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Abstract—Multi-objective optimization in PMEDM remains a very 

complex problem, so it continues to cause the attention of many 

research. In this paper, the authors presented the results of each 

specific optimization and simultaneous 4 quality characteristics of 

electrical discharge machining using titanium powder mixed in the 

dielectric fluid (PMEDM). The methods is used to optimize the 

Taguchi method and TOPSIS. The process parameters are used to 

investigates: workpiece material, tool material, polarity, pulse-on 

time, intensity of discharge, pulse-off time, powder concentration. 

This approach proved successful method for improving the 

processing efficiency of the study subjects. 
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I. INTRODUCTION  

The research results of PMEDM methods showed promise as 

ways to improve productivity and quality in EDM. Suitable 

powder is mixed in the dielectric fluid in EDM, which can 

lead to increased MRR, TWR and SR is reduced. Many types 

of powder materials have been used, such as Al, Si, SiC, W, 

WC, Cu, and MoS2 [1]. They are mixed into dielectric fluid to 

improve the material removal rate (MRR), surface roughness 

(SR), and electrode wear ratio (EWR) in EDM [2]. The 

Taguchi method has been widely used to solve optimization 

problems in this field [3]. However, the Taguchi method only 

solves singl-characteristic response optimization problem. 

Recently, the Taguchi method has been combined with several 

other methods, such as grey relational analysis (GRA), 

TOPSIS, particle swarm optimization (PSO), and fuzzy logic 

[4]. This has contributed to improving the efficiency of the 

optimization problem in PMEDM. 

Recent research has shown that Taguchi combined with 

several other methods, such as GRA, TOPSIS, and PSO, can 

optimize multiple quality characteristics in EDM, and results 

have been good. Taguchi-GRA has been used to 

simultaneously optimize MRR, EWR, and OC expenditures in 

micro-EDM of CP Ti [5]. Current, frequency, and pulse width 

were used in the study; current hass the greatest influence, and 

pulse width has the smallest effect. SR and kerf width have 

been optimized simultaneously in WEDM using Taguchi–

GRA [6]. The results have shown that ton is the most 

influential process parameter on wire feed, tof, and gap 

voltage, respectively, and it reduced the effect to SR and keft 

width. In addition, the surface topography of H11 steel was 

significantly improved [7]. Indicators including MRR, TWR, 

EWR, and SR in PMEDM were optimized simultaneously by 

TOPSIS and GRA. The results showed that both methods in 

combination are a solution for multi-objective optimization in 

this field. Surface quality at optimum conditions has also been 

analyzed and evaluated, and the results have shown that the 

surface quality improved. The optimum results for 

performance, surface quality, and machining precision of 

AISI-304 in micro-EDM have been identified by the TOPSIS 

method [8]. Quality criteria, including MRR, TWR, overcut, 

taper angle, and circularity at entry and exit points have been 

optimized simultaneously. The optimal results were good, and 

have been verified by experiment. The TOPSIS method has 

been used to optimize multiple targets in both traditional 

machining (milling, turning, drilling, grinding), non-traditional 

machining (EDM, abrasive jet machining, micromachining) 

and many other areas [9]. TOPSIS algorithms can 

simultaneously optimize a large number of quality 

characteristics, and its optimal results are better than other 

methods, such as Taguchi and GRA. 

The research results show the effectiveness of combining 

the Taguchi and TOPSIS methods for optimizing multiple 

targets in PMEDM. This study presents the results of 

simultaneous optimization of the MRR, SR, and TWR 

indicators in PMEDM using Ti powder. The materials used in 

the machining process are die steels. The Taguchi–TOPSIS 

method, seven process parameters, and three kinds of 

interactions between them were studied.  

II. EXPERIMENTAL PROCEDURE  

2.1. Experimental Equipments 

Electrical discharge machining AG40L (Sodick, Inc. 

USA). The tank is made of CT3 steel with size 330x180x320 

and motor shafts fitted with stirring (100 rev / min) to titanium 

powder are mixed in the dielectric fluid (oil HD-1) during the 

experiment. The workpice materials are SKD61, SKD11 and 

SKT4 mould steel and it is the common type used been 

selected to be studied. Sample size 45x30x10mm. Cu, Gr is 

the two materials most commonly used and are very much 

interested in research. Electrode is shaped circular cylinder 

and it has a diameter size 23mm. Size of the particle size of 

titanium powder is 45μm were selected to mixed in dielectric 

fluid. Measuring the mass of the embryo before and after 

processing with electronic scales AJ 203 (Shinko Denshi Co. 

LTD - Japan), the largest mass of balance is 200g, the 

accuracy of the balance is 0.001g. Surface roughness (Ra, Rz, 

...) were measured using a strain gauge transducer type contact 

SJ-301 (MITUTOYO - JAPAN).  

