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Introduction 
Microbial conversions of organic compounds has 

applications in many fields. Chemical, pharmaceutical and 

biotechnology industries draw on microbiological methods for 

synthesis of compounds that are difficult to obtain by the methods 

of organic chemistry alone (Petersen and Kiener 1999; Parshikov 

et al. 2012; Parshikov et al. 2014; Silva et al. 2014). Nitrogen-

containing heterocyclic rings serve as key moieties of many drugs. 

In the last 15 years, several reviews of the microbial 

transformation of nitrogen-containing heterocyclic compounds, 

such as azaarenes and quinolones, have been published (Hüttel and 

Hoffmeister 2010; Petersen and Kiener 1999; Sukul and Spiteller 

2007; Vickers and Polsky 2000).  

In this monography, data from the literature on nitrogen-

containing heterocyclic compounds have been compiled. For 

example, mitomycin C shows antibiotic and antitumor activities 

that have been related to the aziridine ring (Fürmeier and Metzger 

2003), and aziridine derivatives are used in the synthesis of anti-

malarial drugs (D'hooghe et al. 2011; Ghorai et al. 2007; 

Fattorusso and Taglialatela-Scafati 2009; Wright et al. 2002; 

Pacorel et al. 2010; Seebacher and Weis 2011; Richardson and 

Wyso 1960; Faber 2004; Baker 1987; Duran et al. 2000). 
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Pyridine rings are found in the bisphosphonate drugs 

risedronate and zoledronate, used to treat bone diseases (Gatti and 

Adami 1999), the antimycobacterial prodrugs isoniazid, 

ethionamide, and prothionamide (Deretic et al. 1996; Wang et al. 

2007), and other antibacterial, anticancer, and antimalarial 

compounds (Kumar et al. 2008; Prachayasittikul et al. 2009; Ge et 

al. 2010; Duran et al. 2000; Ahmad et al. 2001; Petersen and 

Kiener, 1999; Rui et al. 2005; Hüttel and Hoffmeister 2010; Faber 

2011; Rajini et al. 2011; Takayama et al. 2010; Saliba and Kirk 

1998; Kaur et al. 2010; Rocco 2003; Achan et al. 2011; Baird 

2011; Vale et al. 2009; Peters 1999; Vale et al. 2009; Brocks and 

Mehvar 2003). 

Hybrid antimalarial drugs, such as those combining the 

structure of quinine with artemisinin (Walsh et al. 2007) or those 

combining derivatives of 4-aminoquinoline with a 1,2,4-trioxane 

or a 1,2,4-trioxolane (Coslédan et al. 2008; Araújo et al. 2009; 

Chauhan et al. 2010; Muregi and Ishih 2010), may have more 

antimalarial activity than their components. Other derivatives of 

quinoline have been used for the treatment of tuberculosis 

(Andries et al. 2005) and for pain relief (Gomtsyan et al. 2005). 

The isoquinoline alkaloids include morphine and many other drugs 

(Petersen and Kiener 1999; Banasik et al. 1992; Waring et al. 

1975; Refaie et al. 2005; Gomtsyan et al. 2005; Taggart et al. 

1948; Guetzoyana et al. 2009; Araújo et al. 2009; Jones et al. 
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2009; Kalkanidis et al. 2002; Boibessot et al. 2002; Boibessot et 

al. 2002; Agarwal et al. 2005; Kontnik and Clardy 2008; Kaur et 

al. 2009; Resnick et al. 1993; Zefirov et al. 1993; Parshikov et al. 

1994b; Kaiser et al. 1996; Fetzner 1998; Petersen and Kiener 

1999; Willumsen et al. 2005; Rajini et al. 2011). 

Bacterial enzymes involved in azaarene hydroxylation 

include naphthalene 1,2-dioxygenase (Ensley et al. 1983; Resnick 

et al. 1993), quinaldine 4-oxidase (Stephan et al. 1996), carbazole 

1,9a-dioxygenase (Inoue et al. 2006), biphenyl 2,3-dioxygenase 

(Resnick et al. 1993), and toluene dioxygenase (Boyd et al. 2002). 

Bacterial aldehyde oxidases (Yasuhara et al. 2002) and 

cytochromes P450 (Kelly et al. 2003) may transform azaarenes to 

the corresponding lactams (Vickers and Polsky 2000). Fungi may 

also produce cytochromes P450 that transform azaarenes to 

lactams; some fungi, such as Beauveria bassiana, Aspergillus spp., 

and Cunninghamella spp., are especially useful for drug 

biotransformations because of the regio- and stereospecificity of 

their enzymes (Grogan and Holland 2000; Lehman and Stewart 

2001).  

The quinolones are a large group of synthetic compounds 

that have been developed as antimicrobial agents (Ball, 2000b). 

They are used extensively in human clinical and veterinary 

medicine for treating diseases caused by Gram-negative and 

Gram-positive bacteria (Oliphant and Green, 2002; Andersson and 
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MacGowan, 2003; Dalhoff and Schmitz, 2003). Their antibacterial 

effectiveness is due to their inhibition of DNA gyrase 

(topoisomerase II) activity in Gram-negative bacteria and 

topoisomerase IV activity in Gram-positive bacteria (Drlica and 

Zhao, 1997; Brighty and Gootz, 2000; Cattoir and Nordmann, 

2009). Some quinolones also have antitumor, antiviral (against 

hepatitis B and C, HIV and herpes viruses), antiallergic, anti-

tubercular, immunomodulatory, and antidiabetic activity (Boteva 

and Krasnykh, 2009; Mugnaini et al., 2009; Kloskowski et al., 

2010). Quinolones may even be effective against different types of 

malaria parasites (Mahmoudi et al., 2003).  

The differences in molecular structure and in activities of 

quinolones in vitro are the basis for their classification (Ball, 2000; 

King et al., 2000; Schellhorn, 1998; Oliphant and Green, 2002). 

Antimicrobial activities of first-generation quinolones (i.e., 

nalidixic acid, oxolinic acid, cinoxacin, piromidic acid, pipemidic 

acid, and flumequine) are excellent against aerobic Gram-negative 

bacteria, but not against aerobic Gram-positive bacteria and 

anaerobic bacteria. In 1980 came the second generation of 

quinolones, when norfloxacin was synthesized by introducing a 

fluorine atom at position 6 of the 4-quinolone molecule and a 

diamine, piperazine, in position 7 (Brighty and Gootz, 2000). 

These modifications make possible the antimicrobial activity of 

quinolones against aerobic Gram-positive bacteria, as well as to 
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increase their activity against Gram-negative bacteria. Second-

generation quinolones include ciprofloxacin, ofloxacin, enoxacin, 

fleroxacin, lomefloxacin, pefloxacin and rufloxacin (Andersson 

and MacGowan, 2003; Andriole, 2000). However, the second 

generation of quinolones still did not have activity against 

anaerobic bacteria. Subsequently, quinolones of the third 

generation, such as grepafloxacin, gatifloxacin, sparfloxacin, 

enrofloxacin, danofloxacin, and pradofloxacin, effective against 

Gram-positive bacteria, particularly pneumococci, were developed 

and had high activity against anaerobic bacteria (Andriole, 2000). 

The fourth-generation quinolones (e.g., trovafloxacin, 

clinafloxacin, sitafloxacin, moxifloxacin, and gemifloxacin) have 

high activity against anaerobes and pneumococci (Andriole, 2000; 

Andersson and MacGowan, 2003). 

Involvement of microbial technologies in the modification 

of quinolones will provide chemists and pharmacologists with 

unique derivatives. These may have novel therapeutic properties 

for the treatment of many bacterial diseases and even parasitic 

diseases, such as malaria (Mahmoudi et al., 2003). Most of the 

biotransformation processes that have been developed for 

quinolones use fungi [Wetzstein et al., 2010], but a few of them 

use bacteria (Kieslich et al., 1973; Chen et al., 1997; Adjei et al., 

2006). In addition to the microbial transformations of the 

quinolones, those of some naphthyridones (including nalidixic 
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acid), pyranoacridones (including acronycine), and cinnolones 

(cinoxacin) will be considered. 
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Chapter 1. Microbial transformation of saturated nitrogen-
containing heterocyclic compounds 

Organic chemists and pharmacologists have a great interest 

in the stereochemistry and regiochemistry of synthetic processes 

(Hassner 2009), such as the molecular stereochemistry of 

aziridines (Keifer et al. 1988) and the hydroxylation of azetidine, 

pyrrolidine, and their derivatives (Romanova et al. 1995; Feula al. 

2010).  

Some mono- and bi-cyclic polyhydroxylated alkaloids are 

known as potent glycosidase inhibitors; for instance, 

castanospermine and deoxynorjirimycin are promising anti-cancer 

and anti-HIV compounds, respectively. Some stereoisomers of 2-

(hydroxymethyl)pyrrolidine-3,4-diols also have been reported as 

glycosidase inhibitors (Ahn and Shin 1997). The 3-

hydroxypyrrolidine moiety is found in a range of naturally 

occurring bioactive alkaloids and many synthetic approaches to 

produce 3-hydroxypyrrolidines also have been developed 

(Aurrecoechea et al. 2009; Hodgson et al. 2006; Rios et al. 2007). 

Many hydroxylated piperidine alkaloids are potent 

inhibitors of glycosidases and related enzymes (Grishina et al. 

2011). 4-Hydroxypiperidines are present in many drugs, such as 

the antidiarrhoeal loperamide and the schizophrenia medications 

haloperidol and benztropine (McKay et al. 2010). 

