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High predictability of the winter Euro–Atlantic
climate from cryospheric variability
J. García-Serrano* and C. Frankignoul

Seasonal prediction skill for surface winter climate in the
Euro–Atlantic sector has been limited so far1–3. In particular,
the predictability of the winter North Atlantic Oscillation,
the mode that largely dominates regional atmospheric and
climate variability, remains a hurdle for present dynamical
prediction systems4,5. Statistical forecasts have also been
largely elusive6–8, but October Eurasian snow cover has been
shown to be a robust source of regional predictability9,10. Here
we use maximum covariance analysis to show that Arctic
sea-ice variability represents another good predictor of the
winter Euro–Atlantic climate at lead times of as much as three
months. Cross-validated hindcasts of thewinterNorthAtlantic
Oscillation index using September sea-ice anomalies yield a
correlation skill of 0.59 for the period 1979/1980–2012/2013,
suggesting that 35% of its variance could be predicted three
months in advance. This skill can be further enhanced, at the
expense of a shorter lead time, by using October Eurasian
snow cover as an additional predictor. Skilful predictions of
winter European surface air temperature and precipitation are
also obtained with September sea ice as the only predictor.
We conclude that it is important to incorporate Arctic sea-ice
variability in seasonal prediction systems.

The North Atlantic Oscillation (NAO) is the leading mode of
atmospheric variability during North Atlantic–European winter11
(December–February) and it strongly influences the interannual
variability of surface temperature and precipitation as it is associated
with changes in the westerly flow reaching the continent from the
ocean and a modulation of the North Atlantic storm track11. It also
governs changes in extreme weather events12. Forecasting the NAO
is thus of paramount importance for skilful predictions of European
winter climate anomalies4.

The NAO is a dominant mode of intrinsic atmospheric
variability11 and atmospheric internal variability is strong during
winter. This probably explains why winter is the season with the
lowest prediction skill from persistence-based forecasts1 and year-
to-year variations in the phase and amplitude of the winter NAO
has often deemed to be largely unpredictable11. However, there is
increasing evidence that the winter NAO is in part driven by slow
changes in the Earth boundary conditions, which is indeed the
premise for the feasibility of seasonal prediction3. Themost explored
boundary forcing has been the sea surface temperature, but its
usefulness for forecasting purposes is low3,6,7. The progression of
October snow-cover extent over Eurasia has been recently shown to
provide a goodNAOpredictive skill9 and realistic snow initialization
has a positive impact on dynamical prediction systems13–15. There
have also been encouraging studies on the influence of autumn
Arctic sea-ice concentration (SIC) on the winter Euro–Atlantic
atmospheric circulation16–18. Here we use satellite-derived and
re-analysed data to show that autumn Arctic SIC is a robust

source of predictive skill for the winter NAO. This illustrates the
relevance of cryospheric variability for skilful forecasts of surface
winter climate in Europe and provides a benchmark correlation
skill that dynamical prediction systems must aspire to reach
or exceed.

To optimize the SIC pattern that most strongly leads the
winter atmospheric circulation, we use maximum covariance
analysis (MCA; ref. 7), which estimates the main modes of
covariability between two fields and their respective time evolution
(expansion coefficients) whilemaking no a priori assumption on the
spatial patterns. We consider Arctic SIC during autumnal months,
September–November, and winter Euro–Atlantic sea level pressure
(SLP) in the 1979/1980–2012/2013 period. Long-term trends are
removed from each field to focus on interannual climate variability.
Figure 1 shows the leading MCA mode for SIC in September,
which explains 53% of the squared covariance fraction and yields
the largest correlation (0.73) between the expansion coefficients
of SIC and SLP. This correlation reduces to 0.70 and 0.67 in the
corresponding MCA analysis with October and November SIC,
respectively. These differences in correlation are not statistically
significant, but we focus on September sea ice (hereafterMCA–SIC)
as it provides the longest lead time for predicting the winter
Euro–Atlantic atmospheric circulation. The MCA–SLP expansion
coefficient correlates at −0.98 with the winter NAO index, which
means that the September sea-ice anomalies from MCA–SIC
(Fig. 1a) precede a negative NAO phase in winter (Fig. 1b). Note
that the SIC patterns are derived from the MCA–SIC expansion
coefficient and thus slightly differ from the regressions onto the
winter NAO index.

