm}4.06$	$1.33 {\pm} 0.24$	$1.39 \pm \ 0.17$	$1.15{\pm}0.05$
1999-08-04/01:44:38.601	RH08	$418.10 \pm \ 6.90$	$8.70 {\pm} 0.20$	$6.23{\pm}6.39$	$2.07{\pm}0.08$	$4.91{\pm}~0.27$	$1.95{\pm}0.04$
1999-08-15/10:33:45.975	RH09	424.30 ± 8.90	$15.5 {\pm} 0.60$	$4.49{\pm}5.49$	$3.73{\pm}0.26$	$2.35 \pm \ 0.10$	$1.99{\pm}0.05$
1999-08-23/15:41:34.980	MX2	506.20 ± 25.10	$8.70 {\pm} 0.40$	$10.6{\pm}10.7$	$1.17 {\pm} 0.05$	$1.98 \pm \ 0.11$	$1.01{\pm}0.04$
1999-09-12/03:57:56.062	RH08	534.90 ± 8.00	$3.70 {\pm} 0.20$	$4.04{\pm}4.35$	$3.15{\pm}0.10$	3.41 ± 0.12	$2.35 {\pm} 0.06$
1999-09-15/07:43:49.625	RH08	665.50 ± 16.30	$2.60{\pm}0.10$	$5.69{\pm}7.01$	$2.04{\pm}0.12$	$1.93 \pm\ 0.07$	$1.42{\pm}0.06$
1999-09-22/12:09:25.567	RH08	510.70 ± 37.20	$17.0 {\pm} 0.70$	11.3 ± 13.8	$2.44{\pm}0.10$	$2.85 \pm \ 0.11$	$1.88{\pm}0.08$
1999-10-21/02:20:51.968	RH08	477.30 ± 28.60	$13.4{\pm}0.40$	$9.17{\pm}9.64$	$2.46{\pm}0.07$	$4.71 {\pm}~0.16$	$2.21{\pm}0.06$
1999-12-12/15:54:27.750	RH08	564.00 ± 39.90	$0.60 {\pm} 0.10$	$4.71 {\pm} 4.83$	$1.51{\pm}0.19$	$7.20{\pm}~1.40$	$1.51{\pm}0.20$
2000-02-11/23:33:55.710	RH08	641.40 ± 13.20	$5.00 {\pm} 0.40$	$6.70{\pm}6.94$	$3.98 {\pm} 0.12$	5.62 ± 0.25	$3.25 {\pm} 0.08$
2000-02-20/21:03:45.795	RH08	474.50 ± 13.40	$8.60 {\pm} 0.50$	$7.64{\pm}7.70$	$3.06{\pm}0.10$	$5.48 \pm \ 0.32$	$2.67 {\pm} 0.05$

 a Rankine-Hugoniot

^b shock normal speed in SCF

^c upstream ion number density

^dupstream magnetic field magnitude

 $^e\,{\rm upstream}$ Alfvénic Mach number

 $f_{\rm upstream}$ sound Mach number

 $g_{\rm upstream}$ fast mode Mach number

NOTE—For symbol definitions, see Section 1.

141

3. CRITICAL MACH NUMBERS

For each crossing, we estimated four different crit-142 ical Mach numbers. The first critical Mach number, 143 M_{cr} , defines the maximum Mach number above which 144 an ion sound wave could not phase stand within the 145 shock ramp, thus for $\langle M_f/M_{cr}\rangle_{up} \geq 1$ the shock cannot 146 rely upon resistive dissipation effects to maintain a sta-147 ble discontinuity (e.g., Edmiston & Kennel 1984; Kennel 148 et al. 1985). We also estimated three whistler critical 149 Mach numbers (Krasnoselskikh et al. 2002), defined as: 150 M_{ww} is the maximum Mach number for which a linear 151 whistler can phase stand upstream of the shock ramp; 152 M_{qr} is similar to M_{ww} but depends upon the whistler 153 group velocity, thus determines the cutoff where a lin-154 ear precursor can no longer carry energy into the up-155 stream; and M_{nw} defines the separation between a sta-156 ble/stationary and "breaking" shock front. 157

The ratios between the upstream fast mode Mach number and each critical Mach number is shown in Table 2 along with the upstream average beta and shock normal angle for the 145 good shocks. All values are reported with associated uncertainties. Notice that only ¹⁶³ 12(~8%) satisfy $\langle M_f/M_{cr}\rangle_{up} \geq 1$, thus most of these ¹⁶⁴ shocks are subcritical.

As a side note, for all 250 quasi-perpendicular shocks in the WSDB, $104(\sim 42\%)$ satisfy $\langle M_f/M_{cr}\rangle_{up} \geq 1$ thus slightly less than half are supercritical. Further, only $40(\sim 16\%)$ satisfy $\langle M_f/M_{ww}\rangle_{up} \geq 1$, thus most quasiperpendicular interplanetary shocks should exhibit upstream whistler precursor waves, assuming cold plasma and a dispersion-only dissipation mechanism (e.g., Krasnoselskikh et al. 2002).

