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Abstract—Fog computing extends cloud computing technology
to the edge of the infrastructure to support dynamic computation
for IoT applications. Reduced latency and location awareness in
objects’ data access is attained by displacing workloads from
the central cloud to edge devices. Doing so, it reduces raw data
transfers from target objects to the central cloud, thus overcom-
ing communication bottlenecks. This is a key step towards the
pervasive uptake of next generation IoT-based services.

In this work we study efficient orchestration of applications
in fog computing, where a fog application is the cascade of
a cloud module and a fog module. The problem results into
a mixed integer non linear optimisation. It involves multiple
constraints due to computation and communication demands
of fog applications, available infrastructure resources and it
accounts also the location of target IoT objects. We show that
it is possible to reduce the complexity of the original problem
with a related placement formulation, which is further solved
using a greedy algorithm. This algorithm is the core placement
logic of FogAtlas, a fog computing platform based on existing
virtualization technologies. Extensive numerical results validate
the model and the scalability of the proposed algorithm, showing
performance close to the optimal solution with respect to the
number of served applications.

Index Terms—fog computing, microservice, resources alloca-
tion, placement

I. INTRODUCTION

Fog computing adopts cloud technology to move compu-
tation to the edge. It promises to solve the core problem of
data explosion in the IoT domain [1]. Instead of performing
raw data transfer to the cloud, in fact, data flows generated
from objects, i.e., IoT devices, can be intercepted to extract
information at the edge of the network. This architectural
choice prevents massive, diffused and continuous raw data in-
jection into the communication infrastructure, avoiding severe
communication congestion [2]. Furthermore, compared to cus-
tomary cloud-based IoT deployments, proximity to mobile or
sensing devices lowers round-trip-time between target objects
and backends of processing applications [3].

Further incentives in the development of fog computing
solutions include the standardization of IoT deployments,
typically encompassing several different technologies. For
instance, this can ease management and maintenance of IoT
services in industrial networks [4]. Local computing can also
overcome privacy issues by confining raw data within specific
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geographical regions [5]. The fog orchestrator studied in this
paper is part of FogAtlas, a platform designed to perform
efficient deployment of fog computing applications according
to the above guidelines [6, 7].

Edge resources optimization in this context is key. Indeed,
compared to standard cloud technologies, which are typically
utilized in overprovisioned datacenters, edge infrastructure
owners can hardly count on systematic overprovisioning. In
fact, last mile connections are traditionally owned by telecom-
munication operators, while edge computing clusters are rela-
tively small compared to cloud datacenters. In turn, the scarce
storage, memory and processing capabilities of edge units
need to be optimized to meet customers’ demands [8, 9]. This
appears a challenging engineering problem to attain premier
fog service provision sustaining localised data processing and
low round-trip time.

In practice, the current paradigm of fog computing is
based on a layered architecture, including a central cloud, a
series of edge units, wireless gateways, and, finally, target
objects which generate data and possibly actuate. Hence,
virtual machines or containers can run either in the central
cloud, or over edge units, depending on the requirements
of IoT-based applications. Actually, the current practice in
cloud application design tends to favour microservice-based
development, both for reasons of availability and of scalability.
Microservice applications are composed by coupled modules,
such as a graphical user interface, a user repository, a web
server, an image recognition module, a monitoring application,
etc. Once interconnected using a specific communication and
computing pattern, the microservice architecture delivers the
intended functionality while preserving scalability, minimality
and cohesiveness of the application [10].

To this respect, it is natural to assume that fog-native appli-
cations should adhere to the modular microservice paradigm.
The simplest possible containerization of a fog application
would actually split computing functionalities using just two
containerized modules. First, a module typically comprising
one or more microservices not directly involved in objects’
data computation. Such module, i.e., the cloud module, should
reside in the central cloud, possibly inside a pod or a vir-
tual machine hosting the related microservices. The second
module, namely the fog module, includes functionalities of
processing of target objects’ data. We assume it is hosted on
a single container installed in the cloud or on edge nodes,
depending on the placement operated by the fog orchestrator.
Such a minimal containerization adheres to the current practice
in cloud computing, since by colocating edge modules within
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same pods one would reduce monitoring and networking
operations.