Polyhydroxypiperidines and polyhydroxyazepanes have attracted 
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attention of researchers due to their biological importance in the 

development of glycosidase inhibitors (Shih et al. 2007; Shih et al. 

2011). 

Azocanes used in the asymmetric synthesis of α-alkylated 

α-amino acids also demonstrate potential biological activities as 

potent inhibitors of some enzymes (Georg and Guan 1992). 

Microbial technologies for hydroxylation in different 

positions of molecules may help in creating a series of new drugs; 

for instance, hydroxylated derivatives of saturated nitrogen-

containing heterocycles may be obtained using microbial 

technologies and used to create hybrid molecules of artemisinin, 

quinine, or chloroquine (Walsh et al. 2007). 

 

1.1. Microbial transformation of aziridine derivatives 

Aziridine groups are three-membered ring structural 

elements, found in a wide variety of natural products that have 

antibiotic and antitumor properties (Thibodeaux et al. 2012). The 

aziridines have been targets of investigation for synthetic chemists, 

both as useful intermediates and as final products (Chawla et al. 

2013). Compounds having a 5-(aziridin-1-yl)-2,4-dinitrobenzyl 

structure were shown to have significant growth-inhibitory 

properties against Trypanosoma brucei and Trypanosoma cruzi 

(Bot et al. 2010). Clean reactions of the aziridine compounds that 
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have exceptionally good regioselectivity and/or stereoselectivity 

are desirable (Chawla et al. 2013). 

Racemic aziridine-containing carbonitriles (I, Ar – 

substituted aryl) are separated into the corresponding carboxylic 

acids (II) and enantiopure isomers (Ia) by Rhodococcus 

erythropolis AJ270 with yields of 45-50% (Dexian and Meixiang 

2010): 

II

N Ar

HO2C

Ia

N Ar

H2NOC

I

N Ar

NC

 

 

1.2. Microbial transformation of azetidine derivatives 

The azetidines are saturated nitrogen heterocycles 

containing a four-membered ring. Derivatives of azetidines have 

been used in traditional Asian medicine for over a thousand years 

(Diethelm and Carreira, 2013). The skeleton of 2-azetidinone is 

the pharmacophore of a widely employed class of antibiotics, the 

β-lactam antibiotics (penicillins, cephalosporins, carbapenems, 

monobactams, and penems) (Sharma et al. 2011). The metabolism 

of nitrogen heterocyclics may lead to lactam formation. 

Among the saturated nitrogen heterocycles, there is great 

interest in the transformation of monocyclic β-lactams, since they 
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often have antimicrobial activity. Furthermore, 3-azido-, 3-amino- 

and 3-(1,2,3-triazol-1-yl)-β-lactams have been synthesized and 

studied as drugs against Plasmodium falciparum (Singh et al. 

2011). A bifunctional hybrid structure based on 7-chloroquinoline 

and a β-lactam recently was synthesized as a potential antimalarial 

agent (Singh et al. 2012). 

Transformation of a monocyclic β-lactam (III) by a 

growing culture of the fungus Beauveria bassiana АТСС 7159 

produces a hydroxy derivative (IV) with a yield of 10%; a second 

product (V) with a yield of 20% is formed by elimination of the 

benzyl radical (Archelas et al. 1988): 

N C6H5

H3C

O

III

CH3

N C6H5

H3C

O

IV

CH3

N
H

H3C

O

V

CH3

OH

12

3 4

5 678

9

 

Biotransformation of an α-keto-β-lactam (VI) with 

growing cells of Saccharomyces cerevisiae for five days produces 

both the cis-hydroxy derivative (VII, 62% yield) and the trans-

hydroxy derivative (VIII, 38% yield) (Mihovilovic et al. 2005): 

N

C6H5O

O

VI

C6H4OCH3
N

C6H5HO

O

VII

C6H4OCH3

N

C6H5HO

O

VIII

C6H4OCH3

 



 

   13 

The conversion of azetidine-2-carboxylic acid (IX) by a 

hydrolase from Pseudomonas sp. A2C forms 2-hydroxy-4-

aminobutyric acid (X) (Gross et al. 2008): 

NH

COOH

IX

COOH

X
NH2

OH

 

Hydroxylation of N-substituted azetidines (XI, R= 

CO2C6H5; CO2t-Bu) by cells of the bacterium Sphingomonas sp. 

HXN-200 leads to the formation of hydroxy derivatives (XII, R= 

CO2C6H5; CO2t-Bu) in position 3 of the heterocyclic ring with 

yields of 91-98% (Chang et al. 2002): 

N
R

HO

XII

N
R

XI  

Later, it was shown that the resolution of racemic 1-

benzylazetidine-2-carbonitriles (XIII, R= C6H5; 4-Me- C6H4; 4-

MeO-C6H4; 4-Br-C6H4; 3-Br-C6H4; 2-Br-C6H4) in phosphate 

buffer by R. erythropolis AJ270 produces isomers XIV and XV 

with yields up to 46% (Leng et al. 2009): 
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N

CN

XIII

R
N

CONH2

XIV

R
N

CO2H

XV

R

 

 

1.3. Microbial transformation of pyrrolidine and its 

derivatives 

Pyrrolidine forms a part of the molecule of an antibiotic, 

clindamycin, which has antimalarial properties (Bertrand and 

Kremsner 2002). Furthermore, pyrrolidine derivatives inhibit the 

growth of chloroquine-resistant strains of P. falciparum (Mendoza 

et al. 2011). There are several pharmacologically interesting 

compounds with the general formula (XVI) (Archelas et al. 1986): 

XVI

(CH2)n

N
R n=1,2,3

O NH2

HO
O

XVII

HO OH

 

They can also be regarded as analogs of γ-amino-β-

hydroxybutyric acid (XVII), which has great medical importance 

(Archelas et al. 1986). 

N-Substituted pyrrolidines and their analogs may be 

hydroxylated by growing cultures of B. bassiana АТСС 7159. As 
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a result of the transformation of 1-benzylpyrrolidone-2 (XVIII), 

optically active 1-benzyl-5-hydroxypyrrolidone-2 (XIX, 12% 

yield) and benzaldehyde (XX, 2% yield) are formed (Srairi and 

Maurey 1987): 

 

XVIII

N
O

C6H5

XIX

N
O

C6H5

HO

XX

C
O

H

 

During the transformation of 1-benzoylpyrrolidone-2 

(XXI), the optically active 1-benzoyl-4-hydroxypyrrolidone-2 

(XXII, 21% yield) has been detected in a mixture with benzamide 

(XXIII) (Srairi and Maurey 1987): 

 

XXI

N
O

C6H5

XXIII

C
O

NH2

O

XXII

N
O

C6H5
O

HO

 

In the transformation of 1-benzoylpyrrolidine (XXIV) by 

B. bassiana, however, a carbon atom at position 2 is hydroxylated 

with ring opening and formation of N-(4-hydroxybutyl)benzamide 

(XXV, 8% yield) (Archelas et al. 1986): 
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XXIV

N

C6H5
O

XXV

HN

C6H5
O

HO

 

During the transformation of 1-benzoylpyrrolidine (XXIV) 

or 1-benzoylpyrrolidone-2 (XXI) in growing cultures of the 

fungus Cunninghamella verticillata VKPM F-430, the optically 

active (-)-1-benzoyl-3-hydroxypyrrolidine (XXVI, 38% yield) or 

benzamide (XXIII), respectively, is produced (Parshikov et al. 

1992; Parshikov et al. 2010a,b): 

XXVI

N

C6H5
O

OH

 

3-Hydroxy derivatives in yields of 66.4-93.5% also are 

formed in the transformation of N-substituted pyrrolidines by cells 

of the bacterium Sphingomonas sp. HXN-200; the substituent on 

the nitrogen atom may be CH2C6H5, COC6H5, CO2CH2C6H5, 

CO2C6H5, or CO2t-Bu (Li et al. 2001). 

During hydroxylation of 1-phenacylpyrrolidone-2 (XXVII) 

by B. bassiana АТСС 7159, an intermediate compound, 1-

phenacyl-5-hydroxypyrrolidone-2 (XXVIII), and the final 
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product, 1-phenacylpyrrolidinedione (XXIX), are formed with a 

yield of 23% (Srairi and Maurey 1987): 

XXVII

N
O

C6H5

O
XXVIII

N
O

C6H5

O
XXIX

N
O

C6H5

O

HO O

 

Further study of the biotransformation of substituted pyrrolidones 

in growing cultures shows that B. bassiana АТСС 7159 

hydroxylates 5-methyl-1-benzoylpyrrolidone-2 (XXX) in either 

position 3 (XXXI, 11% yield) or position 4 of the hetero ring 

(XXXII, 12% yield), in a process accompanied by the formation 

of benzamide (XXIII) (Srairi and Maurey 1987): 

XXXI

N

C6H5
O

OH

OH3C

XXX

N

C6H5
O

OH3C

XXXII

N

C6H5
O

OH3C

HO

 

Separation of racemic trans-pyrrolidine-2,5-

dicarboxamides (XXXIII, R= Bn; allyl; H), using the amidase of 

R. erythropolis AJ270, produces (2S,5S)-pyrrolidine-2,5-

dicarboxamides (XXXIV) and (2R,5R)-5-carbamoylpyrrolidine-2-

carboxylic acids (XXXV) in high yields (up to 52%) with 

excellent enantioselectivity (Chen et al. 2012): 



 

18 

XXXIII

N
R

CONH2H2NOC XXXIV

N
R

CONH2H2NOC

XXXV

N
R

CONH2HO2C

 

 

1.4. Microbial transformation of piperidine and its derivatives 

Some substituted piperidine rings are found in natural and 

synthetic compounds that have biological activity (Sun et al. 

