
Growth patterns and properties of aerosol­
assisted chemical vapor deposition of 
CH3NH3PbI3 films in a single step

Yates, HM and Afzaal, M

http://dx.doi.org/10.1016/j.surfcoat.2017.05.011

Title Growth patterns and properties of aerosol­assisted chemical vapor 
deposition of CH3NH3PbI3 films in a single step

Authors Yates, HM and Afzaal, M

Type Article

URL This version is available at: http://usir.salford.ac.uk/42273/

Published Date 2017

USIR is a digital collection of the research output of the University of Salford. Where copyright 
permits, full text material held in the repository is made freely available online and can be read, 
downloaded and copied for non­commercial private study or research purposes. Please check the 
manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please
contact the Repository Team at: usir@salford.ac.uk.

mailto:usir@salford.ac.uk


1 

 

Growth patterns and properties of aerosol-assisted chemical vapor deposition of CH3NH3PbI3 

films in a single step   

Mohammad Afzaal* and Heather M. Yates 

 

Materials and Physics Research Centre, The University of Salford, Salford, M5 4WT, United 

Kingdom.  

E-mail: M.Afzaal@salford.ac.uk 

 

ABSTRACT 

In this work, we highlight growth patterns and properties of aerosol-assisted chemical vapor 

deposition of perovskite, CH3NH3PbI3 thin films. The substrates were distinctly covered with 

both perovskite and lead iodide thin films which we attribute to methylammonium iodide 

being the rate limiting step via mass transport. The black perovskite films demonstrated 

strong absorption and photoluminescence properties confirming their suitability as a light 

absorbing material for the fabrication of solar cells. Scanning electron microscope images 

showed dense morphologies along with the confirmation of holes and gaps at reduced growth 

temperature. 
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1. Introduction 

Tremendous progress at multiple facets of perovskite (PVK) solar cell technologies has 

resulted in solar to electrical power conversion efficiencies increasing from 3.8% [1] in 2009 

to presently in excess of 23% (for PVK/silicon solar cells) [2]. With a common formula 

CH3NH3MX3 (M = Pb or Sn; X = Cl, Br or I), the absorber layer is sandwiched between 

different electron and hole transport layers. Attempts to deposit high-quality optoelectronic 

PVK layers by one or two-step solution processes such as spin coating are widely spread 

[3,4], although challenging to scale up.  

To meet the challenge of industrial scale, cost-effective deposition of dense PVK 

coatings use of the chemical vapor deposition (CVD) processes would be highly desirable. 

The atmospheric pressure deposition technique is particularly suited to use in industry due to 

the high volume, continuous growth processes and fast growth rates achievable. Moreover, 

the process has already been shown to be cost competitive and capable of integration in 

manufacturing processes such as the float-glass industry. The technique enables the control of 

a range of film properties such as thicknesses, morphologies, and growth rates through 

careful adjustment of the deposition conditions. Various groups have used modified CVD 

processes for depositing device quality PVK thin films either through vaporisation of organic 

part alone or organic and inorganic components separately. For example, Qi et al. introduced 

hybrid CVD through thermal evaporation of lead chloride followed by vapor phase 

deposition of methylammonium iodide (MAI) [5]. Low-pressure CVD has been shown to 

produce uniform CH3NH3PbI3 absorbing layers by decreasing the over-rapid intercalating 

reaction rate [6]. However, concerns about the stoichiometry and the thermal stability of the 

organic part remain relatively large. In addition, use of expensive and complicated vacuum 

configurations are also likely to have detrimental impact on the versatility and 

commercialization of large scale deposition of films. Lead being not only cheap, it can also 
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be easily recycled effectively and economically. Although there are issues due to the toxicity 

of the metal, which has sparked an interest in lead free perovskites with the substitution of tin 

[7]. 

As mentioned above, ability to deposit uniform thin films at atmospheric pressure and 

in a single step are attractive from a practical point of view. O’Brien’s group was the first to 

report a one-step aerosol-assisted (AA) CVD of CH3NH3PbBr3 films with a lead:bromine 

atomic ratio of 1:3 [8]. One key feature was the conversion of the precursor solution to 

aerosols via a nebulizer, followed by their transport to the reaction chamber by an inert 

carrier gas. The process relies on judicial choice of solvent(s) to dissolve the precursors. 