In the current study main effects and interaction effect of 

the input parameters are considered as shown in Table 1. In 

https://www.google.com.vn/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiC8rrbkfLVAhULyLwKHZ9ECpsQFggrMAE&url=http%3A%2F%2Fwww.onlineprogrammingbooks.com%2Fparticle-swarm-optimization%2F&usg=AFQjCNG7oAVHRFlis6sGgsBfdaER1Rl10g
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the field of PMEDM, researchers have studied the effect of 

powder size, worrkpiece material, electrode material, current, 

pulse on time, pulse off time. In this study, apart from main 

factors the interaction terms were considered namely 

workpiece material x electrode material (AXB), workpiece 

material x powder concentration (AxG), and electrode 

material x powder concentration (BxG). Taguchi’s orthogonal 

array’s is used for designing the experiments. In this study 

seven main factors are considered out of which two factors are 

at two levels each having one dof. Five main factors have 

three levels with each having two dof. Thus the total sum of 

dof including main factors and interaction terms is 20. 

Therefore based on the 20 dof, L27 orthogonal array suits the 

present requirement as it has 26 dof. The remaining 6 dof is 

assigned to random error. L27orthogonal array has 13 columns, 

and each column has 2 dof together. Coefficient A is assigned 

to the column 1, B in column 2, G in column 5, C in column 9, 

in column D 10, E in column 12, F in column 13 as shown in 

Table 2. The experimental results of three output responses, 

(MRR), (SR), and (TWR), are shown in Table 2. 
 

TABLE 1. Input process parameters 

No Factors Symbols 
Level 

Level 1 Level 2 Level 3 

1 Workpiece material A SKD61 SKD11 SKT4 

2 Tool material B Cu Cu* Gr 

3 Polarity C - + -* 

4 Pulse-on time (s) D 5 10 20 

5 Current (A) E 8 4 6 

6 Pulse-off time (s) F 38 57 85 

7 
Powder 

concentrationTi(g/l) 
G 0 10 20 

 

TABLE 2. Results of experiments 

Exp. 

No 
A B C D E F G 

MRR 

(mm3 / 

min) 

TWR 

(mm3 / 

min) 

SR 

(m) 

1 SKD61 Cu - 5 8 38 0 10.487 1.95 3.35 

2 SKD61 Cu + 10 4 57 10 8.169 2.011 3.21 

3 SKD61 Cu -a 20 6 85 20 3.152 1.495 2.56 

4 SKD61 Cua + 10 6 85 0 10.239 4.426 3.55 

5 SKD61 Cua -a 20 8 38 10 14.304 4.364 3.61 

6 SKD61 Cua - 5 4 57 20 0.089 0.054 1.45 

7 SKD61 Gr -a 20 4 57 0 37.466 11.499 4.78 

8 SKD61 Gr - 5 6 85 10 23.575 9.935 3.24 

9 SKD61 Gr + 10 8 38 20 38.843 19.626 4.35 

10 SKD11 Cu + 20 4 85 0 18.882 2.01 4.16 

11 SKD11 Cu -a 5 6 38 10 3.857 1.179 2.05 

12 SKD11 Cu - 10 8 57 20 14.496 3.56 3.2 

13 SKD11 Cua -a 5 8 57 0 10.608 2.25 3.35 

14 SKD11 Cua - 10 4 85 10 0.32 0.132 2.04 

15 SKD11 Cua + 20 6 38 20 23.577 1.495 4.57 

16 SKD11 Gr - 10 6 38 0 23.885 7.439 4.57 

17 SKD11 Gr + 20 8 57 10 59.669 14.073 4.45 

18 SKD11 Gr -a 5 4 85 20 17.159 5.491 2.74 

19 SKT4 Cu -a 10 6 57 0 1.252 0.587 2.55 

20 SKT4 Cu - 20 8 85 10 20.745 5.078 4.31 

21 SKT4 Cu + 5 4 38 20 4.374 2.902 2.46 

22 SKT4 Cua - 20 4 38 0 0.198 0.277 2.26 

23 SKT4 Cua + 5 6 57 10 6.782 4.715 2.89 

24 SKT4 Cua -a 10 8 85 20 19.682 4.413 3.5 

25 SKT4 Gr + 5 8 85 0 10.649 4.537 3.23 

26 SKT4 Gr -a 10 4 38 10 25.97 9.041 3.24 

27 SKT4 Gr - 20 6 57 20 54.36 14.581 5.65 
a - Dummy treated 

2.2. TOPSIS method 

The steps involved in TOPSIS are described below [10]: 

Step1: The decision matrix is set to rank in matrix format 

as follows: 

11 12 1j 1n

21 22 2j 2n

i1 i2 ij in

m1 m2 mj mn
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xij is the value of the optimal characteristics, where: i = 1 m 

is the number of results of each characteristic, and j = 1  n is 

the number of characteristics to be optimized. 