2000). Over the past 20 years, thousands of piperidine derivatives 

have been tested in pre-clinical and clinical studies (Weintraub et 

al. 2003), and some piperidine derivatives, such as febrifugine, are 

antimalarial drugs (Taniguchi and Ogasawara 2000). 

In recent decades, the microbial chemistry of piperidines 

has flourished. Studies of the transformation of 1-

benzoylpiperidine (XXXVI) by various research groups under 

different experimental conditions have resulted in the isolation of 

1-benzoyl-4-hydroxypiperidine (XXXVII) with a yield of 18% 

after transformation with B. bassiana АТСС 7159 (Johnson et al. 

1968a); 7% after transformation with B. bassiana АТСС 7159 
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(Archelas et al. 1986); 80% after transformation with Aspergillus 

niger VKM F-1119 (Parshikov et al. 1992); and 91−98% after 

transformation with Sphingomonas sp. HXN-200 (Chang et al. 

2002): 

 

XXXVI

N

C6H5
O

XXXVII

N

C6H5
O

OH

 

 

After the transformation of 1-benzoylpiperidine (XXXVI) 

by growing cultures of B. bassiana VKM F-3111D and 

Penicillium simplicissimum KM-16, 1-benzoyl-4-

hydroxypiperidine (XXXVII) was isolated with yields of 60% and 

3%, respectively, and the optically active (+)-3-hydroxy-1-

benzoylpiperidine (XXXVIII) with yields of 1% and 3%, 

respectively (Parshikov et al. 1992). Furthermore, among the 

biotransformation products of 1-benzoylpiperidine (XXXVI) 

produced by P. simplicissimum KM-16, 2-hydroxy-1-

benzoylpiperidine (XXXIX) was detected with a yield of 12% 

(Parshikov et al. 1992): 
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XXXVIII

N

C6H5
O

XXXIX

N

C6H5
O

NH

C6H5
O

CHO

OH

OH

 

Transformation of 1-(4-acetylphenyl)piperidine by B. 

bassiana АТСС 7159 was similarly accompanied by the formation 

of 4-hydroxy-1-(4-acetylphenyl)piperidine with a yield of 20% 

(Johnson et al. 1992). Later, this result was confirmed by others 

(Osorio-Lozada et al. 2008). 

With the introduction of a methyl substituent on the 

heterocyclic ring, the transformation process is different. In the 

transformation of 1-benzoyl-4-methylpiperidine (XL) in growing 

cultures of B. bassiana АТСС 7159, a 4-hydroxy compound (XLI, 

13% yield) is obtained with 1-benzoyl-4-hydroxymethylpiperidine 

(XLII, yield 23%) (Johnson et al. 1969): 

XL

N

C6H5
O

CH3

XLI

N

C6H5
O

XLII

N

C6H5
O

CH2OHH3C OH

 

At the same time, 1-benzoyl-3-methylpiperidine (XLIII) is 

hydroxylated in position 4 (XLIV, yield 6%) and position 3 of the 

heterocyclic ring (XLV, 7% yield) (Johnson et al. 1969): 
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XLIII

N

C6H5
O

XLIV

N

C6H5
O

XLV

N

C6H5
O

CH3 CH3

OH
CH3

OH

 

For a compound with two methyl substituents on the 

heterocyclic ring, 1-benzoyl-2,5-dimethylpiperidine (XLVI), the 

hydroxylation by B. bassiana АТСС 7159 occurs in position 3 of 

the ring (XLVII, 49% yield) (Johnson et al. 1969): 

 

XLVI

N

C6H5
O

H3C CH3

XLVII

N

C6H5
O

H3C CH3

OH

 

The introduction of a ketone group to the heterocyclic ring 

partially changes the site of hydroxylation. During growth of B. 

bassiana АТСС 7159 in the presence of 1-benzylpiperidone 

(XLVIII), in addition to 1-benzyl-4-hydroxypiperidone-2 (XLIX, 

10% yield), the unstable 1-benzyl-6-hydroxypiperidone-2 (L, 5% 

yield) was detected but then was spontaneously converted to its 

dehydration product (1-benzyl-2-oxo-1,2,3,4-tetrahydropyridine) 

(LI) (Archelas et al. 1986): 
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XLVIII

N

C6H5

O

XLIX

N

C6H5

O

OH

L

N

C6H5

OHO

LI

N

C6H5

O

 

During 1-benzoylpiperidone-2 (LII) hydroxylation in 

growing cultures of B. bassiana АТСС 7159, along with 

benzamide (XXIII), the optically active 1-benzoyl-4-

hydroxypiperidone-2 (LIII) was isolated with a yield of 27% 

(Archelas et al. 1986): 

LII

N

C6H5

O

O

LIII

N

C6H5

O

O

OH

 

During the transformation of 1-benzyl-3-methyl-Δ3-

piperidine (LIV) by growing mycelia of C. verticillata VKPM F-

430, three products were observed in a ratio of LV: LVI: LVII = 

1:2:16 (Terent’ev et al. 1997): 
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LIV

N
CH2Ph

Me

LV

N
CH2Ph

Me

OH

LVI

N
CH2Ph

Me
OH

LVII

N
CH2Ph

Me

OH
OH

 

Other analogs of 1-benzyl-3-methyl-Δ3-piperidine (LIV), 1,2,5,6-

tetrahydropyridines (LVIII a = R1=Bn; R2=H; b = R1=Bn, R2=H; 

c = R1=Pr, R2=Me), were also converted by C. verticillata VKPM 

F-430 with formation of the isomers LIX a (97.6% yield), LIX b 

(100% yield), LIX c (19.0% yield), and LX c (59.0% yield) 

(Terent’ev et al. 2003): 

LVIII a, b, c

N
R2

R1

LIX a, b, c

N
R2

R1
HO

OH

LX c

N
R2

R1

OH

 

Also, in growing cultures of C. verticillata VKPM F-430, 

2-acetoxymethyl-l-methyl-l,2,5,6-tetrahydropyridine (LXI) was 
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transformed into a 4-hydroxy derivative (LXII) with a low yield 

(Modyanova et al. 1999; Modyanova et al. 2010): 

 

LXI

N
Me

CH2OCOMe

LXII

N
Me

CH2OCOMe

OH

 

 

1.5. Microbial transformation of azepane, azocane and their 

derivatives 

Azepane 

Over the past 50 years, transformations of azepane 

(hexamethyleneimine) derivatives have been studied by several 

groups of researchers (Seebacher and Weis 2011). 

During the transformation of 1-

benzoylhexamethyleneimine (LXIII) by growing cultures of B. 

bassiana ATCC 7159, two optically active 3- and 4-hydroxy 

derivatives (LXIV, 3% yield; LXV, 11% yield) and a ketone 

(LXVI, 10% yield), with a carbonyl group at position 3 of the 

heterocyclic ring, are obtained (Archelas et al. 1986): 
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LXIII

N

C6H5
O

LXIV

N

C6H5
O

OH

LXV

N

C6H5
O

OH

LXVI

N

C6H5
O

O

LXVII

N

C6H5
O

O

 

Other authors (Johnson et al. 1968a) reported that B. 

bassiana ATCC 7159 oxidizes 1-benzoylhexamethyleneimine 

(LXIII) to a mixture of 3- and 4-oxo-1-

benzoylhexamethyleneimines (LXVI and LXVII) and the 4-

hydroxy derivative (LXV). 

Transformation of 1-(4-tolylsulfonyl)-hexamethyleneimine 

(LXVIII) by B. bassiana ATCC 7159 was accompanied by 

formation of only the 4-oxo derivative (LXIX) (Johnson et al. 

1968a): 

LXVIII

N
SO2

C6H4CH3

LXIX

N
SO2

C6H4CH3

O
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The bacterium Gulosibacter molinativorax ON4 oxidizes 

molinate (LXX) in several stages: azepane-1-carboxylic acid 

(LXXI), hexamethyleneimine (LXXII), and caprolactam 

(LXXIII), followed by the opening of the hetero ring (Barreiros et 

al. 2008): 

LXX

N

S OC2H5

LXXI

N
COOH

LXXII

N
H

LXXIII

N
H O

 

Transformation of 4-methyl-1-benzoylhexamethyleneimine 

(LXXIV) in growing cultures of B. bassiana ATCC 7159 

produces an oxo derivative (LXXV, 11% yield) and a second 

product of oxidation (LXXVI, 29% yield) that has a 

hydroxymethyl group (Johnson et al. 1968a): 

LXXIV

N

C6H5
O

CH3

LXXV

N

C6H5
O

CH3

LXXVI

N

C6H5
O

CH2OHO
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Increasing the complexity of the molecular structure of 

hexamethyleneimine may still lead to similar results. For example, 

transformation of 3-benzoyl-3-azabicyclo[3.2.2]nonane (LXXVII) 

by B. bassiana ATCC 7159 also produces hydroxy and oxo 

derivatives (LXXVIII, 50% yield and LXXIX, 22% yield) 

(Johnson et al., 1968b): 

LXXVII

N

C6H5
O

LXXVIII

N

C6H5
O

LXXIX

N

C6H5
O

OH O

 

1-Benzylcaprolactam (LXXX) hydroxylation in cultures of 

B. bassiana ATCC 7159 produces two optically active isomeric 

hydroxy derivatives (LXXXI and LXXXII) (Archelas et al. 1986): 

LXXX

N

C6H5

O

LXXXI

N

C6H5

O

LXXXII

N

C6H5

O

OH HO

 

 

Azocane 

Despite the fact that azocanes (and their derivatives) 

include drugs with antiviral and antimalarial properties (Hocart et 

al. 2011), such as reactivators of phosphorylated cholinesterases 
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(Radic et al. 2012), their microbiological transformations have 

rarely been investigated. During the transformation of 3-benzoyl-

3-azabicyclo[3.2.2]nonane (LXXXIII) in growing cultures of B. 

bassiana ATCC 7159, only one product (LXXXIV, 60-70% yield) 

is detected (Johnson et al. 1968b): 

LXXXIII

N

C6H5
O

LXXXIV

N

C6H5
O

OH

 

 

Chapter 2. Microbial transformation of azaarenes 

Many pharmaceutical drugs that contain azaarene 

structures, especially pyridine, quinoline, acridine, and indole, 

have been isolated from nature or synthesized (Khasaeva et al. 