 Table 2. IP Shock Critical Mach Number Ratios

Ramp Time	$\langle U_{shn} \rangle_{up}$ a	$\langle \beta_{Tot} \rangle_{up}$ b	$\langle heta_{Bn} angle_{up}$ c	$\langle M_f/M_{cr} \rangle_{up}$	$\langle M_f/M_{ww} \rangle_{up}$ e	$\langle M_f/M_{gr} \rangle_{up}$ f	$\langle M_f/M_{nw} \rangle_{up}$ g
[UTC]	$[\rm km/s]$		[deg]				
1995-02-26/02:55:41.125	58.60 ± 1.00	$0.19{\pm}0.19$	$34.80{\pm}1.50$	$0.67 {\pm} 0.05$	$0.08 {\pm} 0.00$	$0.06 {\pm} 0.00$	$0.05 {\pm} 0.00$
1995-07-24/02:23:13.000	90.70 ± 1.10	$1.21{\pm}1.27$	$33.80{\pm}7.00$	$2.62 {\pm} 0.85$	0.23 ± 0.02	$0.17{\pm}0.02$	$0.16 {\pm} 0.01$
1995-08-17/02:47:21.925	70.10 ± 4.40	$0.89{\pm}0.94$	$41.90{\pm}4.10$	$1.03 {\pm} 0.31$	$0.11 {\pm} 0.01$	$0.08{\pm}0.01$	$0.08 {\pm} 0.01$
1995-08-22/12:56:49.250	66.10 ± 2.50	$0.65{\pm}0.67$	66.10 ± 7.40	$0.91 {\pm} 0.24$	0.21 ± 0.06	$0.16 {\pm} 0.05$	$0.15 {\pm} 0.04$
1995-12-24/05:57:35.375	101.50 ± 2.30	$0.29{\pm}0.26$	58.40 ± 3.30	$1.14{\pm}0.16$	0.22 ± 0.03	$0.17{\pm}0.02$	$0.16 {\pm} 0.02$
1996-02-06/19:14:23.700	52.90 ± 1.30	$0.42{\pm}0.43$	48.40 ± 4.60	$0.70 {\pm} 0.13$	$0.10{\pm}0.01$	$0.08 {\pm} 0.01$	$0.07 {\pm} 0.01$
1996-04-02/10:07:57.525	36.90 ± 1.00	$1.39{\pm}1.47$	74.00 ± 3.10	$0.71 {\pm} 0.27$	0.22 ± 0.04	$0.17 {\pm} 0.03$	$0.15 {\pm} 0.03$
1996-04-03/09:47:17.152	49.60 ± 0.80	$0.39{\pm}0.38$	$75.70{\pm}1.40$	$0.71 {\pm} 0.12$	$0.30 {\pm} 0.03$	$0.23 {\pm} 0.02$	$0.21{\pm}0.02$
1996-04-08/02:41:09.765	76.40 ± 0.70	$0.23 {\pm} 0.23$	$73.30{\pm}1.10$	$0.87 {\pm} 0.10$	$0.34{\pm}0.02$	$0.26 {\pm} 0.02$	$0.24{\pm}0.02$
1997-02-09/12:50:21.125	122.90 ± 3.50	$1.37{\pm}1.30$	$42.70{\pm}10.2$	$1.19{\pm}0.40$	0.12 ± 0.02	$0.09 {\pm} 0.02$	$0.08 {\pm} 0.01$
1997-02-27/17:29:09.087	122.50 ± 2.50	$0.17{\pm}0.18$	42.20 ± 3.50	$0.80 {\pm} 0.06$	$0.11 {\pm} 0.01$	$0.08 {\pm} 0.00$	$0.08 {\pm} 0.00$
1997-05-15/01:15:21.945	147.00 ± 0.80	$0.38{\pm}0.38$	$85.30{\pm}2.20$	$1.38 {\pm} 0.24$	$1.79 {\pm} 0.84$	$1.38{\pm}0.64$	$1.27 {\pm} 0.59$
1997-05-20/05:10:47.400	49.50 ± 3.20	$0.54{\pm}0.54$	$46.00{\pm}11.3$	$0.80 {\pm} 0.18$	$0.10{\pm}0.02$	$0.08 {\pm} 0.02$	$0.07 {\pm} 0.02$
1997-10-24/11:18:09.966	117.40 ± 2.40	$0.16{\pm}0.16$	68.30 ± 4.50	$0.71 {\pm} 0.06$	0.22 ± 0.04	$0.17 {\pm} 0.03$	$0.15 {\pm} 0.03$
1997-11-30/07:15:44.250	71.90 ± 1.20	$0.41{\pm}0.40$	$49.10{\pm}2.10$	$1.24{\pm}0.21$	$0.18 {\pm} 0.01$	$0.14{\pm}0.01$	$0.13 {\pm} 0.01$
1997-12-10/04:33:14.664	132.30 ± 2.30	$0.30{\pm}0.28$	$70.90{\pm}1.60$	$0.99 {\pm} 0.14$	0.32 ± 0.03	$0.25 {\pm} 0.02$	$0.23 {\pm} 0.02$
1997-12-30/01:13:43.921	107.20 ± 1.30	$0.42{\pm}0.41$	87.40 ± 8.10	$0.85 {\pm} 0.16$	0.81 ± 0.53	$0.62 {\pm} 0.41$	$0.57 {\pm} 0.37$
1998-01-06/13:29:00.368	111.00 ± 2.60	$0.30{\pm}0.30$	$82.30 {\pm} 6.20$	$0.84{\pm}0.12$	$0.69 {\pm} 0.55$	$0.53 {\pm} 0.43$	$0.49 {\pm} 0.39$
1998-01-31/15:53:43.500	87.30 ± 3.50	$0.05 {\pm} 0.05$	37.50 ± 2.50	$0.48 {\pm} 0.02$	$0.06 {\pm} 0.00$	$0.05 {\pm} 0.00$	$0.04{\pm}0.00$
1998-03-04/11:02:45.500	110.40 ± 0.30	$0.73 {\pm} 0.76$	41.70 ± 3.00	$1.48 {\pm} 0.39$	$0.16{\pm}0.01$	$0.12{\pm}0.01$	$0.11 {\pm} 0.01$
1998-04-07/16:53:35.700	99.70 ± 0.70	$0.16{\pm}0.16$	$37.10 {\pm} 0.90$	$0.93 {\pm} 0.06$	$0.11 {\pm} 0.00$	$0.09 {\pm} 0.00$	$0.08 {\pm} 0.00$
1998-04-23/17:29:02.500	77.70 ± 1.20	$1.15{\pm}1.17$	51.70 ± 1.60	$1.16 {\pm} 0.39$	$0.15 {\pm} 0.01$	$0.11 {\pm} 0.00$	$0.11 {\pm} 0.00$
1998-04-30/08:43:15.291	114.40 ± 1.80	$3.86{\pm}2.65$	64.60 ± 9.30	$5.14 {\pm} 0.89$	0.70 ± 0.24	$0.54{\pm}0.19$	$0.50 {\pm} 0.17$
1998-05-03/17:02:20.425	76.80 ± 2.90	$0.07 {\pm} 0.08$	52.30 ± 2.00	$0.78 {\pm} 0.05$	$0.14{\pm}0.01$	$0.11 {\pm} 0.01$	$0.10{\pm}0.01$
1998-05-15/13:53:46.000	83.30 ± 0.60	$0.63 {\pm} 0.62$	52.70 ± 1.80	$1.79 {\pm} 0.43$	$0.26 {\pm} 0.01$	$0.20{\pm}0.01$	$0.19{\pm}0.01$
1998-06-13/19:18:10.950	95.20 ± 2.20	$0.10{\pm}0.08$	$27.20{\pm}2.50$	$0.93 {\pm} 0.05$	$0.10{\pm}0.00$	$0.07 {\pm} 0.00$	$0.07 {\pm} 0.00$
1998-08-06/07:16:07.587	113.90 ± 1.90	$0.06{\pm}0.07$	80.80 ± 3.90	$0.60 {\pm} 0.04$	$0.46{\pm}0.20$	$0.36 {\pm} 0.15$	$0.33 {\pm} 0.14$
1998-08-19/18:40:41.450	78.10 ± 2.80	$0.42{\pm}0.41$	$45.50 {\pm} 8.10$	$1.19{\pm}0.22$	$0.16{\pm}0.02$	$0.12{\pm}0.02$	$0.11 {\pm} 0.02$
1998-08-26/06:40:24.972	401.30 ± 3.80	$0.44{\pm}0.42$	82.20 ± 3.00	$2.15{\pm}0.41$	$1.63 {\pm} 0.63$	$1.26 {\pm} 0.48$	$1.15 {\pm} 0.44$
1998-10-02/07:06:02.475	270.70 ± 10.10	$0.44{\pm}0.37$	$26.20 {\pm} 9.90$	$1.58{\pm}0.35$	$0.14{\pm}0.02$	$0.11 {\pm} 0.02$	$0.10 {\pm} 0.02$
1998-10-23/12:58:20.505	131.30 ± 5.40	$0.72{\pm}0.74$	$43.60 {\pm} 8.40$	$0.94{\pm}0.25$	$0.11 {\pm} 0.02$	$0.08 {\pm} 0.01$	$0.08{\pm}0.01$
1998-11-08/04:41:17.290	$275.10 \pm \ 6.10$	$0.03{\pm}0.03$	$54.60{\pm}1.40$	$0.61{\pm}0.06$	$0.12{\pm}0.01$	$0.09{\pm}0.01$	$0.08 {\pm} 0.01$
1998-12-28/18:20:16.211	105.90 ± 10.90	$0.41{\pm}0.43$	$60.70{\pm}12.9$	$0.68{\pm}0.15$	$0.14{\pm}0.06$	$0.11 {\pm} 0.04$	$0.10{\pm}0.04$
1999-01-13/10:47:45.119	$92.90 \pm \ 7.30$	$0.52{\pm}0.49$	$70.90{\pm}12.7$	$0.89{\pm}0.21$	$0.27 {\pm} 0.18$	$0.21 {\pm} 0.14$	$0.19 {\pm} 0.12$
1999-01-22/20:21:37.150	180.20 ± 3.50	$0.23{\pm}0.23$	$17.10{\pm}5.70$	$0.83{\pm}0.08$	$0.07 {\pm} 0.00$	$0.05 {\pm} 0.00$	$0.05 {\pm} 0.00$
1999-02-18/02:48:15.800	304.40 ± 20.30	$0.31{\pm}0.23$	$51.30{\pm}6.80$	$1.45 {\pm} 0.24$	$0.23 {\pm} 0.04$	$0.18{\pm}0.03$	$0.16{\pm}0.03$
1999-04-16/11:14:11.089	116.30 ± 4.20	$0.12 {\pm} 0.11$	62.30 ± 3.40	$0.61 {\pm} 0.05$	$0.15 {\pm} 0.02$	$0.12 {\pm} 0.01$	$0.11 {\pm} 0.01$
1999-05-18/00:32:39.625	102.20 ± 0.60	$0.30{\pm}0.28$	22.20 ± 1.00	1.31 ± 0.15	$0.11 {\pm} 0.00$	$0.09 {\pm} 0.00$	$0.08 {\pm} 0.00$
1999-06-26/19:30:58.154	145.40 ± 1.70	$0.34{\pm}0.36$	59.40 ± 3.70	$0.85 {\pm} 0.13$	$0.17 {\pm} 0.02$	$0.13 {\pm} 0.01$	$0.12 {\pm} 0.01$
1999-07-02/00:27:24.060	178.80 ± 5.30	$0.32 {\pm} 0.31$	$39.30 {\pm} 6.60$	0.93 ± 0.13	0.11±0.01	$0.08 {\pm} 0.01$	$0.08 {\pm} 0.01$
1999-07-06/14:24:56.625	135.80 ± 3.10	$0.05 {\pm} 0.05$	44.80 ± 6.60	0.80 ± 0.04	0.12 ± 0.01	0.09 ± 0.01	$0.09 {\pm} 0.01$
1999-07-26/23:50:17.327	75.80 ± 7.60	$0.60{\pm}0.79$	18.50 ± 9.10	0.77 ± 0.18	0.06 ± 0.00	0.04 ± 0.00	$0.04{\pm}0.00$