Step 2: Determine the normalized decision matrix with the 

normalized value xij' as follows: 
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Step 3: The weight of the characteristics (Wj) is 

assigned to the normalized decision matrix as follows: 
'

ijw .jY x  

11 12 1j 1n
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 (3) 

Step 4: Identify the positive ideal solutions and 

negative ideal solutions as follows: 

Positive ideal solution: 

'

ij ijmax y , min 1,2,...,
i i

A J y j J i m
     
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 (Best criteria) 

 1 2, , ,..., ,...,j nA y y y y      (4) 

Negative ideal solution: 

'
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 1 2, , ,..., ,...,j nA y y y y      (5) 

Where: J is associated with the positive criteria and J ′ is 

associated with the negative criteria. 

Step 5: The n-dimensional Euclidean distance is used to 

calculate separation measures. Each alternative solution is 

separated from the ideal solution as follows: 

Separation from positive ideal solution: 

 
2

ij

1

n

i j

j

S y y 



    (6) 

Separation from negative ideal solution: 

 
2
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1

n

i j

j

S y y 



          i = 1, 2, …, m  (7) 

Step 6: The relative solution to the ideal solution will be 

calculated by the value of C *. C* is defined as: 

* *, 1,2,..., ; 0 1i
i i

i i

S
C i m C

S S



 
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
  (8) 

Step 7: Ranking is based on the following principle: The 

value of the calculated value is closer to the relative value, it 

will correspond to the number of its order is reduced. The 

value of relative closeness with the serial number of the lower 

ranking will provide a good performance of Ai instead. 

III. RESULTS AND DISCUSSION 

Step1–The decision matrix: The indicators selected for 

optimization in PMEDM, the assigned quality characteristics, 

are as follows: xMRR with MRR, xSR with SR, and xTWR with 

TWR. 

1 1 1
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Step 2–The normalized decision matrix: In the course of 

data analysis, the normalized values are determined. This 

involves adjusting the values measured on different scales to a 

notionally common scale, and determining the normalized 

matrix, as shown in Eq. 5. The normalized values are showed 

in Table 3. 

Step 3–The weighted normalized decision matrix: Based 

on the impact on machining yield, a priority weight has been 

assigned to each response. Here, the weights have been 

assigned to each performance characteristics, the weight of the 

performance characteristics are determined by experiment, and 

the weights used are WMRR = 0.3 for MRR, WSR = 0.6 for SR, 

WTWR = 0.1 for TWR. 

 

 

 

 

TABLE 3. Normalized data 

Exp. 

No 
A B C D E F G 

Vector normalization 

xi1 xi2 xi3 

1 SKD61 Cu - 5 8 38 0 0.1017 0.0596 0.1962 

2 SKD61 Cu + 10 4 57 10 0.0792 0.0615 0.1880 

3 SKD61 Cu -a 20 6 85 20 0.0306 0.0457 0.1499 

4 SKD61 Cua + 10 6 85 0 0.0993 0.1353 0.2079 

5 SKD61 Cua -a 20 8 38 10 0.1387 0.1334 0.2114 

6 SKD61 Cua - 5 4 57 20 0.0009 0.0017 0.0849 

7 SKD61 Gr -a 20 4 57 0 0.3633 0.3514 0.2799 

8 SKD61 Gr - 5 6 85 10 0.2286 0.3036 0.1897 

9 SKD61 Gr + 10 8 38 20 0.3766 0.5998 0.2548 

10 SKD11 Cu + 20 4 85 0 0.1831 0.0614 0.2436 

11 SKD11 Cu -a 5 6 38 10 0.0374 0.0360 0.1201 

12 SKD11 Cu - 10 8 57 20 0.1405 0.1088 0.1874 

13 SKD11 Cua -a 5 8 57 0 0.1029 0.0688 0.1962 

14 SKD11 Cua - 10 4 85 10 0.0031 0.0040 0.1195 

15 SKD11 Cua + 20 6 38 20 0.2286 0.0457 0.2676 

16 SKD11 Gr - 10 6 38 0 0.2316 0.2273 0.2676 

17 SKD11 Gr + 20 8 57 10 0.5785 0.4301 0.2606 

18 SKD11 Gr -a 5 4 85 20 0.1664 0.1678 0.1605 

19 SKT4 Cu -a 10 6 57 0 0.0121 0.0179 0.1493 

20 SKT4 Cu - 20 8 85 10 0.2011 0.1552 0.2524 

21 SKT4 Cu + 5 4 38 20 0.0424 0.0887 0.1441 

22 SKT4 Cua - 20 4 38 0 0.0019 0.0085 0.1324 

23 SKT4 Cua + 5 6 57 10 0.0658 0.1441 0.1692 

24 SKT4 Cua -a 10 8 85 20 0.1908 0.1349 0.2050 

25 SKT4 Gr + 5 8 85 0 0.1032 0.1387 0.1892 

26 SKT4 Gr -a 10 4 38 10 0.2518 0.2763 0.1897 

27 SKT4 Gr - 20 6 57 20 0.5271 0.4456 0.3309 

     
a 
- Dummy treated 

 