2014). Among the microbial transformation processes reviewed 

here, those that are perhaps of greatest interest produce 

regiospecifically and stereospecifically hydroxylated derivatives of 

azaarenes that may be useful in development of candidate drugs 

(Zefirov et al. 1993; 1995; Boyd et al. 2002). Carboxylated 

derivatives of azaarenes may also be valuable for the same 

purpose (Kiener 1992). It is likely that microbial technology will 

be used in the future to produce new derivatives of heterocyclic 
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compounds with novel and completely unexpected therapeutic 

properties. 

 

2.1. Transformation of single-ring azaarenes 

Pyridine 

The transformation of pyridine (LXXXV) and its 

derivatives has been investigated with bacteria isolated mostly 

from soils (Kost and Modyanova 1979; Shukla 1984; Fetzner 

1998). Rhodococcus opacus hydroxylates pyridine to 2-

hydroxypyridine (LXXXVI) and 2,6-dihydroxypyridine 

(LXXXVII); and Arthrobacter crystallopoietes hydroxylates 

pyridine to 3-hydroxypyridine (LXXXVIII) and 2,3-

dihydroxypyridine (LXXXIX) (Zefirov et al. 1993; 1994): 

N
1

2

3

4
5

6
N

N

N

OH

OH

OHHO

LXXXV LXXXVI LXXXVII

LXXXVIII

N

OH

OH

LXXXIX
 

Further biotransformation of pyridine after hydroxylation 

by A. crystallopoietes and R. opacus may also include opening of 
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the ring (Zefirov et al. 1993; 1994). Agrobacterium sp. transforms 

4-hydroxypyridine (XC) to 3,4-dihydroxypyridine (XCI) (Watson 

et al. 1974):  

N

OH

XC
N

OH

XCI

OH

 

 

Alkylpyridines 

Some fungi, including the insect pathogen Beauveria 

bassiana, oxidize α-, β-, and γ-picolines [2-methyl- (XCII), 3-

methyl- (XCIII), and 4-methylpyridine (XCIV)] to the 

corresponding hydroxymethylpyridines (XCV, XCVI, and 

XCVII). The products are not further metabolized (Modyanova et 

al. 1990; Zefirov et al. 1993): 

N

XCIII

N

XCIV

CH3

CH3

N

XCII

CH3

N

XCV

CH2OH N

XCVI

CH2OH

N

XCVII

CH2OH
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The methyl group of 3-methylpyridine can be oxidized by the 

bacterium Pseudomonas putida; the product is pyridine-3-

carboxylic acid (XCVIII) (Kiener 1992). 4-Methylpyridine and 4-

ethylpyridine (XCIX) are both hydroxylated at carbon 2 by 

another bacterium, Pseudonocardia sp., to produce 2-hydroxy-4-

methylpyridine (C) and 2-hydroxy-4-ethylpyridine (CI), 

respectively (Lee et al. 2006):  

N

CH2CH3

XCIX
N

CH3

C
N
CI

OHOH

CH2CH3

N
XCVIII

COOH

 

Several fungi and bacteria are able to transform not only 

monoalkyl-, but also dialkylpyridines (Kost and Modyanova 1979; 

Kiener 1992). For example, B. bassiana cultures hydroxylate 2,6-

lutidine (2,6-dimethylpyridine, CII) to 2-hydroxymethyl-6-

methylpyridine (CIII), with a yield of 88%, and trace amounts of 

2,6-dihydroxymethylpyridine (CIV) (Modyanova et al. 1990): 

N N

N

CH2OH

CH2OHHOH2C

CII CIII

CIV

H3C CH3 H3C

N COOH

CV

H3C
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Another fungus, Exophiala dermatitidis, converts 2,6-

lutidine to 6-methylpicolinic acid (6-methylpyridine-2-carboxylic 

acid, CV) (Yoshida et al. 2010). 

The hydroxylation of 2,5-lutidine (2,5-dimethylpyridine, 

CVI) by B. bassiana leads to a mixture of 3-hydroxymethyl-6-

methylpyridine (CVII) and 2-hydroxymethyl-5-methylpyridine 

(CVIII) (Modyanova et al. 1990): 

 

N N N CH2OH

CVI CVII CVIII

CH3 H3C

H3C CH2OH H3C

 

During the oxidation of 3,4-lutidine (3,4-dimethylpyridine, 

CIX) by B. bassiana, two isomers are formed; the yield of 3-

hydroxymethyl-4-methylpyridine (CX) is significantly higher than 

that of 4-hydroxymethyl-3-methylpyridine (CXI) (Modyanova et 

al. 1990): 

N

CIX CX CXI

CH3

CH3

N

CH2OH
CH3

N

CH3

CH2OH

 

The transformation of 5-ethyl-2-methylpyridine (CXII) 

and either 2-ethyl- or 4-ethylpyridine (CXIII) by B. bassiana 

produces an α-hydroxyethyl derivative (CXIV), a β-hydroxyethyl 
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derivative (CXV), and an N-oxide (CXVI) in each case 

(Vorobyeva et al. 1990): 

N

CXIV

CXV

N

CHOHCH3

N N

O

CXVI

CXII

C2H5

CH2CH2OH CH2CH3

CH3

CXIII

N

CH2CH3
1 2

3
4

5

6

 

 

Pyrazine and alkylpyrazines 

Pyrazine (CXVII) is carboxylated by the bacterium 

Rhodopseudomonas palustris to produce pyrazinoic acid 

(CXVIII) (Sasikala et al. 1994); and 2,5-dimethylpyrazine 

(CXIX) is oxidized by P. putida to produce 5-methylpyrazine-2-

carboxylic acid (CXX) (Kiener 1992):  

CXVIII

N

N

CXVII

N

N
1 2

3
45

6
COOH

CXIX

N

N CH3

H3C

CXX

N

N COOH

H3C

 

 2,3,6-Trimethylpyrazine can also be oxidized by P. putida 

(Kiener 1992); the bacterial transformation of alkylpyrazines and 
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other substituted pyrazines has been reviewed recently (Müller and 

Rappert 2010; Rajini et al. 2011). 

 

Pyrrole and alkylpyrroles 

Bacillus megaterium has been used to carboxylate pyrrole 

(CXXI) to pyrrole-2-carboxylate (CXXII) (Wieser et al. 1998):  

CXXI

N
H

1 2

34

5

CXXII

N
H

COOH

 

In addition, the 2-methyl group of 2,5-dimethylpyrrole can 

be oxidized by P. putida (Kiener 1992). 

 

Alkylpyrazoles  

3,5-Dimethylpyrazole (CXXIII) can be oxidized to 5-

methylpyrazole 3-carboxylic acid (CXXIV) by P. putida (Kiener 

1992):  

CXXIII

N
H

N1 2

34
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CXXIV
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NH3C H3C

CH3 COOH
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2.2. Transformation of quinoline, alkylquinolines, and 

isoquinoline 

Quinoline  

A variety of bacteria metabolize quinoline (CXXV) 

(Fetzner et al. 1998). Moraxella sp., Nocardia sp., Pseudomonas 

diminuta, and Bacillus circulans oxidize quinoline to 2-

quinolinone (carbostyril, CXXVI) and 6-hydroxy-2-quinolinone 

(CXXVII) (Grant and Al-Najjar 1976; Shukla 1987; Bott and 

Lingens 1991). Rhodococcus sp. transforms quinoline not only to 

2-quinolinone and 6-hydroxy-2-quinolinone but also to 5-hydroxy-

6-(3-carboxy-3-oxopropenyl)-2-pyridone (CXXVIII) and pyrano-

2-one-(3,2b)-6-pyridone (CXXIX) (Schwarz et al. 1989): 

N
1

2

3
45

6

7
8 N

H

CXXV CXXVI

O N
H

CXXVII

O

HO

HO

N
H

CXXVIII

O
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OH

O

O

N
H

CXXIX

O

O

 

The aerobic conversion of quinoline by Comamonas sp. 

resulted in the formation of five metabolites in 30 h, including 2-

quinolinone, 6-hydroxy-2-quinolinone, 5,6-dihydroxy-2-
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quinolinone (CXXX), 5-hydroxy-6-(2-carboxyethenyl)-2-pyridone 

(CXXXI), and 8-hydroxy-2-quinolinone (CXXXII) (Cui et al. 