ELECTRON ENERGY PARTITION SUPP

Table 2 (continued)

Ramp Time	$\langle U_{shn} \rangle_{up}$ a	$\langle \beta_{Tot} \rangle_{up}$ b	$\langle \theta_{Bn} \rangle_{up}$ c	$\langle M_f/M_{cr}\rangle_{up}$	^d $\langle M_f / M_{ww} \rangle_{up}$	$\langle M_f/M_{gr} \rangle_{up}$	$^{\rm f} \langle M_f / M_{nw} \rangle_{up} {}^{\rm g}$
[UTC]	$[\rm km/s]$		[deg]				
1999-08-04/01:44:38.601	95.90 ± 2.90	$0.11 {\pm} 0.11$	54.10 ± 4.80	$0.83 {\pm} 0.05$	$0.16 {\pm} 0.02$	$0.12 {\pm} 0.01$	$0.11 {\pm} 0.01$
1999-08-15/10:33:45.975	95.10 ± 1.30	$1.55{\pm}1.60$	$79.20 {\pm} 4.30$	$1.11 {\pm} 0.44$	$0.50 {\pm} 0.20$	$0.38 {\pm} 0.15$	$0.35 {\pm} 0.14$
1999-08-23/15:41:34.980	92.30 ± 3.50	$0.21{\pm}0.21$	88.60 ± 4.40	$0.41 {\pm} 0.05$	$0.80{\pm}0.52$	$0.61 {\pm} 0.40$	$0.56 {\pm} 0.37$
1999-09-12/03:57:56.062	145.30 ± 3.50	$0.51{\pm}0.50$	$69.90 {\pm} 5.40$	$1.12 {\pm} 0.24$	$0.32{\pm}0.08$	$0.25 {\pm} 0.06$	$0.23 {\pm} 0.06$
1999-09-15/07:43:49.625	163.70 ± 2.70	$0.68{\pm}0.73$	73.60 ± 4.30	$0.70 {\pm} 0.19$	$0.24{\pm}0.06$	$0.18 {\pm} 0.05$	$0.17 {\pm} 0.04$
1999-09-22/12:09:25.567	149.20 ± 3.40	$0.44{\pm}0.46$	70.80 ± 3.40	$0.87 {\pm} 0.18$	$0.27 {\pm} 0.05$	$0.21 {\pm} 0.04$	$0.19{\pm}0.03$
1999-10-21/02:20:51.968	135.80 ± 1.10	$0.17 {\pm} 0.16$	69.40 ± 3.30	$0.91{\pm}0.08$	$0.29 {\pm} 0.05$	$0.23 {\pm} 0.04$	$0.21 {\pm} 0.03$
1999-12-12/15:54:27.750	203.90 ± 8.50	$0.03 {\pm} 0.03$	48.70 ± 3.00	$0.63 {\pm} 0.09$	$0.11 {\pm} 0.02$	$0.08 {\pm} 0.01$	$0.08 {\pm} 0.01$
2000-02-11/23:33:55.710	263.60 ± 2.40	$0.30{\pm}0.30$	86.50 ± 2.20	$1.38 {\pm} 0.20$	2.49 ± 1.56	1.91 ± 1.20	1.76 ± 1.10
2000-02-20/21:03:45.795	174.60 ± 2.70	$0.19{\pm}0.18$	$88.10 {\pm} 4.60$	$1.08 {\pm} 0.10$	$1.93{\pm}1.28$	$1.49 {\pm} 0.99$	$1.37 {\pm} 0.91$

 $^a{\rm shock}$ normal speed in SHF

bupstream plasma beta

 $^{c}\,\mathrm{shock}$ normal angle

 $d_{\,\rm fast}$ mode to first critical Mach number ratio

 e fast mode to linear (phase) whistler critical Mach number

 $f_{\text{fast mode to linear (group)}}$ whistler critical Mach number

 $g\,{\rm fast}$ mode to nonlinear whistler critical Mach number

NOTE—For symbol definitions, see Section 1.