The MCA–SIC pattern shows negative anomalies (a sea-ice
reduction corresponding to a retreat of the sea-ice edge) over
the eastern Arctic from the Greenland Sea to the western Laptev
Sea, with maximum amplitude over the northern Barents–eastern
Kara seas. The SIC in the Pacific sector is also reduced over
the Chukchi Sea–Bering Strait. These sea-ice anomalies resemble
the autumn (September–November) patterns found in previous
studies in relation to the winter Arctic Oscillation16,17. Furthermore,
the MCA–SIC yields positive SIC anomalies (increased sea-ice
extent) over the western Arctic, from the East Siberian Sea to the
Canada Basin.

Regressing forward in time the MCA–SIC expansion coefficient
onto October andNovember SIC anomalies illustrates the evolution
of the September anomaly that precedes the winter NAO. As shown
in Fig. 1c–d, the westward displacement of the largest anomalous
sea-ice retreat follows the climatological expansion of sea-ice over
the eastern Arctic (green contour). The October SIC regressionmap
(Fig. 1c) indicates that negative anomalies expand over the Kara Sea,
whereas the maximum sea-ice reduction (around −15%) is located
over the northern Barents Sea and the sea-ice retreat reaches farther
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Figure 1 | September Arctic sea ice as the predictor field. a,b, Leading mode of covariability between detrended September Arctic SIC anomalies
(predictor field) and winter SLP anomalies over the North Atlantic–European sector 90◦ W–40◦ E, 20◦ N–90◦ N (predictand field); the squared covariance
fraction (scf) explained by the MCA mode and the correlation between expansion coe�cients (r) are indicated. DJF: December, January, February.
c,d, Evolution of the September Arctic sea-ice pattern throughout October and November. The maps are displayed in terms of amplitude by regressing
detrended SIC anomalies (%; a,c,d) and SLP anomalies (hPa; b) on to the MCA–SIC expansion coe�cient. Statistically significant areas at 95% confidence
level based on a two-tailed t-test are contoured. s.d., standard deviation.

south on the eastern coast of Greenland. In the western Arctic,
the sea-ice expansion loses significance except along the Canadian
coast and practically no significant SIC anomalies remain in the
Pacific. In November (Fig. 1d), the Kara Sea is mostly frozen, so
that the strong sea-ice reduction (larger than −10%) is seen only
in the northeastern Barents Sea. The evolution of the SIC anomalies
thus supports earlier results suggesting that the Barents–Kara region
plays the main role in the September SIC influence on the winter
NAO (ref. 19).

As the influence of the NAO on the European winter climate
is so strong, predicting its state (that is, the value of the NAO
index) in advance should strongly enhance the value of seasonal
climate forecasts. The high correlation between theMCA expansion
coefficients of SLP and SIC in September suggests that empirical
predictions of the winter NAO index could be based on the
MCA–SIC time series. To assess the potential predictability of
this statistical model, a one-year-out cross-validation method20 was
used. This method avoids artificial skill and allows estimation of the
95% prediction interval (Fig. 2, grey shading). The cross-validated
hindcast of the NAO (Fig. 2a, red line) captures reasonably well the
amplitude of the observed anomalies and rightly reproduces its low-
frequency variability during the period 1979/1980–2012/2013. The
winter of 2011/2012 is the only year in which the observed NAO
index (Fig. 2, black line) does not fall within the predictive range.

The cross-validated NAO correlation skill is 0.59, which indicates
that September SIC could explain as much as 35% of the year-to-
year variance of the winter NAO three months in advance. Using
October or November SIC would lead to a similar, not statistically
different, NAO prediction skill of 0.61 and 0.58, respectively.