For the sake of concreteness, we shall often refer to an
example of application which has been deployed on the
FogAtlas platform [7]. It is a two-module video application
where the fog module can be dispatched on an edge server
close to a target video-camera to perform remote image pre-
processing for plate recognition. Actually, stream mining is
emerging as a reference fog-computing [11]. In such data-
intensive service, processing directly on edge nodes permits
large bandwidth savings. In particular, a raw video stream
can be filtered through an image detection algorithm so that
only tagged frames need to be forwarded to the cloud. Finally,
only a small fraction of information is transferred towards the
central cloud.

The problem of application placement, even for two-module
based fog-applications, is proved to be NP-hard in our pre-
liminary work [12]. Hence, the main objective of this work is
to describe an efficient placement of fog application modules
either on the edge or in the cloud for a batch of concurrent fog-
based applications. In order to determine such a placement,
constraints on computational and bandwidth requirements have
to be factored in. Furthermore, specific constraints depend
on the locality, of objects which are the target sources of
fog applications. We remark that, compared to standard cloud
computing orchestration, the presence of concurrent requests
for data originating at a specific locations may generate hot-
spot conditions. An orchestration mechanism able to offload
applications to neighboring regions of a hotspot proves an
effective tool to increase system performance.

We shall introduce first the general placement problem and
then describe our algorithmic solution. Our main contribu-
tion is an optimization framework for the orchestration of
concurrent fog applications across multiple fog regions. Our
scheme accounts for object’s location and the constraints on
both network and computing resources. Finally, it reacts to
hotspot conditions by performing offloading to neighboring
regions.

The rest of the paper is organized as follows. The next
section reports on related works and how existing container or-
chestration technology can apply to fog computing. In Sec. III
we describe the system model, including the abstractions we
adopt for the applications’ architecture, the network infrastruc-
ture and applications’ deployment configurations. In Sec. IV
we present the problem formulation, introducing the most
general problem setting. The placement problem is addressed
in Sec. V by proposing a greedy algorithm for its resolution
given the NP-hardness of the problem. Numerical results are
reported in Sec. VI. A concluding section ends the paper.

II. RELATED WORK

Efficient service deployment lies at the core of cloud com-
puting research [13, 14]. In fog computing, the presence of
remote, heterogeneous devices on edge nodes requires novel
schemes to match QoS requirements and optimize network
usage [9, 15].

As described in [16], cloud software design privileges
modular software structures: applications may have multiple
components known as microservices. In [15], microservice
fog applications are represented like DAGs (Directed Acyclic
Graphs), where graph nodes represent an application’s mod-
ules, and edges between nodes represent dependencies be-
tween them. In this paper, we use weights to represent the
throughput generated by outbound module interfaces. The
general application deployment problem is a graph embedding
problem [17], a standard NP-hard problem. In our context,
even for two-module based fog-applications, such problem is
proved to remain NP-hard.

Authors of [18] focused on the provision of QoS con-
strained, eligible deployments for applications. The problem
is stated to be NP-hard with a reduction from the subgraph
isomorphism problem. Preprocessing plus backtracking de-
termines the final eligible deployment restricting the search
space. But, no performance target is optimized.

In [8], application provisioning is studied from the per-
spective of the network infrastructure. A fully polynomial-
time approximation scheme is derived for single and multi-
ple application deployment, showing large QoS performance
improvement with respect to applications’ bandwidth and
delay figures. However, computational requirements are not
accounted for.

In [19], a general technique to minimize execution time of
IoT applications is proposed. IoT applications are modeled as
dataflow graphs where nodes are specific computational oper-
ators and edges between nodes express a dependency between
them. The model introduced takes into account computation
and communication delays. By reduction to the Matrix Chain
Ordering Problem, an algorithm is provided in order to solve
the optimization problem via dynamic programming, with
time-complexity log-linear with respect to the number of
operators of the application. Our objective is different since
we aim at maximizing the number of deployed applications.

Authors of [20] proposed a fog computing platform for
deployment of applications on an infrastructure composed of
datacenters and edge devices. The related placement problem
is an instance of the Knapsack problem, solved via a heuristic
algorithm. The work does not consider the cumulative appli-
cations’ bandwidth demand across the infrastructure.