Palgrave and co-workers extended the work to deposit the more active iodide analogue at 

ambient pressure [9]. Their work gives the characterisation and analysis for one set of 

deposition parameters, but no discussion on any trends in film characteristics with deposition 

parameter. In our study, we consider a range of CVD deposition parameters (deposition 

temperature, substrate placements and precursor delivery) and their effects on the resulting 

PVK films. In addition we include both photoluminescence (PL) and Raman studies which 

have not, as far as we are aware, previously been included in analysis of AACVD deposited 

films. We highlight some distinct growth observations during the attempted deposition of 

PVK films and some resulting properties that have not been studied previously in CVD 

experiments.  

2. Experimental details 

Prior to conducting experiments, 1.1 mm borosilicate glass (Corning Eagle 2000) were 

cleaned with detergent, water, propan-2-ol, and dried in air. The reasons for using 

borosilicate glass (2  10 cm) as substrates for thin films are thermal stability and enhanced 

optical properties. Vicks paediatric mini ultrasonic humidifier was used as the nebuliser. Both 

CH3NH3I and CH3NH3PbI3 were synthesized according to the reported method [10]. The 
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nitrogen (N2) flow rate was controlled using a Platon NGX glass variable area flowmeter.  An 

IEC - type K thermocouple was used to measure the surface temperature of the films.  

2.1 Deposition of Thin films: The system was purged under a constant flow rate of N2 at the 

required deposition temperature, before carrying out any experiments. After diluting 

CH3NH3PbI3 with dimethylformamide (DMF) (0.153 M), experiments were conducted in a 

standard electric furnace between 200-275 °C with a constant nitrogen flow rate of 0.5 l/min 

at atmospheric pressure. After 2 hours of deposition (to allow maximum usage of precursor), 

substrates were allowed to cool to room temperature (ca. 2 hours) under N2 before being 

taken out for characterisation. A standard CVD gas delivery system [11] was used with a 

tubular furnace as the reactor.  

2.2 Characterisation: Transmission and reflection were measured using an Aquila nkd 8000 

spectrophotometer between 400 and1000 nm at an incident angle of 30° using s polarisation. 

Scanning electron microscope images were recorded on a XL30 FEG SEM, with sputtered 

carbon coatings to avoid charging. X-ray diffraction measurements were taken using a 

Siemen D5000 instrument. The average film thickness was determined using a Dektak 3ST 

surface profiler by measuring at least five different points across the sample. 

Photoluminescence and Raman spectroscopic studies were performed as previously reported 

[12] at an excitation wavelength of 532 nm. Crystallite size was calculated by Scherrer 

Equation.  

𝐷 =
0.94λ

βcosθ
 

3. Results and Discussion 

Keeping the PbI2/MAI molar ratio fixed at 1:1 in DMF, AACVD experiments were 

performed on 1.1 mm borosilicate glass in a tube furnace. After diluting 1.2 ml aliquot of 

solution with 12 ml of DMF, experiments were conducted at a range of temperatures for a 

fixed 2 hour deposition time. To lower the possibility of aerosols condensing within the 
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delivery tube and to allow efficient mass transport of chemicals, the distance between the 

deposition area and the precursor outlet was optimized.  

To monitor the effect of deposition temperatures (200-275 oC), preliminary studies 

focused on the substrates placed in the middle of the furnace i.e. hot zone while keeping all 

the growth conditions constant (scheme 1). To our surprise, all the films were found to be 

yellow and their resulting X-ray powder diffraction (XRD) patterns showed only PbI2 

(JCPDS: 80-1000). Black deposits were also found on the reactor walls near the gas inlet, 

which indicates that the intercalation of CH3NH3
+ into the PbI2 is not only temperature 

sensitive, but that the distance between precursor entry and deposition area is critical [13]. 

After taking account of these observations, further experiments were conducted by placing 

the substrates at the upstream entry of the furnace (approx. 4 cm). 

At 200 °C, with samples at the new upstream position poor film coverage was 

observed. This was mainly due to materials being condensed onto sidewalls of the tube, 

rather than the glass substrate as the actual substrate temperature was too low. Tests 

established that as well as a temperature gradient along the furnace, the actual substrate 

temperature was lower than the set point (set temperature: 200-275 °C, actual temperature: 

140-255 °C as measured at the new sample position by placing a thermocouple on the top of 

the substrates). By increasing the growth temperature up to 275 °C, improved surface 

coverage with distinct black and yellow regions were evident (Fig. 1). The difference in 

temperature required by Palgrave et al (200 oC) [9] and ourselves to obtain PVK films is 

almost certainly due to heating method adopted for the substrate. Use of a cold wall reactor 

with a flat heated susceptor is more efficient at transferring heat uniformly to the substrate 

surface, than a hot-wall furnace with the substrate only touching at the edges. In a cold wall 

reactor, only the substrates are radiatively or inductively heated while keeping the reactor 
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walls cool. Whereas in a hot-wall furnace, both the substrates and the reactor walls are 

heated.    