To illustrate the potential predictability of the winter surface
temperature and precipitation in Europe, a statistical prediction
model at grid-point level was designed by using MCA–SIC as the
only predictor. Two different data sets are employed for each target
variable to illustrate uncertainty associated with the observations: a
land-only station-based data set (the Global Historical Climatology
Network–Climate Anomaly Monitoring System, GHCN–CAMS,
for surface air temperature; the ENSEMBLES observational data
set in Europe, E-OBS, for precipitation) and a land–sea data set
including satellite-derived information (the European Centre
for Medium-Range Weather Forecasts ERA-Interim reanalysis,
ERA-int, for surface air temperature; the Global Precipitation
Climatology Project, GPCP, for precipitation). Cross-validated
hindcasts of winter surface air temperature yield statistically
significant skill in northern Europe, from the British Isles to
western Russia, and in central North Africa; robust temperature
skill is also found at the southern coast of Greenland (Fig. 3a,b).
As expected, the skill pattern tightly projects on the canonical
signature of the NAO and largely reflects its impact through
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Figure 2 | Cross-validation skill of the NAO. Detrended winter NAO index
predicted by the statistical model using a, the September MCA–SIC as the
only predictor (red) and b, the combination of the September MCA–SIC
and October SAI (blue), with the 95% prediction interval (grey shading)
and from reanalysis (ERA-int; ref. 27; black). The correlation between the
observed and predicted time series (r) is indicated.

atmospheric advection11 (Fig. 1b). Cross-validated hindcasts
of winter precipitation yield statistically significant skill over
the Scandinavian Peninsula and part of the Iberian Peninsula
(Fig. 3c,d). Again, the skill pattern resembles the NAO-like dipolar
distribution over Europe, which ismostly associated with latitudinal
shifts of the North Atlantic storm track11. This confirms that there
is substantial skill in empirical predictions of the European winter
climate from anomalous states of the Arctic sea-ice concentration
in September, with a three-month lead time.

The NAO predictability gained from the sea-ice variability can
be combined with other statistical or/and dynamical prediction
systems to further enhance the forecast skill3,20. A high potential
predictability of the winter NAO from the October Eurasian snow-
cover extent (SCE) has been demonstrated, in particular when it
is based on the snow advance index9 (SAI), which describes the
rate of increase during October of the Eurasian SCE. The cross-
validated hindcast of the winter NAO index based on the September
MCA–SIC expansion coefficient and the October SAI indeed
increases the correlation skill to 0.67 (Fig. 2b), thus explaining 45%
of the interannual winter NAO variance (compared with 0.51 and
26% from the SAI alone). Hence, combining the surface predictors
improves the NAO skill, but at the expense of reducing by one
month the lead time of the empirical predictions. Note that owing
to the length of the hindcast period we have used the October
SAI from weekly SCE data, but a better performance would be
obtained by using the daily SCE data that are available over a more
recent period9. Regardless, our work shows the marked benefit one
could get by including cryospheric variability and, in particular,
September Arctic sea ice in prediction systems.

An interesting but barely tackled question is whether the
September Arctic sea ice is linked to the October Eurasian snow
cover. Previous results indicate that an anomalous sea-ice retreat
in September causes an atmospheric warming over the Arctic and
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Figure 3 | Cross-validation skill of surface climate in Europe. a–d, Correlation maps between the predicted and observational detrended winter surface air
temperature (SAT; a,b) and precipitation anomalies (c,d); the statistical model uses the September MCA–SIC as the only predictor. The observational data
are the land-only station-based GHCN–CAMS (ref. 28) SAT and E-OBS (ref. 29) precipitation, and the land–ocean ERA-int (ref. 27) SAT and GPCP (ref. 30)
precipitation. The hatching in b,d indicates that no station data are available. Statistically significant areas at 95% confidence level based on a one-tailed
t-test (as only positive correlations indicate skill) are contoured. Negative correlations are masked out.
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Figure 4 | Stratospheric circulation anomalies associated with the
September Arctic sea-ice predictor. a,b, Regression maps, displayed in
terms of amplitude (m), obtained by projecting detrended geopotential
height anomalies at 50 hPa in November (a) and winter (b) onto the
September MCA–SIC expansion coe�cient; shown are patterns associated
with the negative NAO phase (Fig. 1b). Statistically significant areas at 95%
confidence level based on a two-tailed t-test are contoured.