2004):   

N
H

N
H

HO

N
H O

HOOC

O
OH

O

HO
OH

CXXX CXXXI CXXXII

 

Several Pseudomonas spp. transform quinoline to 2-

quinolinone, 8-hydroxy-2-quinolinone, 8-hydroxycoumarin 

(CXXXIII), and 2,3-dihydroxyphenylpropionic acid (CXXXIV) 

(Shukla 1986; 1987; Schwarz et al. 1989; Aislabie et al. 1990; 

Kilbane et al. 2000): 

O
OH

CXXXIII

O

CXXXIV

OH
OHHOOC

 

P. putida converts quinoline to 3-hydroxyquinoline 

(CXXXV) and 8-hydroxyquinoline (CXXXVI), the quinoline cis-

5,6- (CXXXVII) and cis-7,8-dihydrodiols (CXXXVIII), and 

anthranilic acid (CXXXIX) (Boyd et al. 1987; 1993): 
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N
OH

CXXXVI

N

CXXXV

OH

N

CXXXVII

N
OH

CXXXVIII

NH2

COOH

CXXXIX

HO

HO
OH

 

The same bacterium produces enantiopure quinoline cis-

5,6- and 7,8-dihydrodiols using toluene dioxygenase (Boyd et al. 

2002). Desulfobacterium indolicum hydroxylates quinoline to 2-

quinolinone and then to 3,4-dihydro-2-quinolone (CXL) under 

anaerobic conditions (Johansen et al. 1997; Licht et al. 1997). 

Quinaldine 4-oxidase purified from an Arthrobacter sp. oxidizes 

quinoline to 4-hydroxyquinoline (CXLI) (Stephan et al. 1996): 

 

N
H O

CXL

N

CXLI

OH

N

CXLII
O
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The fungus Cunninghamella elegans oxidized quinoline 

(CXXV) to quinoline N-oxide (CXLII) with a yield of 65% in 7 

days (Sutherland et al. 1994a).  

 

Alkylquinolines (including quinine) 

The quinaldine 4-oxidase from Arthrobacter sp. oxidizes 

quinaldine (2-methylquinoline, CXLIII) to 2-methyl-4-

quinolinone (CXLIV) (Stephan et al. 1996): 

 

N

CXLIV

O

CH3N

CXLIII

CH3

 

 

Pseudomonas sp. hydroxylates 6-, 7-, and 8-

methylquinolines (CXLV, CXLVI and CXLVII) at unidentified 

positions (Aislabie et al. 1990) and P. putida hydroxylates 6-

methylquinoline, probably at the 2-position (Rothenburger and 

Atlas 1993): 
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N

CXLV

N

CXLVI

N

CXLVII

H3C

H3C
CH3

 

Cunninghamella elegans transforms 6-methylquinoline to 

6-hydroxymethylquinoline (CXLVIII), quinoline-6-carboxylic 

acid (CXLIX), and 6-methylquinoline-N-oxide (CL) (Mountfield 

and Hopper 1998): 

 

N

CXLVIII

HOH2C

N

CXLIX

HOOC

N

CL

H3C

O
 

The 6’-methoxylated cinchona alkaloid quinine (CLI), its 

diastereomer quinidine (CLII), and its non-methoxylated analogs 

cinchonidine (CLIII) and cinchonine (CLIV) may be metabolized 

by fungi and bacteria (Siebers-Wolff et al. 1993; Shibuya et al. 

2003). The fungus Xylaria sp. metabolizes quinine, quinidine, 

cinchonidine, and cinchonine to the corresponding 1-N-oxides 

(CLV, yield 90%, CLVI, yield 71%, CLVII, yield 82%, and 

CLVIII, yield 52%), respectively, in two weeks (Shibuya et al. 

2003): 
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Mycobacterium smegmatis produces quinidine 1-N-oxide 

from quinidine; and the fungus Pellicularia filamentosa produces 

cinchonidine 1-N-oxide from cinchonidine (Siebers-Wolff et al. 

1993). The fungus Microsporum gypseum produces both of the 

possible N-oxides: quinine 1-N-oxide and quinine 1’-N-oxide 

(CLIX) from quinine, but Cunninghamella echinulata instead 

produces 3-hydroxyquinine (CLX) (Siebers-Wolff et al. 1993): 
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N

N
H3CO

HO
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H
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CLIX

N

N
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OH

CLXO
 

 

Quininone (CLXI) was reduced by the yeast Hansenula 

anomala var. schneggii to quinidine (yield 50%) in 7 days (Ray et 

al. 1983): 

 

N

N
H3CO H

HO

CLXI
 

 

The transformation of the synthetic antimalarial 

primaquine (CLXII) by the yeast Candida tropicalis produced two 

metabolites, including primaquine N-acetate (CLXIII, yield 3.9%) 

and a small amount of a primaquine dimer with a methylene 

bridge (CLXIV, yield 0.4%), in 13 days (Clark et al. 1984a): 
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N
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N
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NHCOCH3

H3COCLXII

CLXIII CLXIV
 The bacterium Streptomyces rimosus also produces the 

acetylated derivative from primaquine, but the dimer it produces 

(CLXV) lacks the methylene bridge (Clark et al. 1984b): 

N
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HN
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N
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CLXVI  
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Isoquinoline 

Several bacteria metabolize isoquinoline (CLXVII) 

(Fetzner 1998). Pseudomonas putida converts it to 1-

isoquinolinone (isocarbostyril, CLXVIII), the cis-5,6- and 7,8-

dihydrodiols (CLXIX and CLXX, respectively), and the 4-, 5-, 

and 8-hydroxyisoquinolines (CLXXI, CLXXII, and CLXXIII, 

respectively) (Boyd et al. 1987; 1993). Isoquinoline is also 

oxidized to 1-isoquinolinone by various other bacteria (Aislabie et 

al. 1989; Röger et al. 1990; Sutherland et al. 1998a) and by 

purified quinaldine 4-oxidase from Arthrobacter sp. (Stephan et al. 

1996). Cunninghamella elegans oxidized isoquinoline to 

isoquinoline N-oxide (CLXXIV) with a yield of 3% in 7 days 

(Sutherland et al. 1994a).  
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2.3. Transformation of benzodiazines and 

benzothiazines 

Quinoxaline 

Quinoxaline (CLXXV) is converted to 2-quinoxalinone 

(CLXXVI), quinoxaline cis-5,6-dihydrodiol (CLXXVII), and 5-

hydroxyquinoxaline (CLXXVIII) by P. putida (Boyd et al. 1987; 

1993): 

N

N
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45
6

7
8 N
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CLXXV CLXXVI

O N

N

CLXXVII

N

N

CLXXVIII

OH
HO

OH

Streptomyces badius transforms quinoxaline to 3,4-dihydro-2-

quinoxalinone (CLXXIX) and 2-quinoxalinone (Sutherland et al. 

1996); and S. viridosporus transforms quinoxaline to 1-methyl-2-

quinoxalinone (CLXXX, yield 12%) and 2-quinoxalinone (yield 

8%) (Sutherland et al. 1998a): 

N
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H
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CLXXIX
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N

CLXXX

O
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Quinazoline 

Quinazoline (CLXXXI) is converted by Pseudomonas 

putida to 4-quinazolinone (CLXXXII), quinazoline cis-5,6-

dihydrodiol (CLXXXIII), and 5,6,7,8-tetrahydroquinazoline-cis-

5,6-diol (CLXXXIV) (Boyd et al. 1987; 1993). It is oxidized to 4-

quinazolinone by the quinaldine 4-oxidase from Arthrobacter sp. 

(Stephan et al. 1996) and further to 2,4-quinazolinedione (C, yield 

4%) by S. viridosporus (Sutherland et al. 1998a). The fungus 

Aspergillus niger oxidizes quinazoline to both 4-quinazolinone 

and 2,4-quinazolinedione (Sutherland et al. 2011): 
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Cinnoline 

Cinnoline (CLXXXV) is oxidized by the quinaldine 4-

oxidase from Arthrobacter sp. to produce 4-cinnolinone 

(CLXXXVI) (Stephan et al. 1996). In contrast, Cunninghamella 
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elegans and Aspergillus niger oxidize it to both of the possible N-

oxides, the 1-oxide and the 2-oxide (CLXXXVII and 

CLXXXVIII) (Sutherland et al. 1998b): 

N N

CLXXXV

N
H

N

CLXXXVI
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Phthalazine 

Phthalazine (CLXXXIX) is oxidized to 1-phthalazinone 

(CXC) by the quinaldine 4-oxidase from Arthrobacter sp. 