- ¹⁷⁴ Most relevant *Wind* instrument data can be found on ¹⁷⁵ CDAWeb at:
- 176 http://cdaweb.gsfc.nasa.gov
- $_{177}$ including quasi-static magnetic fields from $Wind/{\rm MFI}$
- 178 (Lepping et al. 1995) and solar wind plasma parame-
- ¹⁷⁹ ters from the *Wind*/SWE Faraday Cups (FCs) (Ogilvie ¹⁸⁰ et al. 1995). The remaining *Wind*/3DP level-zero (lz)
- 181 data can be found at:

http://sprg.ssl.berkeley.edu/wind3dp/data/wi/3dp/lz/.

- 184 The Harvard Smithsonian Center for Astrophysics'
- 185 Wind interplanetary shock list can be found at:
- $_{186} \ https://www.cfa.harvard.edu/shocks/wi_data/.$
- ¹⁸⁸ The critical Mach number analysis software can be ¹⁸⁹ found at:
- 190 https://github.com/pulupa/Critical-Mach.
- 191

187

¹⁹² Any additional analysis software can be found at:

- ¹⁹³ https://github.com/lynnbwilsoniii/wind_3dp_pros.
- 194

195

5. EXTRA STATISTICAL RESULTS

In the following one-variable statistics and distribu-196 tions of $T_{s,j}$, n_s , $\beta_{es,j}$, and $(T_s/T_{s'})_j$ are presented that 197 are not directly shown in the main multi-part papers. 198 Given that none of the parameters have Gaussian dis-199 tributions, the median (X) and lower $(X_{25\%})$ and upper 200 quartile ($\equiv X_{75\%}$) values in addition to the minimum 201 (X_{min}) , maximum (X_{max}) , and mean (\bar{X}) in the statis-202 tical tables shown in the main paper. The distributions 203 for these parameters are shown in the histograms in Fig-204 ures 1-8. 205

Figure 1. Temperatures [eV] for different electron components in each column and for the different shock geometries (i.e., rows) shown to the right. In each panel, there are three color-coded histograms for the different field-aligned components defined as follows: total (red); parallel (violet); and perpendicular (blue). The color-coded vertical lines are the median values of the regridded distributions for the corresponding color-coded histograms.

Figure 2. Temperatures [eV] for different electron components in each column and for the different Mach numbers (i.e., rows) shown to the right with the same format as Figure 1.

Figure 3. Densities $[cm^{-3}]$ and density ratios for different ion and electron components. The format is similar to Figure 1 with the row organization but the columns differ. The first column here shows proton (violet) and alpha-particle (blue) density from Wind/SWE and total ion density from Wind/3DP (red). The second column shows n_{es} for the core (violet), halo (blue), and beam/strahl (red) components. The third column shows n_{es1}/n_{es2} for the halo-to-core (violet), beam-to-core (blue), and beam-to-halo (red) density ratios.

Figure 4. The same format and variables as in Figure 3 but for different Mach numbers instead of geometry.

Figure 5. The same format as Figures 1 and 3 except for electron betas [N/A]. Note that all three components have different vertical axis scales.

Figure 6. The same format as Figure 5 except for different Mach numbers (i.e., rows) instead of geometry. Note that all three components have different vertical axis scales.

Figure 7. The same format as Figure 1 except for electron temperature ratios [N/A]. Note that all three components have a uniform vertical axis scale.

Figure 8. The same format as Figure 2 except for electron temperature ratios [N/A]. Note that all three components have a uniform vertical axis scale.

ELECTRON ENERGY PARTITION SUPP

206

APPENDIX

A. VELOCITY DISTRIBUTION FUNCTIONS

²⁰⁸ A generalized Gaussian probability density function is defined as:

$$f_{s}(x) = \frac{A_{o}}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(x-x_{o})^{2}}{2\sigma^{2}}}$$
(A1)

where x_o is the displacement of the peak from x = 0, A_o is a normalization amplitude, *s* denotes the specific set (later used for particle species) of data the distribution describes, and σ^2 is the variance. For this distribution, the Full Width at Half Maximum (FWHM) is given by:

$$FWHM = 2\sqrt{2\ln 2} \ \sigma \tag{A2}$$

²¹² Introducing the change of variable $x \rightarrow v$, where v is a velocity, then the distribution in Equation A1 becomes a ²¹³ Maxwell-Boltzmann velocity distribution, or Maxwellian, given by:

$$f_{s}(v) = \frac{n_{o}}{\sqrt{\pi} V_{Ts}} e^{-\left(\frac{v - v_{o}}{V_{Ts}}\right)^{2}}$$
(A3)

where v_o is the drift speed of the peak relative to zero, n_o is the particle number density, and $2\sigma^2 \rightarrow V_{Ts}^2$, i.e., the thermal speed given by a one-dimensional most probable speed of a Gaussian distribution, which is related to the FWHM by $2\sqrt{\ln 2} V_{Ts}$.

²¹⁷ The general representation of a two dimensional multivariate distribution is given by the following:

$$f(x,y) = \alpha \ e^{-\left(\frac{\beta}{\sqrt{2(1-\rho^2)}}\right)^2}$$
(A4a)

where α and β are given by

$$\alpha = \frac{A_o}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \tag{A4b}$$

$$\beta^{2} = \left[\left(\frac{x - x_{o}}{\sigma_{x}} \right)^{2} + \left(\frac{y - y_{o}}{\sigma_{y}} \right)^{2} - \left(\frac{2\rho(x - x_{o})(y - y_{o})}{\sigma_{x}\sigma_{y}} \right) \right]$$
(A4c)

and ρ and σ_i are defined in the following manner:

$$\rho = \frac{\cos\left(x, y\right)}{\pi \pi} \tag{A4d}$$

$$cov(x,y) = E[(x - \mu_x)(y - \mu_y)]$$
 (A4e)

Here ρ is the correlation between x and y, $\mu_x = E[X]$ is the expected value of the aggregate data set $X = \bigcup_i x_i$. In the limit $\rho \to 0$ (i.e., x and y are uncorrelated), Equation A4a reduces to:

$$f(x,y) = \frac{A_x A_y}{2\pi\sigma_x \sigma_y} e^{-\frac{1}{2} \left[\left(\frac{x - \mu_x}{\sigma_x} \right)^2 + \left(\frac{y - \mu_y}{\sigma_y} \right)^2 \right]}$$
(A5)

WILSON III ET AL.