the adjacent lands, which leads to more moisture availability and
enhances precipitation and snowfall over Siberia later in autumn21,22.
Our linear, empirical approach shows that both surface forcings
are related, as the correlation between the MCA–SIC expansion
coefficient and the SAI index is 0.45. This is statistically significant,
but it is less than the correlation of each individual predictorwith the
winterNAO.Hence, SeptemberArctic sea-ice andOctober Eurasian
snow cover seem to represent two distinct predictability sources,
albeit related in some way that needs to be investigated.

The mechanism by which September Arctic sea ice influences
the winter NAO remains to be identified. Here we hypothesize
that it involves the stratosphere, as in the atmospheric response to
October Eurasian snow-cover changes9. In this case, local snow-
forced changes in the Siberian High modulate vertical wave activity
affecting the polar vortex strength, which eventually leads to
downward-propagating perturbations that project on a NAO-like
pattern at the surface23. The impact of the September Arctic sea ice
could involve dynamics on a larger scale in the troposphere, but of
similar extent in the stratosphere. Indeed, previous observational24
and modelling19 evidence indicates that September Arctic sea-ice
anomalies, particularly in the Barents–Kara region19, are associated
with Rossby wavetrain-like circulation anomalies crossing Eurasia
later in autumn (that is, November). Such perturbations in the
Eurasian sector would then lead a NAO-like pattern (Fig. 1b) by
first affecting the vertical propagation of wave activity into the

stratosphere. The regression map of geopotential height anomalies
at 50 hPa onto the MCA–SIC expansion coefficient indeed shows
a strong wavenumber-2 structure in November (Fig. 4a), which
is followed by a weakened polar vortex in winter (Fig. 4b). This
dynamical framework is the focus of ongoing research, but note that
a similar mechanism has been suggested to explain the circulation
changes due to the declining trend in the late summer Arctic
SIC (ref. 25).

Extended range predictability of surface air temperature and
precipitation anomalies, which are the fields that most affect human
activities, is linked to our ability to skilfully forecast the boundary
conditions that drive the associated atmospheric circulation3. The
results shown here highlight the need for present dynamical
prediction systems to correctly represent and forecast the evolution
of interannual Arctic sea-ice variability for improving their skill at
predicting the surface winter climate in Europe.

Methods
Our analysis is based on lag MCA, which is widely used to highlight the influence
of the ocean on the atmosphere when the former leads by more than the
persistence of the latter7,16. Here, the predictor field is autumn Arctic SIC
anomalies from the National Oceanic and Atmospheric Administration/National
Snow and Ice Data Center passive microwave monthly Northern Hemisphere
data set26. The predictand field is SLP anomalies averaged from December to
February, over the North Atlantic–European region 90◦ W–40◦ E, 20◦ N–90◦ N
from the ERA-int (ref. 27). The same region is used to define the winter NAO
index, obtained as the leading principal component of winter SLP anomalies11.
MCA carries out a singular value decomposition of the covariance matrix
between (area-weighted) autumn SIC and winter SLP, and provides a pair of
spatial patterns and associated standardized time series (expansion coefficients)
for each covariability mode. The MCA results are presented in terms of
regression maps (Figs 1 and 4), obtained by projecting the anomaly time series
for a given field onto the expansion coefficient associated with the predictor
(that is, MCA–SIC).