Step 4–The positive ideal solutions and negative ideal 

solutions: As higher MRR is desirable (as it corresponds to 

Higher-is-Better, HB criterion), the maximum value among 

the recorded values is considered as the positive ideal 

solution, and the minimum value is referred as a negative ideal 

solution. For the rest of the responses, like SR and TWR, 

lower values are desirable (as they correspond to Lower-is-

Better, LB criterion). Hence, the minimum of the recorded 

values is regarded as positive ideal solution, and the 

maximum value represents the negative ideal solution. The 

positive ideal solution and negative ideal solution are 

determined and shown in Table 4. 

 
TABLE 4. Positive ideal solution and negative ideal solution. 

               Characteristics 

Criteria 
MRR TWR SR 

A+ 0,1736 0,0002 0,051 

A- 0,0003 0,060 0,199 

 

Step 5–The separation measures: The separation distance 

is measured for both positive ideal solution and negative ideal 

solution using Eqs. 6 and 7, and shown in Table 5. 

Step 6–The relative closeness to the ideal solution: The 

relative closeness index is calculated using Eq. 8, and shown 

in Table 5. 

Step 7–Ranking: The results clearly show that the 17
th

 run 

is getting the first rank and good performance of the alternative 

Ai (Table 5 and Figure 1). 
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TABLE 5. TOPSIS values using vector normalization  

Exp. 

No 
yi1 yi2 yi3 iS 

 iS 

 
Ci

* Rank 

1 0.031 0.006 0.118 0.1580 0.1018 0.392 23 

2 0.024 0.006 0.113 0.1622 0.1039 0.391 16 

3 0.009 0.005 0.090 0.1690 0.1222 0.420 11 

4 0.030 0.014 0.125 0.1622 0.0921 0.362 25 

5 0.042 0.013 0.127 0.1528 0.0950 0.383 9 

6 0.000 0.000 0.051 0.1733 0.1592 0.479 5 

7 0.109 0.035 0.168 0.1382 0.1156 0.456 21 

8 0.069 0.030 0.114 0.1261 0.1128 0.472 2 

9 0.113 0.060 0.153 0.1328 0.1216 0.478 12 

10 0.055 0.006 0.146 0.1522 0.0929 0.379 27 

11 0.011 0.004 0.072 0.1637 0.1389 0.459 3 

12 0.042 0.011 0.112 0.1455 0.1076 0.425 7 

13 0.031 0.007 0.118 0.1577 0.1014 0.391 22 

14 0.001 0.000 0.072 0.1739 0.1401 0.446 8 

15 0.069 0.005 0.161 0.1519 0.0958 0.387 19 

16 0.069 0.023 0.161 0.1528 0.0873 0.363 26 

17 0.174 0.043 0.156 0.1138 0.1792 0.612 1 

18 0.050 0.017 0.096 0.1327 0.1216 0.478 10 

19 0.004 0.002 0.090 0.1743 0.1235 0.415 14 

20 0.060 0.016 0.151 0.1522 0.0883 0.367 20 

21 0.013 0.009 0.086 0.1649 0.1238 0.429 13 

22 0.001 0.001 0.079 0.1753 0.1330 0.431 15 

23 0.020 0.014 0.102 0.1626 0.1089 0.401 17 

24 0.057 0.013 0.123 0.1375 0.1054 0.434 18 

25 0.031 0.014 0.113 0.1563 0.1015 0.394 24 

26 0.076 0.028 0.114 0.1197 0.1178 0.496 4 

27 0.158 0.045 0.199 0.1549 0.1586 0.506 6 

 

 
Fig. 1. Rankings of different multi criteria decision making 

IV. CONCLUSIONS 

Already using TOPSIS - Taguchi to optimize individual 

quality indicators of machining process refined by PMEDM 

(MRR, TWR, Ra). When the TOPSIS method is combined 

with the Taguchi method, we obtain: a number of optimized 

process parameters, reduced cost and time of the 

experiment, and  the multi- objective optimization problem 

is solved simply. The results of multi- criteria optimization 

in PMEDM using powder Ti show that 17
th

 running receives 

the 1
st
 rank. Hence, the corresponding input parameters such 

as SKD11 workpiece material, Gr electrode material, positive 

electrode polarity, ton = 20 µs, I= 6 A, tof = 57 µs, and 

powder concentration of 10 g/l were found to be the optimum 

combination. 
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