A.1. Bi-Maxwellian Distributions

221 In general, for uncorrelated variables, one can write:

$$f(x, y, z) = f(x) f(y) f(z)$$
(A6)

and assuming gyrotropy one finds $V_x \to V_{\perp} \cos \phi$, $V_y \to V_{\perp} \sin \phi$, and $V_z \to V_{\parallel}$, where ϕ is the phase angle of the velocity and $\partial f/\partial \phi = 0$. One can show that such a gyrotropic distribution satisfies $V_{T\perp,x} = V_{T\perp,y} \equiv V_{T\perp}$. Substituting the following into Equation A5, $x \to V_{\parallel}$, $y \to V_{\perp}$, $\mu_j \to V_{o,j}$, and $\sigma_j \to V_{T,j}/\sqrt{2}$, yields a bi-Maxwellian velocity distribution function (VDF) given by:

$$f\left(V_{\parallel}, V_{\perp}\right) = \frac{n_o}{\pi^{3/2} V_{T\perp}^2 V_{T\parallel}} e^{-\left[\left(\frac{V_{\parallel} - v_{o\parallel}}{V_{T\parallel}}\right)^2 + \left(\frac{V_{\perp} - v_{o\perp}}{V_{T\perp}}\right)^2\right]}$$
(A7)

The bi-Maxwellian is the most commonly used VDF to model both ions and electrons in space plasmas (e.g., Feldman et al. 1979b,a, 1983a; Kasper et al. 2006).

A.1.1. Derivatives of Parameters: Bi-Maxwellian Distributions

In the use of numerical methods like the Levenberg-Marquardt algorithm (e.g., Markwardt 2009), it is useful to define the derivatives of a function with respect to the free parameters. In the case of velocity distributions, these are the density, thermal speeds, drift speeds, and exponent (for self-similar and kappa distributions discussed below). First, some simplifying terms are defined for brevity, given by:

$$u_j = V_j - v_{oj} \tag{A8a}$$

$$w_j = \frac{u_j}{V_{Tj}} \tag{A8b}$$

$$\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} \equiv \text{digamma function}$$
 (A8c)

where $\Gamma(z)$ is the Riemann gamma function of argument z. After denoting the VDF in Equation A7 as $f^{(m)}$, the partial derivatives are given by:

$$\frac{\partial f^{(m)}}{\partial n_o} = \frac{f^{(m)}}{n_o} \tag{A9a}$$

$$\frac{\partial f^{(m)}}{\partial V_{T\parallel}} = \left| \frac{2 \left(w_{\parallel}^2 - 1 \right)}{V_{T\parallel}} \right| f^{(m)}$$
(A9b)

$$\frac{\partial f^{(m)}}{\partial V_{T\perp}} = \left[\frac{2 \left(w_{\perp}^2 - 1\right)}{V_{T\perp}}\right] f^{(m)} \tag{A9c}$$

$$\frac{\partial f^{(m)}}{\partial v_{o\parallel}} = \left(\frac{2 w_{\parallel}}{V_{T\parallel}}\right) f^{(m)} \tag{A9d}$$

$$\frac{\partial f^{(m)}}{\partial v_{o\perp}} = \left(\frac{2 w_{\perp}}{V_{T\perp}}\right) f^{(m)} \tag{A9e}$$

235

A.2. Bi-Kappa Distributions

A generalized power-law particle distribution is given by a bi-kappa VDF (e.g., Livadiotis 2015; Mace & Sydora 237 2010), for electrons here as:

$$f\left(V_{\perp}, V_{\parallel}\right) = A_{\kappa} \left\{ 1 + \frac{1}{\left(\kappa - \frac{3}{2}\right)} \left[\left(\frac{V_{\parallel} - v_{o\parallel}}{V_{T\parallel}}\right)^2 + \left(\frac{V_{\perp} - v_{o\perp}}{V_{T\perp}}\right)^2 \right] \right\}^{-(\kappa+1)}$$
(A10a)

18

220

where A_{κ} is given by

247

$$A_{\kappa} = \left[\frac{1}{\pi\left(\kappa - \frac{3}{2}\right)}\right]^{3/2} \frac{n_o \Gamma\left(\kappa + 1\right)}{V_{T\perp}^2 V_{T\parallel} \Gamma\left(\kappa - \frac{1}{2}\right)}$$
(A10b)

where $\Gamma(z)$ is the Riemann gamma function of argument z and V_{Tj} is again the most probable speed of a 1D Gaussian for consistency, i.e., it does not depend upon κ .

The kappa velocity distribution has gained popularity in recent years owing to improvements in particle detectors and the ubiquitous non-Maxwellian tails observed for both ions and electrons (e.g., Lazar et al. 2015b,a, 2016, 2017, 2018; Livadiotis 2015; Livadiotis et al. 2018; Mace & Sydora 2010; Pulupa et al. 2014; Saeed et al. 2017; Shaaban et al. 2018), but references to and use of kappa or kappa-like (e.g., modified Lorentzian) distributions have been around for decades (e.g., Feldman et al. 1983b; Maksimovic et al. 1997; Salem et al. 2003; Vasyliunas 1968). It is beyond the scope of this study to explain the physical interpretation/origin of this function but there are several detailed discussions already published on the topic (e.g., Livadiotis 2015; Livadiotis et al. 2018).