Taneja et al. [9] defined a placement algorithm by mapping
the directed acyclic graph of the modules of an IoT-based
application into fog and cloud nodes. Numerical results show
performance gains in terms of latency, energy and bandwidth
constraints, compared to edge-agnostic placement schemes.
Our work, conversely, develops an optimization framework
able to account for both traffic and computing demands of
a whole batch of applications, to be deployed over multiple
regions.

With respect to the container technologies discussed in
this work, the de-facto standard for container orchestration is
Kubernetes [21]. Resource allocation in Kubernetes proceeds
by first enlisting servers able to host a target application
module in a container pod. In the native cloud version, the
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Table I: Main notation used throughout the paper
Symbol Meaning
K set of regions |K| = K
U set of applications to be deployed U = ∪Ki=1Ui,

|U| = U
Sk set of server units in region k, with |Si| = ni
Uk set of applications requiring IoT data in region k
λHu /λLu high/low throughput required by application u
∆H
u /∆L

u large/small data unit of application u
Fu output samples per second required by application u

actual container deployment is performed agnostic of the
notion of fog-region and agnostic of network conditions. Our
orchestration logic is able to addresses also the locality of
object demands and their cumulative effect onto the commu-
nication infrastructure.

III. SYSTEM MODEL

We consider a fog system deployed over a set of geographic
regions K = {1, . . . ,K}. Fog region k hosts a set Sk of
edge servers or units. We denote ski , with i ∈ {1, . . . , nk}, a
specific edge unit deployed within the k-th region; for the
sake of notation we denote the central cloud as S0. The
resources of edge unit ski are represented by capacity vector
Cki = (CMki , C

P
ki
, CSki). The first component of the capacity

vector is the memory capacity. The second component is
the processing capacity, which determines the maximum load
which can be sustained on the edge unit. Finally, the third
component denotes the storage capacity, i.e., the data volume
that can be accommodated on the storage of the edge unit.
We assume that the storage of a containerized application is
handled on the same unit where the container is deployed,
with the aim to reduce the communication costs.

In region k, objects serve data required by a set of appli-
cations Uk. From here on out, we identify the application and
the device from which data are requested with same symbol.
The extension of the following optimization framework in the
case of multiple requests for same IoT device is immediate,
by considering virtual replicas of a tagged IoT device. We say
that application u “belongs” to a given region because the IoT
object is located there. Such region is denoted Su for the sake
of notation. We leave access of applications to IoT objects of
different regions for future works.
Network Architecture. The fog system can be described by a
weighted graph G = (V,E) where V = {Si}i∈K ∪ {S0} and
E ⊆

(
V
2

)
. The weight of each edge {i, j} ∈ E consists of the

delay, dij , of the link and the bandwidth of the link Bij . Let
N(Si) = {Sj |{j, i} ∈ E}.
Application Architecture. As depicted in Fig. 2, an application
u ∈ U consists of two modules: the fog module uA and the
cloud module uB . In order to render the notion of computing
and communication constraints more concrete, we refer to a
benchmark application for face recognition in a video stream.
As introduced before, modules for processing IoT data streams
– face detection processing over the sequence of video frames
in our example – are containerized in uB . They can be
deployed in the central cloud S0 or on the edge, i.e., in

u

uB uA

yu

1/Fu

Figure 1: The modules cascade outputs a result yu every 1/Fu sec;
uA is the cloud module, whereas uB is the fog module.

regions Si, i = 1, 2, 3. Conversely, cloud module uA contains
all remaining logic, including, e.g., alarm generation in case a
positive match is returned. The application has to output every
1/Fu seconds a result yu – in this case a positive or negative
face recognition match. uA is installed in the central cloud S0.
We can hence consider the whole processing chain involved
by the two-containers and the related data transmission delay.
We should also include the processing delay du of application
u (if deployed back to back to the IoT object), plus the
communication delay duj , which is the additional delay to
retrieve data from region where the sensor belongs to uA,
when uB is installed in region j.

The IoT source – in the example a videocamera – generates
information units – video frames – of size ∆u, which are
served at rate Bu bit/s. We denote ∆H

u = ∆u. Conversely, uB
transfers smaller information unit ∆L

u to uA.
Finally, we denote cMu , cSu , cPu the resource requirements of

of application u, in terms of memory, storage and processing
capacity, respectively, of uB ; with compact notation we denote
cu = (cMu , c

S
u , c

P
u ).

