
Why is your graph convolution spherical and equivariant?

Then, how is it different from spherical convolution? (used in [Cohen] and [Esteves])
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Intrinsically spherical data:  
• cosmic microwave background 
• daily temperature 
• brain activity (MEG)

We have spherical data. How can we use a neural network with them?

Show me some results!

Task:   Discriminate against cosmological models. 
    The goal is to identify the model that best fits our observations of the universe. 

Result:  DeepSphere beats ConvNet on 2D projections and SVM baselines. 
    Too many pixels (12M) for [Cohen] and [Esteves] (which were tested on 10k pixels). 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Github

https://github.com/SwissDataScienceCenter/DeepSphere

Project the data on the sphere to exploit the 
rotational symmetry of any task.

DeepSphere v2 (coming soon): 
• Empirical correspondence of the eigenspaces. 
• Proof of convergence.

Different graphs lead to different symmetries. 
• Geometric graphs: translations and rotations. 
• General graphs: node permutation.

You pay for what you use on irregular samplings, 
but equivariance needs investigation.

DeepSphere: 
1. Model the sampled sphere as a graph. 
2. Use a Laplacian-based graph neural network. 

=> Efficient and equivariant spherical CNN.

graph of GHCN stations

Graph between weather stations.

Bonus: flexible sampling

Projection of a 3D shape from SHREC-17.

Observation: the graph Laplacian’s eigenvectors are close to the 
spherical harmonics. 
Reasoning: 

1. The graph Fourier transform is similar to the spherical 
harmonic transform. 

2. Convolution is a multiplication in the spectral domain. 
3. The graph convolution is close to the spherical convolution. 

Consequence: graph convolution is (almost) rotation equivariant. 

Spatial properties of graph filters: 
• Invariant to localization => equivariance to SO(3) rotations 
• Isotropic kernel

Graphs eigenfunctions.

Example graph filter (heat kernel).
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Recognition of 3D shapes (SHREC-17): 
• Same accuracy as [Cohen] and [Esteves]. 
• Computationally much more efficient. 
• Less parameters. 
=> Equivariance to 3rd rotation is an 
unnecessary price to pay.

performance size speed

F1 mAP params inference training

SO(3) [Cohen et al.] - 0.676 1400 k 19.0ms 50 h

S
2
[Esteves et al.] 79.36 0.685 500 k 9.8ms 3 h

graph [DeepSphere] 80.65 0.686 190 k 1.6ms 40m

Table 1: Results on SHREC’17 (3D shapes).

(=)  Equivariant to rotations (almost). 
(++) Fast:            vs                . 
(++) Flexible: accommodates any sampling and partial observations. 
(+) Easy to implement (use general & efficient graph NN implementations). 
(?/-) Invariant instead of equivariant to the 3rd rotation (isotropic filters).  
  Graph NNs only do same-equivariance and invariance.
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