A.2.1. Derivatives of Parameters: Bi-Kappa Distributions

²⁴⁸ Similar to Appendix A.1.1, the analytical derivatives for the bi-kappa VDF are shown below. Again, the following ²⁴⁹ simplifying terms are defined for brevity as:

$$u_j = V_j - v_{oj} \tag{A11a}$$

$$w_j = \frac{u_j}{V_{T_j}} \tag{A11b}$$

$$\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} \equiv \text{digamma function}$$
 (A11c)

$$D(w_{\parallel}, w_{\perp}, \kappa) = w_{\parallel}^{2} + w_{\perp}^{2} + (\kappa - \frac{3}{2})$$
(A11d)

where $\Gamma(z)$ is the Riemann gamma function of argument z. After denoting the VDF in Equation A10a as $f^{(\kappa)}$, the partial derivatives are given by:

$$\frac{\partial f^{(\kappa)}}{\partial n_{\alpha}} = \frac{f^{(\kappa)}}{n_{\alpha}} \tag{A12a}$$

$$\frac{\partial f^{(\kappa)}}{\partial V_{T\parallel}} = \left[\frac{2 \ w_{\parallel}^2 \ \left(\kappa + \frac{1}{2}\right) - w_{\perp}^2 - \left(\kappa - \frac{3}{2}\right)}{V_{T\parallel} \ D\left(w_{\parallel}, w_{\perp}, \kappa\right)}\right] \ f^{(\kappa)} \tag{A12b}$$

$$\frac{\partial f^{(\kappa)}}{\partial V_{T\perp}} = \left\{ \frac{2 \left[\kappa w_{\perp}^{2} - w_{\parallel}^{2} - \left(\kappa - \frac{3}{2}\right) \right]}{V_{T\perp} D(w_{\parallel}, w_{\perp}, \kappa)} \right\} f^{(\kappa)}$$
(A12c)

$$\frac{\partial f^{(\kappa)}}{\partial V_{o\parallel}} = \left[\frac{2 \ w_{\parallel} \ (\kappa+1)}{V_{T\parallel} \ D \ (w_{\parallel}, w_{\perp}, \kappa)}\right] \ f^{(\kappa)} \tag{A12d}$$

$$\frac{\partial f^{(\kappa)}}{\partial V_{o\perp}} = \left[\frac{2 \ w_{\perp} \ (\kappa+1)}{V_{\tau\perp} \ D \ (w_{\parallel}, w_{\perp}, \kappa)}\right] \ f^{(\kappa)} \tag{A12e}$$

$$\frac{\partial f^{(\kappa)}}{\partial \kappa} = \left\{ \frac{\left(w_{\parallel}^{2} + w_{\perp}^{2}\right)\left(\kappa - \frac{1}{2}\right) - \frac{3}{2}\left(\kappa - \frac{3}{2}\right)}{\left(\kappa - \frac{3}{2}\right)D\left(w_{\parallel}, w_{\perp}, \kappa\right)} - \ln\left|1 + \frac{w_{\parallel}^{2} + w_{\perp}^{2}}{\left(\kappa - \frac{3}{2}\right)}\right| + \psi\left(\kappa + 1\right) - \psi\left(\kappa - \frac{1}{2}\right) \right\} f^{(\kappa)}$$
(A12f)

(A10c)

WILSON III ET AL.

A.3. Self-Similar Distributions

²⁵³ When a VDF evolves under the action of inelastic scattering (e.g., Dum et al. 1974; Dum 1975; Goldman 1984; ²⁵⁴ Horton et al. 1976; Horton & Choi 1979; Jain & Sharma 1979) or flows through disordered porous media (e.g., Matyka ²⁵⁵ et al. 2016), the result is called a *self-similar distribution*, which in one dimension is given by:

$$f_s(x,t) = C_o \ e^{-\left(\frac{x}{x_o}\right)^s} \tag{A13}$$

²⁵⁶ The constant C_o is determined by by defining:

$$n_o = \int_{-\infty}^{\infty} dv \ f_s\left(v,t\right) \tag{A14a}$$

$$=2\int_{0}^{\infty} dv f_{s}(v,t) \text{ (if symmetric)}$$
(A14b)

²⁵⁷ The general solution to Equation A14b is given by:

$$\int_0^\infty dx \ x^n \ e^{-\alpha \ x^s} = \frac{\Gamma(k)}{s \ \alpha^k} \tag{A15}$$

258 for n > -1, s > 0, $\alpha > 0$, and k = (n+1)/s. For n = 0, the constant C_o reduces to:

$$C_o = \frac{n_o \ s \ \alpha^{1/s}}{2 \ \Gamma \left(1/s\right)} \tag{A16}$$

²⁵⁹ Physically one can see that $\alpha \to V_{T_s}^{-s}$, which leads to the one dimensional form of the self-similar VDF can be given ²⁶⁰ by:

$$f_s(v,t) = \frac{n_o s}{2 V_{T_s} \Gamma(1/s)} e^{-\left(\frac{v}{V_{T_s}}\right)^s}$$
(A17)

²⁶¹ Note that in the limit as $s \rightarrow 2$, Equation A17 reduces to a one-dimensional Maxwellian given by Equation A3. For ²⁶² the 3D case, the self-similar VDF, for even integer s, reduces to:

$$f\left(V_{x}, V_{y}, V_{z}\right) = \left[\frac{s}{2\Gamma\left(\frac{n+1}{s}\right)}\right]^{3} \frac{n_{o}}{\left(V_{T_{x}} V_{T_{y}} V_{T_{z}}\right)^{n+1}} e^{-\left[\left(\frac{V_{x}}{V_{T_{x}}}\right)^{s} + \left(\frac{V_{y}}{V_{T_{y}}}\right)^{s} + \left(\frac{V_{z}}{V_{T_{z}}}\right)^{s}\right]}$$
(A18)

²⁶³ Following the same procedure that led to Equation A7, one finds (for $n \to 0$, i.e., the zeroth moment):

$$f\left(V_{\parallel}, V_{\perp}\right) = \left[\frac{s}{2\Gamma\left(\frac{1}{s}\right)}\right]^{3} \frac{n_{o}}{V_{T\perp}^{2}V_{T\parallel}} e^{-\left[\left(\frac{V_{\parallel}}{V_{T\parallel}}\right)^{s} + \left(\frac{V_{\perp}}{V_{T\perp}}\right)^{s}\right]}$$
(A19)

²⁶⁴ After recalling that $\Gamma(1/s)/s = \Gamma(1+1/s)$ and letting $V_j \to V_j$ - v_{oj} , Equation A19 reduces to:

$$f\left(V_{\parallel}, V_{\perp}\right) = \left[2\Gamma\left(\frac{1+s}{s}\right)\right]^{-3} \frac{n_o}{V_{T\perp}^2 V_{T\parallel}} e^{-\left[\left(\frac{V_{\parallel} - v_{o\parallel}}{V_{T\parallel}}\right)^s + \left(\frac{V_{\perp} - v_{o\perp}}{V_{T\perp}}\right)^s\right]}$$
(A20)

Note that V_{Tj} is again the most probable speed of a 1D Gaussian for consistency, i.e., it does not depend upon s. Further, one can see that Equation A20 reduces to Equation A7 in the limit where $s \rightarrow 2$. A slightly more general approach can be taken where the exponents are not uniform, e.g., one assumes:

$$f\left(V_x, V_y, V_z\right) = C_o \ e^{-\left[\left(\frac{V_x}{V_{T_x}}\right)^p + \left(\frac{V_y}{V_{T_y}}\right)^q + \left(\frac{V_z}{V_{T_z}}\right)^r\right]}$$
(A21)