In the placement problem we need to consider the pro-
cessing and transferring time. Actually, the processing time
for each information unit depends on the throughput between
application modules. Any application placement has to guar-
antee that the application to process an information unit ∆u in
1
Fu

seconds. Thus, the allocation of such throughput depends
on the application deployment configurations. Since uA is
always installed on the central cloud, the three basic fog
configurations to deploy application u are as in Fig. 2:
Type 1: uB deployed on Su; higher throughput λHu flows
between IoT object u and region Su, with IoT data unit
∆u = ∆H

u . ∆L
u is served between Su and S0 with low

throughput λLu ;
Type 2: uB deployed on central cloud S0; the IoT data
∆u = ∆H

u is served between Su and S0 with high throughput
λHu ;
Type 3: uB deployed on a neighboring fog region Sj 6= Su;
lower throughput required between Sj and central cloud S0.
However, the IoT data ∆u = ∆H

u is served between Su and
S0 with high throughput λHu .

IV. PROBLEM FORMULATION

The resource allocation problem is tackled from the perspec-
tive of the edge-infrastructure owner. Her aim is to maximize
the revenue obtained in the provision of her fog infrastructure
to application tenants. In fact, she settles a cost in order to
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Figure 2: The three configurations types for the deployment of the fog module uB ; cloud module uA is always installed in cloud.

deploy an application using the traditional scheme of pay per
use. A tenant owning application u pays fu,k > 0 euros per
container installed in region k.

The objective is to schedule the containerized fog applica-
tions such in a way to maximize the owner revenue, while
satisfying the applications’ requirements. We can obtain the
optimal reward for a given set of application requests. Hence,
the following formulation provides an upper bound on the
average reward that can be attained with perfect information.

Decision variables xu,k,i are boolean variables indicating
the placement of the application u on the i-th server of
region k. Further, decision variables λHu , λ

L
u ∈ R+ represent

throughput in the large and small data unit transfer mode of
application u, respectively. The optimal allocation policy using
a mixed integer non linear program (MINLP) writes:

maximize:
∑

(u,k)∈U×K

fu,k xu,k (1)

subject to: ∑
u∈U

cu xu,k,i ≤ Cki
, ∀k ∈K,∀i ∈ Sk (2)

∑
u∈Uk

(xu,k λ
L
u + xu,0 λ

H
u )+

+
∑

j∈N(Sk)

∑
v∈Uj

xv,jλ
L
v ≤ Bk0, ∀k ∈K \ {0} (3)

∑
u∈Uk

xu,j λ
H
u +

∑
u∈Uj

xu,k λ
H
u ≤ Bkj , ∀jk ∈ E, j, k 6= 0

(4)

du +
∆H
u

Bu
+
(
duj +

∆H
u

λHu
+

∆L
u

λLu

)
xu,j+(

du0 +
∆H
u

λHu

)
xu,0 +

(
du0 +

∆L
u

λLu

)
xu,u ≤

1

Fu

∀u ∈ U, ∀j ∈ N(Su) (5)∑
k∈K

xu,k ≤ 1 ∀u ∈ U (6)

∑
k∈K\{N(u)∪{u}}

xu,k ≤ 0 ∀u ∈ U (7)

xu,k,i ∈ {0, 1} ∀(u, k) ∈ U ×K ∀i ∈ Sk (8)

λHu , λ
L
u ∈ R+ (9)

where we let xu,k =
∑
i∈Sk

xu,k,i ∀(u, k) ∈ U × K

for notation’s sake. The objective function is the revenue
gained by the infrastructure owner. The constraint (2) is meant
component-wise: it bounds the resources utilization on fog
servers in terms of memory, processing and storage capacity,
respectively. Also, (3) and (4) bound the throughput generated

by applications with respect to links’ capacity. (3) accounts
for all traffic from region k to the central cloud, whereas (4)
accounts for the throughput across adjacent regions as in
Figure 2c. By constraint (5), the total transmission and com-
puting time needs to be smaller than the service rate of the
application. We assume that, according to (6), each application
has at most one deployment region. In particular, (7) indicates
that each application can be deployed only on neighbor regions
or on its original region.

The decision variables are the binary variables for the
placement and the continuous variables for the throughput.
Prob. 1–9 is a combination of a placement and a multi-
commodity flow problem. For the sake of tractability, in the
next section we offer a reduction to a pure placement problem,
which is proved to be NP-hard by reduction from the m-
dimensional knapsack problem.