(Stephan et al. 1996) as well as by whole cells of S. viridosporus 

(Sutherland et al. 1998a). The fungi Fusarium verticillioides (= F. 

moniliforme) and A. niger also oxidize it to 1-phthalazinone 

(Sutherland et al. 1999; 2011), but Cunninghamella elegans 

oxidizes it instead to phthalazine N-oxide (CXCI) (Sutherland et 

al. 1999): 
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Benzothiazines  

 The microbial transformation of the anti-inflammatory 

drug meloxicam, a benzothiazine derivative (CXCII), by 

Cunninghamella blakesleeana produced three metabolites after 5 

days: 5-hydroxymethylmeloxicam (CXCIII, 93% yield), 5-

carboxy meloxicam (CXCIV, trace amounts), and an oxamic acid 

derivative of meloxicam (CXCV, yield 4%) (Prasad et al. 2009): 
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2.4. Transformation of benzoquinolines 

Acridine 

The transformation of acridine (benzo[b]quinoline, 

CXCVI) by C. elegans leads to the formation of acridine trans-

1,2-dihydrodiol (CXCVII) with small amounts of 2-

hydroxyacridine (CXCVIII) (Sutherland et al. 1994b):   
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Acridine cis-1,2-dihydrodiol (CXCIX) is produced from 

acridine by a mutant strain of Pseudomonas fluorescens (Bianchi 

et al. 1997). Sphingomonas sp. metabolizes acridine to acridin-9-

one (CC) (van Herwijnen et al. 2004). Acridine was transformed 

by growing cells of Mycobacterium vanbaalenii, however, to four 

metabolites: acridine cis-1,2-dihydrodiol (yield 1.1%), 4-

hydroxyacridine (CCI, yield 5.4%), acridin-9-one (yield 1.1%), 

and 9,10-dihydroacridine (CCII, yield 55.2%) in 7 days 

(Sutherland et al. 2009): 

NN
H

N
H

OH

O

CC CCI CCII  

The partially hydrogenated 9-amino-1,2,3,4,5,6,7,8-

octahydroacridine (CCIII) was transformed into an N-oxide 
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(CCIV) by a resting cell suspension of the fungus 

Cunninghamella verticillata VKPM F-430 with a yield of 90% 

(Parshikov et al. 1994a): 

N N

NH2 NH2

O

CCIII CCIV  

Phenanthridine 

Phenanthridine (benzo[c]quinoline, CCV) is transformed 

by Streptomyces viridosporus to phenanthridin-6-one (CCVI, 

yield 25%) (Sutherland et al. 1998a). The fungus Umbelopsis 

ramanniana (Mucor ramannianus) transforms phenanthridine to 

phenanthridine N-oxide (CCVII) as well as phenanthridin-6-one 

(Sutherland et al. 2005): 
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Benzo[f]quinoline  

Benzo[f]quinoline (CCVIII) is degraded, apparently via 

benzo[f]quinolin-2-one (CCIX), by Mycobacterium gilvum 

(Willumsen et al. 2001): 
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U. ramanniana transforms benzo[f]quinoline to the trans-

7,8-dihydrodiol (CCX), the N-oxide (CCXI), and 7-

hydroxybenzo[f]quinoline (CCXII) (Sutherland et al. 2005): 
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Benzo[h]quinoline 

U. ramanniana also transforms benzo[h]quinoline 

(CCXIII) to the benzo[h]quinoline trans-5,6-dihydrodiol 

(CCXIV), benzo[h]quinoline trans-7,8-dihydrodiol (CCXV), and 

7-hydroxybenzo[h]quinoline (CCXVI) (Sutherland et al. 2005): 
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2.5. Transformation of phenazine and phenothiazine 

Phenazine 

Phenazine 1-carboxamide (CCXVII) is transformed by 

cultures of Aspergillus sclerotiorum, via phenazine 1-carboxylic 

acid, to 3-hydroxyphenazine 1-carboxylic acid (CCXVIII) (Hill 

and Johnson 1969): 
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N

N

N
1 2

3
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10
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9
COOH

OH

CCXVII CCXVIII

NH2O

 

Phenothiazine 

The transformation of phenothiazine (CCXIX) by cultures 

of Cunninghamella elegans forms two metabolites, 3-

hydroxyphenothiazine sulfoxide (CCXX) and phenothiazine 

sulfoxide (CCXXI) (Sutherland et al. 2001): 
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During the transformation of N-acetylphenothiazine 

(CCXXII) by C. verticillata, five metabolites were formed:  the 

intermediate phenothiazine, phenothiazine sulfoxide (yield 5%), 
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N-acetylphenothiazine sulfoxide (CCXXIII, yield 17%), 

phenothiazin-3-one (CCXXIV, yield 4%), and phenothiazine-N-

glucoside (CCXXV, yield 4%) in 72 h (Parshikov et al. 1999): 

N

S

N

S O
O

N

S
O

CH3O O CH3

N

S

CCXXII CCXXIVCCXXIII

O
OH

OH OH

HOH2C

CCXXV  

 

2.6. Transformation of indole, carbazole, and the carbolines 

Indole 

Many bacteria transform indole (CCXXVI) by different 

pathways (Oshima et al. 1965; Fetzner 1998). In one classic 

pathway, the naphthalene 1,2-dioxygenase from Pseudomonas 

putida oxidizes indole to indole cis-2,3-dihydrodiol (CCXXVII), 

which loses water spontaneously to produce indoxyl (3-

hydroxyindole, CCXXVIII), which then is oxidized in air to 

indigo (CCXXIX) (Ensley et al. 1983): 



 

   53 

1
2

34
5

6

7

N

N

N
H N

H

OH

OH

N
H

OH

O

OH

H

CCXXVI CCXXVII CCXXVIII
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Other bacteria, including Desulfobacterium indolicum and 

some P. putida strains, transform indole to oxindole (2-indolinone, 

CCXXX), isatin (2,3-indolinedione, CCXXXI), and anthranilic 

acid (Johansen et al. 1997; Licht et al. 1997; Li et al. 2009): 

N
H

O

N
H

O

O
COOH

N
H

CHO

CCXXX CCXXXI CCXXXII  

Aspergillus niger converts indole to an indoxyl 

intermediate and then cleaves the heterocyclic ring to produce N-

formylanthranilic acid (CCXXXII) (Kamath and Vaidyanathan 

1990). The mushroom Pleurotus ostreatus degrades indole via 

isatin (Ren et al. 2006).  

The ergot fungus Claviceps purpurea transforms indole-3-

acetic acid (CCXXXIII); the major product is 5-hydroxyindole-3-

acetic acid (CCXXXIV) (Teuscher and Teuscher 1965): 



 

54 

N
H

CH2COOH

N
H

CH2COOH
HO

CCXXXIII CCXXXIV

 

In the transformation of 3-indolylacetonitrile (CCXXXV) 

by Beauveria bassiana, the main product was 3-methylindole 

(CCXXXVI, yield 46%) in 13 days (Boaventura et al. 2004): 

N
H

CH2CN

N
H

CH3

CCXXXV CCXXXVI
 

Tryptamine (CCXXXVII) was transformed by A. niger to 

5-hydroxyindole-3-acetamide (CCXXXVIII, yield 24%) in 13 

days (Boaventura et al. 2004):  

N
H
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O
HO

CCXXXVII CCXXXVIII
 

Carbazole 

A great variety of bacteria metabolize carbazole 

(CCXXXIX), usually by a naphthalene-like oxidation of a ring 

carbon or by angular dioxygenation, to produce cis-dihydrodiols 
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(Bressler and Fedorak 2000; Larentis et al. 2011). In the first 

method, carbazole is transformed by Pseudomonas sp. using 

naphthalene 1,2-dioxygenase and by Sphingomonas yanoikuyae 

B8/36 using biphenyl 2,3-dioxygenase, presumably via a transient 

cis-dihydrodiol in both bacteria, to produce 3-hydroxycarbazole 

(CCXL) (Resnick et al. 1993). In the second method, 

Pseudomonas resinovorans, Pseudomonas sp., and Nocardioides 

aromaticivorans transform carbazole by angular dioxygenation 

using carbazole 1,9a-dioxygenase, via 2’-amino-2,3-

dihydroxybiphenyl (CCXLI), to anthranilic acid and 2-

hydroxypenta-2,4-dienoic acid (CCXLII) (Ouchiyama et al. 1993; 

Nojiri et al. 2001; Inoue et al. 2006): 
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Pseudomonas sp. and Flavobacterium sp. transform 

carbazole via unknown pathways to indole-3-acetic acid and other 
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ring-cleavage products (Gieg et al. 1996; Obata et al. 1997). Using 

other pathways, Ralstonia sp. oxidizes carbazole to the 1-, 3-, and 

9-hydroxycarbazoles (CCXLIII, CCXL, and CCXLIV, 

respectively) and to 3-hydroxy-1,2,3,9-tetrahydrocarbazol-4-one 

(CCXLV) (Waldau et al. 2009): 

CCXLIII

N
H

OH

CCXLIV

N
OH

CCXLV

N
H

O OH

 

Aspergillus flavus transforms carbazole to 3-

hydroxycarbazole, the main product, and small amounts of 1-

hydroxycarbazole and 2-hydroxycarbazole (CCXLVI) in 2 days 

(Lobastova et al. 2004): 

CCXLVI

N
H

OH

 

N-Methylcarbazole (CCXLVII) is biotransformed by 

Cunninghamella echinulata to carbazole, N-

hydroxymethylcarbazole (CCXLVIII), 3-hydroxycarbazole, and 

3-hydroxy-N-hydroxymethylcarbazole (CCXLIX) (Yang and 

Davis 1992): 
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The transformation of N-benzoylcarbazole (CCL) and N-

acetylcarbazole (CCLI) by A. flavus forms carbazole as the main 

product and small quantities of 1-, 2-, and 3-hydroxycarbazoles 

(Lobastova et al. 2004): 

 

CCL

N

CCLI

N
COC6H5 COCH3

 

 

Beta-carbolines 

The metabolism of ethyl-β-carboline-3-carboxylates 

(CCLII) by cultures of bacteria and fungi has been investigated 

(Neef et al. 1982). The bacteria Streptomyces lavendulae and S. 

griseus hydroxylated the 4-ethyl and 4-n-propyl derivatives of 

ethyl-β-carboline-3-carboxylate (CCLII with R = С2H5 or С3H7), 

producing the corresponding lactones (CCLIII and CCLIV) by 
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transesterification. The yields in these processes were 7-8% (Neef 

et al. 1982): 
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CCLII, R= C2H5; C3H7