²⁶⁸ The triple integral of Equation A21, still assuming we set the result equal to n_o and assuming the integrals are ²⁶⁹ symmetric about zero, results in the following:

$$n_o = 2^3 C_o V_{T_x} V_{T_y} V_{T_z} \Gamma \left(1 + p^{-1} \right) \Gamma \left(1 + q^{-1} \right) \Gamma \left(1 + r^{-1} \right)$$
(A22)

²⁷⁰ Equation A22 can be further reduced by assuming gyrotropy about the mean magnetic field direction such that $r \to q$, ²⁷¹ $V_{T_z} \to V_{T_y}, V_z \to V_y$, and $x \to \parallel$ and $y \to \perp$, then the expression for the normalization constant is given by:

$$C_{o} = \frac{p \ q^{2} \ n_{o}}{2^{3} \ V_{T_{\parallel}} \ V_{T_{\perp}}^{2} \ \Gamma(p^{-1}) \ \Gamma^{2}(q^{-1})}$$
(A23)

²⁷² Thus, the full bi-self-similar VDF for non-homogenous exponents is given by:

$$f(V_{\parallel}, V_{\perp}) = \frac{p \ q^2 \ n_o}{2^3 \ V_{\tau_{\parallel}} \ V_{\tau_{\perp}}^2 \ \Gamma(p^{-1}) \ \Gamma^2(q^{-1})} \ e^{-\left[\left(\frac{V_{\parallel} - v_{o\parallel}}{V_{\tau_{\parallel}}}\right)^p + \left(\frac{V_{\perp} - v_{o\perp}}{V_{\tau_{\perp}}}\right)^q\right]}$$
(A24a)

or in another form as:

$$f\left(V_{\parallel}, V_{\perp}\right) = \frac{n_{o} \Gamma^{-1}\left(\frac{1+p}{p}\right) \Gamma^{-2}\left(\frac{1+q}{q}\right)}{2^{3} V_{T_{\parallel}} V_{T_{\perp}}^{2}} e^{-\left[\left(\frac{V_{\parallel} - v_{o\parallel}}{V_{T\parallel}}\right)^{p} + \left(\frac{V_{\perp} - v_{o\perp}}{V_{T\perp}}\right)^{q}\right]}$$
(A24b)

273

A.3.1. Derivatives of Parameters: Self-Similar Distributions

²⁷⁴ Similar to Appendix A.1.1, the analytical derivatives for the bi-self-similar VDF are shown below. Again, the ²⁷⁵ following simplifying terms are defined for brevity as:

$$u_j = V_j - v_{oj} \tag{A25a}$$

$$w_j = \frac{u_j}{V_{T_j}} \tag{A25b}$$

$$\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} \equiv \text{digamma function}$$
 (A25c)

WILSON III ET AL.

where $\Gamma(z)$ is the Riemann gamma function of argument z. After denoting the VDF in Equation A20 as $f^{(ss)}$, the partial derivatives are given by:

$$\frac{\partial f^{(ss)}}{\partial n_o} = \frac{f^{(ss)}}{n_o} \tag{A26a}$$

$$\frac{\partial f^{(ss)}}{\partial V_{\scriptscriptstyle T\parallel}} = \left(\frac{s \ w_{\scriptscriptstyle \parallel}{}^s - 1}{V_{\scriptscriptstyle T\parallel}}\right) \ f^{(ss)} \tag{A26b}$$

$$\frac{\partial f^{(ss)}}{\partial V_{T\perp}} = \left(\frac{s \ w_{\perp}{}^s - 2}{V_{T\perp}}\right) \ f^{(ss)} \tag{A26c}$$

$$\frac{\partial f^{(ss)}}{\partial v_{o\parallel}} = \left(\frac{s \ w_{\parallel}^{s-1}}{V_{T\parallel}}\right) \ f^{(ss)} \tag{A26d}$$

$$\frac{\partial f^{(ss)}}{\partial v_{o\perp}} = \left(\frac{s \ w_{\perp}^{s-1}}{V_{T\perp}}\right) \ f^{(ss)} \tag{A26e}$$

$$\frac{\partial f^{(ss)}}{\partial s} = \left[\frac{3 \ \psi\left(\frac{1+s}{s}\right)}{s^2} - w_{\parallel}{}^s \ \ln w_{\parallel} - w_{\perp}{}^s \ \ln w_{\perp}\right] \ f^{(ss)} \tag{A26f}$$

278 After denoting the VDF in Equation A24b as $f^{(as)}$, the partial derivatives are given by:

$$\frac{1}{f^{(as)}}\frac{\partial f^{(as)}}{\partial n_o} = \frac{1}{n_o} \tag{A27a}$$

$$\frac{1}{f^{(as)}}\frac{\partial f^{(as)}}{\partial V_{T\parallel}} = \left(\frac{p \ w_{\parallel}{}^p - 1}{V_{T\parallel}}\right) \tag{A27b}$$

$$\frac{1}{f^{(as)}}\frac{\partial f^{(as)}}{\partial V_{T\perp}} = \left(\frac{q \ w_{\perp}^{q} - 2}{V_{T\perp}}\right) \tag{A27c}$$

$$\frac{1}{f^{(as)}}\frac{\partial f^{(as)}}{\partial v_{o\parallel}} = \left(\frac{p \ w_{\parallel}^{p-1}}{V_{T\parallel}}\right) \tag{A27d}$$

$$\frac{1}{f^{(as)}}\frac{\partial f^{(as)}}{\partial v_{o\perp}} = \left(\frac{q \ w_{\perp}^{q-1}}{V_{\tau\perp}}\right) \tag{A27e}$$

$$\frac{1}{f^{(as)}}\frac{\partial f^{(as)}}{\partial p} = \frac{\psi\left(\frac{1+p}{p}\right)}{p^2} - w_{\parallel}^p \ln w_{\parallel}$$
(A27f)

$$\frac{1}{f^{(as)}}\frac{\partial f^{(as)}}{\partial q} = \frac{2 \psi\left(\frac{1+q}{q}\right)}{q^2} - w_{\perp}^{\ q} \ln w_{\perp}$$
(A27g)

279 Acknowledgements

²⁸⁰ The authors thank A.F.- Viñas, B. Lembège, and D.A. Roberts for useful discussions of collisionless shock physics. ²⁸¹ The authors thank the Harvard Smithsonian Center for Astrophysics, the Space Science Laboratory at Berkeley, and ²⁸² the NASA SPDF/CDAWeb team for the interplanetary shock analysis and *Wind* data.