V. PURE PLACEMENT PROBLEM

The reduction is attained by fixing the continuous decision
variables of the MINLP, i.e., λLu and λHu . To do so, we fix
the minimum throughput required for each application u ∈ U

to deliver the output at target rate Fu, given the configuration
type and the deployment region for uB .

Type. 1: processing each information unit and providing an
output result should happen at rate 1

Fu
; by accounting for all

processing and communication delay we write

du + du0 +
∆H
u

Bu
+

∆L
u

λLu
≤

1

Fu
(10)

which can be solved for equality in λLu ;
Type. 2: For each application u, we have

du + du0 +
∆H
u

Bu
+

∆H
u

λHu
≤

1

Fu
(11)

In this case we are solving for λHu ; we observe that it must
hold indeed λHu ≥ λLu .

Type. 3: if uB is deployed in a region neighbor of the
original region of u, it holds

du + duj + dj0 +
∆H
u

Bu
+

∆H
u

λHu
+

∆L
u

λLu
≤

1

Fu
(12)

In this case, in order to have a unique solution in the minimum
throughout, we impose additional constraints, namely we
restrict to the set of solutions such that

λHu
λLu

=
∆H
u

∆L
u

(13)

Once we performed the above identification, the original
problem becomes an Integer Linear Programming problem

4



which is shown to be NP-hard in [12] by reduction from the
well-known multidimensional knapsack problem.

A. Placement algorithm

Given the NP-hardness of the pure placement problem, we
propose a greedy solution called FPA. In Algorithm 1 we
report the pseudocode of the algorithm.

Algorithm 1: Fog Placement Algorithm (FPA)
Input: G = (V,E), U
Output : Container placement for each u ∈ U

1 while U 6= ∅ do
2 place← {};
3 for i = 1, . . . ,K do
4 for u ∈ Ui do
5 A ← ∅;
6 if verify(Si, u) then
7 A ← A ∪ {Si};
8 for S ∈ N(Si) do
9 if verify(S, u) then

10 A ← A ∪ {S};

11 if A 6= ∅ then
12 place[u]← select(A,u);

13 else
14 place[u]← ∅;

// select the application to be deployed
15 u∗ ← min_resource_region(place);
16 deploy(u∗, place[u∗]);

// Update G
17 update(G,Splace[u∗], Su∗ , u∗);
18 U← U \ {u∗}

FPA operates an iterative application deployment. At each
step, for each region and for each application u which belongs
to that region, it selects the set A of admissible regions for
the deployment of module uB container. Such set includes all
the regions satisfying the computational and throughput re-
quirements of a tagged application. Preliminarily, a feasibility
check is performed through a verify procedure: given a region
and application’s requirement, it verifies whether exists some
server in the region to host uB , i.e., if the server has enough
space in terms of CPU, memory and storage. Further, through-
put requirements are verified against each configuration type
for each application, by ensuring that the residual bandwidth of
involved links satisfies the minimum throughput requirement
corresponding to the tagged configuration type.

The select procedure is reported in Algo. 2: select first
calculates, for all the admissible regions for the deployment
of an application u, a gradient v̄S (∀S ∈ A). Its components
are calculated at lines 1, 2, 3, 7-8, 11, and 14, respectively,
by estimating the normalized decrease of each resource type
in case of deployment with tagged configuration. The output
is the region with the minimum gradient (line 16). Once a
feasible region is selected for each application, the algorithm 1
chooses the application to be deployed first. This step is
executed by the min_resource_region procedure. It takes the
place map as input and returns the application to which
the region with the minimum gradient (computed through

Algorithm 2: Select procedure
Input: A, set of admissible regions for the deployment of the module

uB
Output : A region for the deployment
// Build a gradient vector for each region in A

1 for S ∈ A do

2 vm ←
cMu

residual_mem(S)
;

3 vp ←
cPu

residual_proc(S) ;

4 vs ←
cSu

residual_stor(S) ;
5 if S 6= Su then
6 if S ∈ N(Su) then

// Case 3

7 b1 ←
λH
u

residual_band({u,S}) ;

8 b2 ←
λL
u

residual_band({S,0}) ;
9 v̄S ← (vm, vp, vs, b1, b2);