 

 

Beauveria bassiana hydroxylates the same compounds, 

usually forming a mixture of glucosides. Only in the case of 4-

unsubstituted β-carboline-3-carboxylate (CLXVIII, R=H) has the 

non-glucosylated 6-hydroxy derivative (CCLV, yield 62%) been 

found. If there is an alkyl substituent in CCLII in position 4, then 

the 6- and 8-(4’-O-methyl)-β-glucosides (CCLVI and CCLVII, 

respectively), are produced. An increase in chain length of the 

alkyl substituent leads to an increase in the amount of the 8-

glucoside (Neef et al. 1982): 
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Gamma-carbolines 

Penicillium simplicissimum transforms the antihistamine 

2,3,4,5-tetrahydro-2,8-dimethyl-5-(2-(6-methyl-3-pyridyl)ethyl)- 

pyrido[4,3-b]indole (latrepirdine or Dimebon, CCLVIII) with the 

formation of a 2,3-dehydro derivative (CCLIX) and a 4-acetyl, 5-

carbonyl, 2,3-dehydro derivative (CCLX) in 10.0% yields 

(Dovgilevich et al. 1991): 
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The 4-acetyl, 5-carbonyl, 2,3-dehydro derivative may be 

formed by 4N-demethylation and 5-position oxidation of the 2,3-

dehydro derivative, followed by acetylation of the nitrogen at 

position 4 of the γ-carboline ring (Dovgilevich et al. 1991). 

 

Chapter 3. Microbial transformations of quinolones and 

related drugs 

Because quinolones are widely used in medical and 

veterinary practices as well as in animal production and 

aquaculture in many countries (Martinsen and Horsberg, 1995; 

Andriole, 2000), and the problem of quinolone resistance among 

pathogenic bacteria remains serious (Cattoir and Nordmann, 

2009), it will require the development of new antimicrobial agents. 
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It is likely that modification of the chemical structure of 

quinolones can help to solve these problems (Murphy et al., 2009). 

In addition, new quinolone derivatives obtained by the methods of 

regio- and stereospecific microbial biotransformation (Lehman 

and Stewart, 2001) combined with chemical synthesis may be 

useful in the synthesis of new generations of quinolones. 

 

3.1. Transformations of first-generation quinolones and their 

analogs 

Nalidixic acid (CCLXI), a derivative of 1,8-naphthyridine, 

inhibits DNA gyrase in bacteria (Sugino et al., 1977). It is usually 

considered the first of the quinolone-related compounds to be 

investigated as an antibacterial agent, even though it is, strictly 

speaking, not a quinolone (Lesher et al., 1962). Nalidixic acid has 

been used against urinary tract infections caused by Gram-

negative bacteria (Sabbour et al., 1984) and it also has antimalarial 

properties (Divo et al., 1988; Mahmoudi et al., 2003).  

The transformation of nalidixic acid by the fungus 

Penicillium adametzi 737 has been studied (Hamilton et al., 1969). 

After 24 hours, the formation of a hydroxymethyl derivative 

(CCLXII) was observed with a yield reaching 60%. Its further 

oxidation led to the formation of a 3,7-dicarboxylic acid 

(CCLXIII) (Hamilton et al., 1969): 
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N NH3C
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O
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N NHOH2C
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O
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CCLXI CCLXII

CCLXIII  

The microbial transformation of analogues of nalidixic acid 

has also been of great interest. In a growing culture of P. adametzi 

ATCC 10407, oxidation of the methyl group of 3-carboxy-1-ethyl-

7-methyl-4-quinolone (CCLXIV) to the alcohol, 3-carboxy-1-

ethyl-7-hydroxymethyl-4-quinolone (CCLXV), was observed; the 

aromatic carbon atoms were not involved in this process (Kieslich 

et al., 1973): 

NH3C
C2H5

O
COOH

NHOH2C
C2H5

O
COOH

CCLXIV CCLXV  
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 From the same substrate, the bacterium Streptomyces 

surinam formed an O-acetylated derivative at the carboxyl group 

instead. P. adametzi also metabolized a similar compound with a 

methoxyl group by demethylating it (Kieslich et al., 1973). 

 A similar pattern is observed in the oxidation of a more 

complicated quinolone with an additional saturated ring, 1-ethyl-4-

oxo-1,4,6,7,8,9-hexahydrobenzo[g]quinoline-3-carboxylic acid 

(CCLXVI), by three different microorganisms (Kieslich et al., 

1973). The fungus Beauveria bassiana ATCC 7159 introduced a 

hydroxyl group at position 6, forming the 6-hydroxy derivative 

(CCLXVII); P. adametzi formed the 7- and 8-hydroxy derivatives 

(CCLXVIII and CCLXIX); and Streptomyces achromogenes 

formed the 6-, 7-, and 8-hydroxy derivatives (CCLXVII, 

CCLXVIII and CCLXIX) (Kieslich et al., 1973): 
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Some analogs of acronycine (CCLXX), a pyranoacridone 

alkaloid, have antitumor activity (Nguyen et al., 2009) and 

antimalarial activity (Fujioka et al., 1989; 1990; Basco et al., 1994; 

Hari et al., 2010). The oxidation of acronycine by growing cultures 

of fungi in the genus Cunninghamella results in hydroxylation of 

the benzene ring (Betts et al., 1974). The most active strain, C. 

echinulata NRRL 3665, transformed the starting material into 9-

hydroxyacronycine (CCLXXI) with a yield of 30% in 70 hours 

(Betts et al., 1974): 
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The transformation of cinoxacin (CCLXXII), a 4-

cinnolone derivative that has been used for treating bacterial 

urinary tract infections [Sisca et al., 1983; Sabbour et al., 1984], 

was studied with B. bassiana ATCC 7159. Within 20 days, 

formation of two metabolites, 1-ethyl-1,4-dihydro-3-

(hydroxymethyl)[1,3]dioxolo[4,5-g]cinnolin-4-one (CCLXXIII, 

yield 47.3%) and 1-ethyl-1,4-dihydro-6,7-dihydroxy-3-

(hydroxymethyl)cinnolin-4-one (CCLXXIV, yield 5.6%), was 

observed (Parshikov et al., 2002a,b,c): 
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Flumequine (CCLXXV) is a quinolone derivative, 

produced as a racemic mixture, that is used in aquaculture in many 

countries as an antibacterial agent (Martinsen and Horsberg, 1995; 

Rigos and Troisi, 2005; Kim and Cerniglia, 2010). In the 

stereospecific transformation of the flumequine isomers by 

growing cultures of Cunninghamella elegans, the formation of two 

diastereomers, 7-hydroxyflumequine (CCLXXVI, yield 23%, and 

CCLXXVII, yield 43%) and also 7-oxoflumequine 

(CCLXXVIII, 11% yield) was observed within 7 days (Williams 

et al., 2007): 
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3.2. Transformation of second-generation quinolones 

The emergence of norfloxacin (CCLXXIX) as an 

antibacterial agent marked the beginning of the second generation 

of quinolones (Appelbaum and Hunter, 2000; Brighty and Gootz, 

2000). It is still used for treatment of urinary tract infections 

[Sabbour et al., 1984] and conjunctivitis (Miller et al., 1992); 

laboratory tests have shown that it also possesses antimalarial 

activity (Sarma, 1989; Mahmoudi et al., 2003). 

During the transformation of norfloxacin by the fungus 

Pestalotiopsis guepini P-8, four metabolites, N-acetylnorfloxacin 

(CCLXXX, yield 55.4%), desethylene N-acetylnorfloxacin 

(CCLXXXI, yield 8.8%), N-formylnorfloxacin (CCLXXXII, 

yield 3.6 %) and 7-amino-1-ethyl-6-fluoro-4-oxo-1,4-
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dihydroquinoline-3-carboxylic acid (CCLXXXIII, yield 2.1%), 

were obtained (Parshikov et al., 2001a; Williams et al., 2004), all 

of which are known from human and animal studies (Dalhoff and 

Bergan 1998; Pauliukonis et al., 1984): 
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In an attempt to identify biotransformation products and 

the enzymes involved in their formation, a wood-decaying white-

rot basidiomycete, Trametes versicolor, was grown in a medium 

containing norfloxacin (Prieto et al., 2011). It produced 

desethylene N-acetylnorfloxacin and 7-amino-1-ethyl-6-fluoro-4-
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oxo-1,4-dihydroquinoline-3-carboxylic acid from norfloxacin, plus 

desethylene norfloxacin (CCLXXXIV) (Prieto et al., 2011). 

Although these products have not been specifically tested, they 

most likely have less antibacterial activity than norfloxacin or 

none at all (Dalhoff and Bergan 1998). 

The fungus Trichoderma viride, when grown in the 

presence of norfloxacin and ciprofloxacin for 16 days, formed two 

conjugates (CCXCI and CCXCII) with yields of 42% and 31%. 