REFERENCES

- Abraham-Shrauner, B., & Yun, S. H. 1976, J. Geophys.
 Res., 81, 2097, doi: 10.1029/JA081i013p02097
- 285 Dum, C. T. 1975, Phys. Rev. Lett., 35, 947,
- 286 doi: 10.1103/PhysRevLett.35.947
- Dum, C. T., Chodura, R., & Biskamp, D. 1974, Phys. Rev.
 Lett., 32, 1231, doi: 10.1103/PhysRevLett.32.1231
- Edmiston, J. P., & Kennel, C. F. 1984, J. Plasma Phys., 32,
 429
- Feldman, W. C., Anderson, R. C., Bame, S. J., et al. 1983a,
 J. Geophys. Res., 88, 9949,
- ²⁹³ doi: 10.1029/JA088iA12p09949
- ²⁹⁴ Feldman, W. C., Asbridge, J. R., Bame, S. J., & Gosling,
- J. T. 1979a, J. Geophys. Res., 84, 7371,
 doi: 10.1029/JA084iA12p07371
- ²⁹⁷ Feldman, W. C., Asbridge, J. R., Bame, S. J., Gosling,
- J. T., & Lemons, D. S. 1979b, J. Geophys. Res., 84, 4463,
 doi: 10.1029/JA084iA08p04463
- ³⁰⁰ Feldman, W. C., Anderson, R. C., Bame, S. J., et al. 1983b,
- J. Geophys. Res., 88, 96, doi: 10.1029/JA088iA01p00096
- Goldman, M. V. 1984, Rev. Modern Phys., 56, 709,
 doi: 10.1103/RevModPhys.56.709
- ³⁰⁴ Horton, W., & Choi, D. 1979, Phys. Rep., 49, 273,
- 305 doi: 10.1016/0370-1573(79)90056-5
- ³⁰⁶ Horton, Jr., W., Choi, D.-I., & Koch, R. A. 1976, Phys.
 ³⁰⁷ Rev. A, 14, 424, doi: 10.1103/PhysRevA.14.424
- Jain, H. C., & Sharma, S. R. 1979, Beitraege Plasmaphysik,
 19, 19
- 310 Kasper, J. C., Lazarus, A. J., Steinberg, J. T., Ogilvie,
- K. W., & Szabo, A. 2006, J. Geophys. Res., 111, 3105,
 doi: 10.1029/2005JA011442
- 313 Kennel, C. F., Edmiston, J. P., & Hada, T. 1985, in
- 314 Geophys. Monogr. Ser., Vol. 34, Collisionless Shocks in
- $_{\rm 315}$ $\,$ the Heliosphere: A Tutorial Review, ed. R. G. Stone &
- B. T. Tsurutani (Washington, D.C.: AGU), 1–36
- Koval, A., & Szabo, A. 2008, J. Geophys. Res., 113, 10110,
 doi: 10.1029/2008JA013337
- Krall, N. A., & Trivelpiece, A. W. 1973, Principles of
 plasma physics
- 321 Krasnoselskikh, V. V., Lembège, B., Savoini, P., & Lobzin,
- ³²² V. V. 2002, Phys. Plasmas, 9, 1192,
- doi: 10.1063/1.1457465
- 324 Lazar, M., Fichtner, H., & Yoon, P. H. 2016, Astron. &
- Astrophys., 589, A39, doi: 10.1051/0004-6361/201527593

- 326 Lazar, M., Pierrard, V., Shaaban, S. M., Fichtner, H., &
- ³²⁷ Poedts, S. 2017, Astron. & Astrophys., 602, A44,
- 328 doi: 10.1051/0004-6361/201630194
- ³²⁹ Lazar, M., Poedts, S., & Fichtner, H. 2015a, Astron. &
- 330 Astrophys., 582, A124,
- doi: 10.1051/0004-6361/201526509
- 332 Lazar, M., Poedts, S., Schlickeiser, R., & Dumitrache, C.
- 2015b, Mon. Not. Roy. Astron. Soc., 446, 3022,
 doi: 10.1093/mnras/stu2312
- Lazar, M., Shaaban, S. M., Fichtner, H., & Poedts, S. 2018,
 Phys. Plasmas, 25, 022902, doi: 10.1063/1.5016261
- Lepping, R. P., Acũna, M. H., Burlaga, L. F., et al. 1995,
 Space Sci. Rev., 71, 207, doi: 10.1007/BF00751330
- Livadiotis, G. 2015, J. Geophys. Res., 120, 1607,
 doi: 10.1002/2014JA020825
- 341 Livadiotis, G., Desai, M. I., & Wilson III, L. B. 2018,
- 342 Astrophys. J., 853, 15, doi: 10.3847/1538-4357/aaa713
- Mace, R. L., & Sydora, R. D. 2010, J. Geophys. Res., 115,
 7206, doi: 10.1029/2009JA015064
- 345 Maksimovic, M., Pierrard, V., & Riley, P. 1997, Geophys.
- Res. Lett., 24, 1151, doi: 10.1029/97GL00992
- Markwardt, C. B. 2009, in Astronomical Society of the
- 348
 Pacific Conference Series, Vol. 411, Astronomical Data
- Analysis Software and Systems XVIII, ed. D. A.
- Bohlender, D. Durand, & P. Dowler, 251
- Matyka, M., Gołembiewski, J., & Koza, Z. 2016, Phys. Rev.
 E, 93, 013110, doi: 10.1103/PhysRevE.93.013110
- Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., et al.
 1995, Space Sci. Rev., 71, 55, doi: 10.1007/BF00751326
- 355 Pulupa, M. P., Salem, C., Phan, T. D., Gosling, J. T., &
- ³⁵⁶ Bale, S. D. 2014, Astrophys. J. Lett., 791, L17,
- 357 doi: 10.1088/2041-8205/791/1/L17
- ³⁵⁸ Russell, C. T., Gosling, J. T., Zwickl, R. D., & Smith, E. J.
 ³⁵⁹ 1983, J. Geophys. Res., 88, 9941,
- doi: 10.1029/JA088iA12p09941
- 361 Saeed, S., Sarfraz, M., Yoon, P. H., Lazar, M., & Qureshi,
- M. N. S. 2017, Mon. Not. Roy. Astron. Soc., 465, 1672,
 doi: 10.1093/mnras/stw2900
- Salem, C., Hubert, D., Lacombe, C., et al. 2003, Astrophys.
 J., 585, 1147, doi: 10.1086/346185
- 366 Shaaban, S. M., Lazar, M., & Poedts, S. 2018, Mon. Not.
- ³⁶⁷ Roy. Astron. Soc., 480, 310, doi: 10.1093/mnras/sty1567

- 368 Szabo, A. 1994, J. Geophys. Res., 99, 14737,
- 369 doi: 10.1029/94JA00782
- 370 Vasyliunas, V. M. 1968, J. Geophys. Res., 73, 2839,
- 371 doi: 10.1029/JA073i009p02839

- ³⁷² Vinas, A. F., & Scudder, J. D. 1986, J. Geophys. Res., 91,
- 373 39, doi: 10.1029/JA091iA01p00039