10 else
// S = S0, case 2

11 b1 ←
λH
u

residual_band({0,u}) ;
12 v̄S ← (vm, vp, vs, b1, 0);

13 else
// Case 1

14 b1 ←
λL
u

residual_band({0,u}) ;
15 v̄S ← (vm, vp, vs, b1, 0);

16 return arg min
S∈A

{‖v̄S‖2}

the select procedure) is associated. Subsequently, once the
algorithm has selected the application to be deployed, it
updates the computational capacities of the server hosting the
module of that application. Afterwards, the algorithm updates
the graph structure decreasing the bandwidth of the links that
connected the regions selected for the deployment (line 17).
It iterates until all applications have been considered.
Complexity. Now we look at the complexity of FPA. The
procedures verify, updateServer and update have constant time
complexity. The procedure select computes a vector for each
eligible region in the set A. In the worst case, the cardinality
of A is at most K − 1. Hence, the complexity of the select
procedure is O(K). The cardinality of U is U , and the
maximum cardinality of a neighborhood of a certain region
is O(K) in the worst case. The cardinality of the set of
applications to be ranked is O(U) at each step. Finally, the
complexity of FPA is O(U2 ·K2 + U2) in the worst case.

VI. NUMERICAL RESULTS

First, we describe the setup of the tested scenarios. Where
not otherwise specified, we intend the infrastructure owner to
maximize the number of deployed applications, i.e., fu,k ≡ 1.

Network topology: the fog infrastructure is modeled with
an undirected network graph with a fixed number of fog
regions K = 7. The central cloud and regions form a star
topology of cloud-to-fog connections, namely cloud-links. For
every topology realization, crosslinks among regions are added
according to an Erdős-Rényi random graph model, where a
link exists between two regions with probability q. Finally,
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Table II: Distribution of the application requirements of CPU, mem-
ory, storage and throughput.

Requirement Mean Value (u0) Range (u ∈ U)
CPU (cPu ) 1250 MIPS [500, 2000] MIPS
Memory (cMu ) 1.2 Gbytes [0.5, 2] Gbytes
Storage (cSu ) 3.5 Gbytes [1, 8] Gbytes
Low throughput (∆L

u ) 1.5 Mbps [1, 2] Mbps
High throughput (∆H

u ) 4.25 Mbps [3.5, 5] Mbps

Table III: Characteristics of the three classes of fog servers: low,
medium and high.

Type CPU (MIPS) Memory (GB) Storage (GB)
Low 5000 2 60
Medium 15000 8 80
High 44000 16 120

each link in the resulting network is assigned a bandwidth of
15 Mbps, both for cloud-links and crosslinks.

Application Batch Generation: a batch of fog applica-
tions is generated for each experiment; we considered U =
{10, 50, 100, 150}. The demands of each application of the
batch for CPU, storage, memory and throughput are uniform
independent random variables. The mean value of such vari-
ables is dictated by the nominal value we measured for our
benchmark application. That application, as recalled before,
is a plate-recognition application packaged as a two-modules
microservice. The fog microservice module can process the
video stream either in the cloud or on a fog node. The resulting
distribution values for the application batches are enlisted in
Tab. II; symbol u0 refers to the nominal values we measured
on FogAtlas for the plate recognition app.

Finally, the probability that an application belongs to region
k ∈ {1, . . . ,K} follows a truncated Pareto distribution of pa-
rameter α, i.e., P{Ru > k} = k−α/γ, where Ru is the random
variable representing the index of the region assigned to the
application u and normalization constant γ =

∑K
h=1 h

−α.
Fog Server Classes: the servers available within each region

belong to three classes, depending on the resources they
are equipped with, namely low, medium and high class.
The computational characteristics are listed in Table III. The
number of servers per region is determined per realization as
follows. Each region is meant to satisfy same fraction of the
expected aggregated demand. More precisely, each region is
equipped with aggregated resource vector (1 + β) UK cu0 . The
parameter β is a slack parameter tuning the probability that fog
resources are underprovisioned/overprovisioned compared to
the aggregated demand. Finally, the servers’ population of the
tagged region is determined by allocating servers of random
type until the region resource budget is exhausted.

Experiments have been conducted on an Ubuntu Linux
server with 32 core AMD Opteron(tm) 1.4GHz CPU and
64GB of memory.