They were formed by the reaction of norfloxacin with a secondary 

metabolite of the fungus (Parshikov et al., 2000a; Parshikov et al., 

2002): 

CCXCI,   R=C2H5
CCXCII, R=C3H5
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N
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OH
 

Norfloxacin was also transformed by growing cultures of 

Microbacterium sp. 4N2-2 within 14 days to four metabolites: N-

acetylnorfloxacin, desethylene-N-acetylnorfloxacin, 8-

hydroxynorfloxacin (CCXCIII), and 6-hydroxynorfloxacin 

(CCXCV) (Kim et al., 2011): 
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Transformation of norfloxacin by growing cultures of an 

environmental isolate, Mycobacterium gilvum PYR-GCK, led to 

the formation not only of the inactive N-acetylnorfloxacin but also 

of N-nitrosonorfloxacin (CCXCVII) (Adjei et al., 2006): 

CCXCVII,  R=C2H5
CCXCVIII, R=C3H5
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The N-acetylation of norfloxacin by cultures of an 

Escherichia coli strain from wastewater with the variant gene 

aac(6’)-Ib-cr has also been observed (Jung et al., 2009). 

The fluoroquinolone ciprofloxacin (CCLXXXV) has a 

broad spectrum of activity and is widely prescribed for diseases 

caused by many bacteria (Sharma et al., 2010). It shows 

antimalarial activity in vitro against chloroquine-sensitive strains 

of Plasmodium falciparum, but it was tested unsuccessfully for 
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treating patients with chloroquine-resistant malaria (Divo et al., 

1988; Watt et al., 1991). Ciprofloxacin is able to interrupt the cell 

cycle of tumor cell lines (Kloskowski et al., 2010).  

During the oxidation of ciprofloxacin by the wood-

decaying brown-rot fungus Gloeophyllum striatum, the 

metabolites 8-hydroxyciprofloxacin (CCXCIV) and 6-

hydroxyciprofloxacin (CCXCVI) were detected [Wetzstein et al., 

1999].  

The transformation of ciprofloxacin by growing cultures of 

the fungus Umbelopsis ramanniana (= Mucor ramannianus) 

produces one inactive metabolite, N-acetylciprofloxacin 

(CCLXXXV), with a yield of 89.0% (Parshikov et al., 1999). The 

transformation of ciprofloxacin by P. guepini P-8 produces four 

metabolites: N-acetylciprofloxacin (CCLXXXV, yield 52.0%), 

desethylene-N-acetylciprofloxacin (CCLXXXVI, yield 9.2%), N-

formylciprofloxacin (CCLXXXVII, yield 4.2%) and 7-amino-1-

cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic 

acid (CCLXXXVIII, yield 2.3%) (Parshikov et al., 2001a,c).  

The N-acetylation of ciprofloxacin by growing cultures of 

E. coli that have aac(6’)-Ib-cr has been observed [Robicsek et al., 

2006; Jung et al., 2009]. Transformation of ciprofloxacin by 

growing cultures of M. gilvum leads to the formation not only of 

N-acetylciprofloxacin (CCLXXXV) but also of N-

nitrosociprofloxacin (CCXCVIII) (Adjei et al., 2007).  
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The basidiomycete T. versicolor transforms ciprofloxacin 

to 7-amino-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-

carboxylic acid (CCLXXXIX), desethylene ciprofloxacin 

(CCXC) and 8-hydroxyciprofloxacin (CCXCIV),which are also 

produced by G. striatum; three novel metabolites of T. versicolor 

are desethylene N-acetyl-8-hydroxyciprofloxacin (CCXCIX) and 

two unusual conjugates (CCC and CCCI) (Prieto et al., 2011): 
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3.3. Transformation of third-generation quinolones 

To date, the most-studied microbial transformations of 

third-generation quinolones are those of the veterinary antibiotics 

enrofloxacin (Sellyei et al., 2009), sarafloxacin (Edens et al., 1997; 

Amjad et al., 2006; Abd El-Ghany et al., 2011), danofloxacin 

(Sappal et al., 2009) and pradofloxacin (Wetzstein et al., 2005). 

Enrofloxacin (CCCII) is a veterinary antibacterial 

fluoroquinolone that is used for a great variety of purposes 
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(Martinsen and Horsberg, 1995; Mitchell, 2006; Sellyei et al., 

2009). It is degraded completely to CO2 by brown-rot fungi from 

decaying wood and agricultural soils (Martens et al., 1996; 

Wetzstein, 2001; 2010). The brown-rot fungi produce hydroxyl 

radicals by nonenzymatic processes (Arantes et al., 2012), and 

these appear to be involved in the biotransformation. A total of 

137 metabolites, including CO2, produced by basidiomycetous 

fungi from enrofloxacin were identified in a series of brilliant 

investigations using high-performance liquid chromatography and 

high-resolution mass spectrometry (Wetzstein et al., 1997; 2006; 

Karl et al., 2006). During the transformation of enrofloxacin by G. 

striatum DSM 9592, 87 metabolites were detected and identified 

(Karl et al., 2006); additional metabolites were found in cultures of 

seven other fungi (Wetzstein et al., 2006). Some of the metabolites 

were O-acetylated or N-oxidized and others were produced by 

cleavage of the pyridone ring. Because of the abundance of 

metabolites produced from enrofloxacin alone, the reader is 

referred to the original papers (Karl et al., 2006; Wetzstein et al., 

2006) for the structures.  

As a result of transformation of enrofloxacin by U. 

ramanniana, a non-wood-decaying zygomycetous fungus, three 

products, desethylene enrofloxacin (CCCIII, yield 3.5%), 

enrofloxacin N-oxide (CCCIV, yield 62.0%) and N-
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acetylciprofloxacin (CCLXXXVI, yield 8.0%), were produced 

within 21 days (Parshikov et al., 2000b,d): 
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Sarafloxacin (CCCV) has been used as an antibacterial 

agent in poultry production (Jones et al., 1998; Abd El-Ghany et 

al., 2011) and in aquaculture (Martinsen and Horsberg, 1995; Kim 

and Cerniglia, 2010). The transformation of sarafloxacin was 

studied with growing cultures of U. ramanniana. Within 18 days, 

the formation of two metabolites, desethylene-N-

acetylsarafloxacin (CCCVI, yield 26.0%) and N-

acetylsarafloxacin (CCCVII, yield 15.0%), was observed 

(Parshikov et al., 2000c; Parshikov et al., 2001b): 
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Danofloxacin (CCCVIII) is used for treating bacterial 

infections of cattle, pigs, and other livestock (McGuirk et al., 

1992; Sappal et al., 2009). The transformation of danofloxacin by 

cultures of the bacteria Mycobacterium smegmatis UI AM-563 and 

Pseudomonas fluorescens UI AM-670 produces two metabolites, 

N-desmethyldanofloxacin (CCCIX) and a 7-amino derivative 

(CCLXXXIX) (Chen et al., 1997): 
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Pradofloxacin (CCCX) is a veterinary fluoroquinolone, 

with a cyano group on position 8, which was developed for 

treating bacterial infections in dogs and cats (Wetzstein, 2005). 

Transformation of pradofloxacin by G. striatum DSM 9592 

produced six major metabolites, probably by hydroxyl radical 

reactions. The major metabolites were 2-hydroxy-8-

cyanopradofloxacin (CCCXI, yield 3.0%), 6-hydroxy-8-

cyanopradofloxacin (CCCXII, yield 9.0%), 5,6-dihydroxy-8-

cyanopradofloxacin (CCCXIII, yield 3.0%), 8-

hydroxypradofloxacin (CCCXIV, yield 1.0%), 8-cyano-7-amino 

pradofloxacin (CCCXV, 1.0% yield) and 6-[(E/Z)-1-cyano-2-

hydroxyethenyl]-1-cyclopropyl-4-oxo-1,4-dihydro-3-

pyridinecarboxylic acid (CCCXVI, yield 1.0%) in 16 days 

(Wetzstein et al., 2012): 
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 At least the 8-hydroxypradofloxacin metabolite lacks 

antimicrobial activity (Wetzstein and Hallenbach, 2011). The 

unique feature of this fungal biotransformation occurs after the 

pyrrolodinopiperidine group at position 7 is removed, when the 

carbocyclic ring is cleaved (Wetzstein et al., 2012). Cleavage of 

this aromatic ring has been suspected in the fungal transformation 

of other drugs but has previously not been confirmed. 

 

 

3.4. Transformation of fourth-generation quinolones 

Therre is little information in the literature about the 

microbial transformations of fourth-generation quinolones except 

for moxifloxacin (CCCXVII), an 8-methoxyfluoroquinolone 

(BAY 12-8039) used for treating infections of the skin and 

respiratory tract (Keating and Scott, 2004). In the 

biotransformation of moxifloxacin by G. striatum DSM 9592, 

several metabolites, among them 3-hydroxymoxifloxacin 

(CCCXVIII), 6-hydroxymoxifloxacin (CCCXIX), and a 

demethylated derivative (8-hydroxymoxifloxacin) (CCCXX), 

were produced in 3 days (Wetzstein et al., 1997): 
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Conclusion 
On the basis of compounds of a series azaarenes exist 

many types of medications. Derivatives of quinoline wide known 
among the most promising drugs. Primaquine has many side 
effects, so research is underway to develop an effective and safe 
antimalarial drug based on it (Vale et al., 2009). 

Quinolones are widely used in medical practice. However, 
the problem of occurrence of antibiotic resistant strains of 
pathogenic microorganisms remains unchanged. Modification of 
the chemical structure of quinolones can solve these issues. 
Derivatives obtained by the methods of microbial chemistry may 
prove useful in the synthesis of a new generation of quinolones. 

Hydroxylated derivatives of saturated nitrogen-containing 
heterocycles obtained by microbial techniques may be used to 
create hybrid molecules based, artemisinin (Parshikov et al., 
2004a,b,c, 2005, 2006; Williamson et al., 2007), quinine and 
chloroquine. 
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