The statistical prediction model is based on linear regression where the
predictand is either the winter NAO index (Fig. 2) or a target surface variable
(Fig. 3) and the predictor is the September MCA–SIC expansion coefficient. The
statistical prediction model follows a one-year-out cross-validation method,
which avoids artificial skill20. The SAI (ref. 9) is combined with the September
MCA–SIC expansion coefficient to improve the cross-validated hindcast of the
NAO index using two predictors. The SAI index is based on weekly Eurasian
snow-cover extent in October over the period 1979–20129.

Several independent data sets have been used to assess the cross-validation
hindcast skill of surface winter climate in Europe: the GHCN–CAMS (ref. 28)
land-only two-metre temperature data set, which is a global monthly
high-resolution (0.5◦

×0.5◦) data set combining the station observations collected
from GHCN version 2 with those of CAMS; the E-OBS (ref. 29) version 9
precipitation, which is a European land- only daily high-resolution (0.5◦

×0.5◦)
precipitation data set; the GPCP (ref. 30) version -2.2 data set of the National
Aeronautics and Space Administration/Goddard Space Flight Center’s Laboratory
for Atmospheres, which consists of monthly means of precipitation over land and
ocean derived from satellite and gauge measurements on a 2.5◦

×2.5◦ global grid;
and the two-metre temperature from ERA-int (ref. 27) at 2.5◦

×2.5◦

spatial resolution.
The study covers the 34-year period 1979/1980–2012/2013. All monthly

anomalies are calculated by subtracting the corresponding monthly climatology.
To reduce the influence of long-term trends, monthly detrended anomalies are
considered. As the Arctic SIC evolution since 1979 is not linear24,26, a third-order
polynomial (that is, cubic trend) estimated by least squares was removed from
each variable. We found, however, that linear detrending provides very similar
results. Statistical significance of the cross-validated hindcasts (regression maps)
is assessed using a one-tailed (two-tailed) Student’s t-test for correlation at 95%
confidence level. To avoid obtaining too liberal statistical thresholds, we use an
effective sample size that takes into account the autocorrelation of the winter
NAO index, yielding 25 degrees of freedom.
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In our Letter, a conceptual error in the cross-validation approach led to an overestimation of the predictive skill of the winter 
(December–February) North Atlantic Oscillation (NAO) and Euro-Atlantic surface climate from Arctic sea-ice variability. The error 
does not affect the hindcasts based on the snow advance index.

Specifically, to produce the one-year-out cross-validated hindcasts based on Arctic sea-ice variability, we performed a maximum 
covariance analysis (MCA) between Arctic sea-ice concentration (SIC) anomalies and winter Euro-Atlantic sea-level pressure anomalies 
in the period 1979/80 to 2012/13. We then applied one-year-out cross-validation using subsets of years from the SIC time series derived 
from the whole period. Thereby, the regression coefficients (that is, slope and intercept) and predictor value of the statistical model were 
estimated assuming the knowledge of the MCA fields in the year out. This procedure overestimates the cross-validation skill.

One-year-out cross-validated hindcasts instead require cross-validation of the MCA pattern-generation in the year out, thus performing 
an MCA on the remaining years. Following this approach, the cross-validated skill in hindcasting the winter NAO index using September 
SIC over the whole Arctic is 0.08, indicating that there is no predictive skill from Arctic sea-ice variability. The cross-validated NAO skill 
using October or November SIC over the whole Arctic is 0.22 and 0.18, respectively, suggesting some skill.

Although our analysis reveals no skill in sea-ice-based NAO predictions with three months lead time, the limited skill from 
October–November sea-ice concentration supports the notion that sea-ice information should be incorporated in dynamical prediction 
systems to improve their skill at forecasting the surface winter climate in Europe.

Following the identification of the error in our cross-validation approach, this Letter has been retracted. We are grateful to 
Geert Jan van Oldenborgh (KNMI, De Bilt, The Netherlands) for identifying this error. We also thank Francisco J. Doblas-Reyes (IC3, 
Barcelona, Spain) for discussions.
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