A. Reference Algorithms

In order to make a comparison with other state-of-the-art
deployment strategies, we have implemented two variations of
the basic Kubernetes scheduling algorithm [22]. Kubernetes’

scheduling logic is composed of three main steps [23]:
• Filtering: this phase selects a set of admissible servers

that can host the application module; this is a feasibility
control step common to our FPA algorithm.

• Ranking: once a list of possible servers has been estab-
lished, the second step is to choose the best server for
the given application module. There are several existing
metrics to produce the rank of servers based on the use
of Kubernetes built-in priority functions. After checking
the existing options, we decided that, in a fog setting, the
most fair comparison with our solution is indeed provided
by the LeastRequestedPriority function. In this case, in
fact, a server node is ranked based on the fraction of the
node resources that would be free after the deployment
of the application module.

• Deployment: once all the servers have been ranked, the
best node with respect to the selected priority function
is chosen and the application module is deployed on
the selected server. Also, the network graph is updated
consequently.

We observe that, despite being designed as native cloud
solution, Kubernetes offers also a network-agnostic, ready-to-
use solution for Fog computing. Nevertheless, it requires some
adaptation in order to handle a multi-region scenario. In our
numerical evaluation we have considered two main variants:

1) The first one runs the basic Kubernetes algorithm in
every single fog region; each region is hence thought
as a separate cloud where a fog server is chosen to host
the application modules to be deployed. We observe that
in this approach, only deployments of type 1 and type
2 are possible.

2) The second approach is to consider the whole fog
deployment as a unique region. Hence, in the filtering
step, Kubernetes shall select all the servers able to host
a tagged module across all fog regions.

In both cases, fairness considerations suggest to assume that
the basic container orchestration is able to account also for
network metrics1. In fact, the baseline feasibility check re-
quires to assess the bandwidth availability between either two
neighboring fog regions or between the cloud and the region
where the target server lies.

B. Experimental Results

In Fig. 3a and b we have depicted the number of deployed
applications at the increase of the batch size. The graphs report
the results averaged on 30 instances with 95% confidence
interval for two scenarios with parameters β = −0.2, q = 1/3
and β = 0.5, q = 1/2, respectively. The red line represents the
optimal solution obtained by the Gurobi solver [24], the blue
line FPA, whereas the green and the magenta ones represent
the first (Kub) and the second (Kub1) variant of the Kubernetes
algorithms, respectively. In the second scenario all algorithms

1This feature has been actually implemented in our Kubernetes-based fog
platform [6, 7]; the details of the implementation are out of the scope of the
current work.
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Figure 3: a/b) Number of deployed applications: a) q = 1/3, β = −0.2; b) q = 1/2, β = 0.5; c/d) Average link usage (settings as in b):
c) cloud-links and d) crosslinks; e) Configuration types distribution for a typical solution instance with U = 100, q = 0.5 and β = 0.5; f)
Configuration types distribution for a typical solution instance with U = 150, q = 0.5 and β = 0.5; g) Probability of inter-region offloading
varying q, U = 100; h) Number of deployed applications varying q, U = 100;

tend to deploy a larger number of applications than in the
first one. This is expected since the latter both has more
computational resources and more connected regions.

In both figures we can observe that FPA performs close
to the optimal solution. The poor performance of the Kub
algorithm indicates that offloading towards neighbourhood fog
regions is key to efficient fog resource allocation. Also, as
the number of applications increases, the gap between FPA
and Kub1 broadens. The reason can be ascribed to two key
difference between FPA and Kub1. First, the deployment order
of applications in FPA matches remaining resources at each
step, by choosing the application with minimum resources
consumption gradient. In Kub1, conversely, applications are
deployed in a predefined order. Second, because Kub1 ne-
glects crosslinks bandwidth utilization, it experiences faster
bandwidth resources consumption. On the other hand, FPA’s
better performance is due to the fact that it accounts for both
the bandwidth occupation of both cloud-links and crosslinks.

Fig. 3c reports the average cloud-link usage per deployed
application. As the number of applications increases, the aver-
age bandwidth consumption decreases for both OPT and FPA.
In fact, they both tend to deploy applications on the fog regions
thus saving cloud-link bandwidth; the figure shows that FPA
behaves similarly to OPT in terms of cloud-links bandwidth
consumption. Furthermore, Fig. 3d shows the average cross-
link usage by each deployed application. We observe that the
optimal solution makes relatively larger usage of crosslinks
compared to FPA; Kub1 on the contrary makes intense usage
of cross-link bandwidth.

Fig. 3e and Fig. 3f provide some further insight into the
structure of the produced solutions. There, we have reported
the number of deployments of each type produced by different
algorithms. The OPT and Kub1 solutions prioritize type 3
configurations over type 1 configurations, while the opposite

is seen to occur for FPA. Overall, as expected, deployments
on fog, i.e., type 1 and type 3, are more frequent than type
2 configurations, since they save bandwidth on cloud-links.
Actually, for a batch of 150 applications the number of type
2 deployments becomes negligible (Fig. 3f).

Fig. 3g and Fig. 3h highlight the effect of inter-area connec-
tivity. We observe that the number of applications deployed
increases sharply when q = 1/3. Starting at this level of
connectivity, in fact, links between crowded hot-spot fog re-
gions and lightly loaded ones become more probable. Inferior
performance of Kubernetes placement algorithms is expected,
since they do not account for communication capacity in order
to perform deployment decisions. Thus, even though Kub1
solutions resort heavily to type 3 configurations, the total
number of deployed applications performance is much lower
than FPA.

Finally, a direct inspection of the structure of the OPT
solutions has revealed not intuitive deployment choices, as, for
example, the occurrence of simultaneous offloading between
two crowded fog regions, a behaviour which is not reproduced
neither by Kub1 or FPA. In fact, the gain obtained by FPA is
due to the ability to able to offloads the applications from
crowded regions to the lightly-loaded ones, accounting for
communication bottlenecks as well as utilisation of compu-
tation resources. This causes major bandwidth savings as the
number of applications increases.

FPA has been integrated into the orchestrator of FogAt-
las [7]. FogAtlas is a fog platform derived from several
extensions of the early platform described in [6]. It handles
microservice deployment and workload placement over a
distributed fog infrastructure encompassing a cloud region and
one or more fog regions. Actually, the orchestration mecha-
nism is adapted to a region-oriented architecture: this is a key
difference with respect to existing technologies for resources
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Figure 4: Orchestration delay

orchestration in a centralized-cloud environment. FogAtlas
handles the orchestration among regions, and delegates intra-
region orchestration to standard OpenStack [25] and Kuber-
netes [22] controllers. Also, it needs system-wide monitoring
and inventory control both at the level of computing and of
network resources (the interested reader can refer to [7] for
further details).

We aim at ensuring that FPA does not impact severely the
deployment time under current standard technology. Hence, we
decided to test the scalability of the FPA-based orchestration
via our FogAtlas platform. To this aim, Fig. 4 reports on
tests performed on the orchestration delay, defined as the time
needed from the instant when the batch of applications is
offered to the orchestrator until the placement is calculated. As
we can see, the expected time complexity is moderately super-
linear, confirming the scalability of FPA to large application
batch sizes.

VII. CONCLUSIONS

In this paper, we have introduced an optimization framework
for microservice fog applications. Different configurations are
used to deploy fog computation modules either to the edge
or in cloud. The problem combines a multi-commodity flow
and a placement problem, but can be reduced to an NP-
hard problem, proved by reduction from the multidimensional
knapsack problem, by introducing throughput proportionality.
We have proposed a greedy algorithm, namely FPA, which
performs efficiently with respect to the optimal solution by
placing applications using a gradient approach.

We have tested numerically our framework under a real-
istic dimensioning derived from our FogAtlas platform. The
numerical experiments confirm the scalability properties of
the proposed fog orchestration technique. Furthermore, we
have inspected the resulting crosslink and cloud-link utilization
patterns. We have observed that, while cloud-link capacity
represents a real bottleneck for the applications’ throughput,
inter-region orchestration is key to save cloud-link bandwidth.
This is especially true in hot-spot scenarios with unbalanced
distribution of target objects for fog applications. Nevertheless,
inter-region offloading must be performed taking into account
the bandwidth consumption of both cloud-links and crosslinks
to avoid bandwidth bottlenecks possibly impairing the applica-
tions’ throughput. In future works, we shall explore the impact

of availability requirements, which at present have not been
accounted for in the orchestration process.
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