Major XRD peaks resulting from the black areas of the substrates confirmed the 

formation of tetragonal (the room-temperature stable phase) CH3NH3PbI3 crystals [14]. Minor 

but important peaks at 10.68°, 13.04° and 26.36° (marked as * in Fig. 2) could not be 

assigned to either PbI2 or MAI and their intensities remain unchanged with increased growth 

temperatures (Fig. 2). However, these 2 values match with a recent study by Burda et al. 

who identified the origin of these peaks from a monoclinic PbI2-MAI-DMF intermediate 

complex [15]. This implies that the complete formation of PVK films proceeds via an 

intermediate which is due to CH3NH3
+ intercalating into the PbI2 network during the 

evaporation of DMF in the furnace. Seok and co-workers have reported a similar intermediate 

phase of PbI2-MAI-DMSO (Dimethyl sulfoxide) [16]. One noticeable difference between the 

resulting XRD patterns of PVK films is that their preferred orientation is temperature 

dependent (Fig. 2). At temperatures ranging 200-250 oC, a preferred orientation along the 

(110) plane is evident but switches to (202) plane at 275 oC. Crystallite sizes estimated using 

Scherrer’s equation range between 31-36 nm. In previous work by AACVD, a preferred 

orientation of (100) was observed for PVK films [9]. The change is most likely due to the 

different deposition conditions (temperature and deposition rate) used.  The XRD spectra of 

yellow portion of the substrates was confirmed to be pure PbI2, with c-axis oriented (001) 

peak at 12.68° (Fig. 2).  

The growth of two different materials as evident by the colour change in our 

experiments appear to suggest that the full conversion of PbI2 to perovskite was limited by 

the amount of MAI reaching the substrate surface i.e. MAI was the rate limiting step in mass 

transport. This would result in a MAI concentration gradient along the reaction tube and lead 
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to the part of the substrate closest to the precursor inlet being oversaturated, with little or no 

MAI available for the intercalation further away from the precursor source. 

Samples deposited at different temperatures exhibited very different structural 

features, as demonstrated in the scanning electron microscope images of the black areas (Fig. 

3). To illustrate the point, continuous random network structures of MAPI at 200 oC (Fig. 3a) 

changed to micron-sized granular structures with large grain boundaries at 250 oC (Fig. 3b). 

Both these surface morphologies are regularly found in CVD [9] and solution processing 

methodologies [17]. Film thicknesses estimated by the surface profilometer were found to be 

65 (±10) nm at 200 oC and 148 (±31) nm at 250 oC. This results in growth rates of 33 nm/h 

and 74 nm/h at 200 oC and 250 oC, respectively. No appreciable difference in I/Pb atomic 

ratios of films was detected in energy dispersive X-ray analysis, with values only ranging 

between 2.4-2.7:1.  

Various, sometimes contradictory interpretations of theoretical and experimental 

Raman vibrational analysis exist for clean PVK thin films [18-20] which may be a 

consequence of Raman conditions employed. Our Raman spectroscopy results on the black 

areas of the films at ambient conditions (excitation wavelength (ex) 532nm) showed bands at 

97, 112, 171 and 220 cm-1 attributed to Pb–I bonds and organic cation motions and is 

consistent with a prior study (Fig. 4) [21]. It is worth remembering that PbI2 is one of the 

decomposition by-products of a PVK layer, due to the presence of air moisture [22]. A 

similar observation has also been noted by Ledinský and co-workers who reported the 

decomposition even under vacuum conditions [18]. The sample was intentionally heated 

through an increased laser power from 40% to 70%, which is considerably high for 

photosensitive materials, to see if it was possible to deduce any further structural distortions 

or modifications. Two new peaks at 139 and 289 cm-1 emerged, whereas the broad band at 

171 cm-1 vanished. The strong peak at the lower wavenumber peak corresponds to the 
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liberation of the MA cations [20]. The origin of the unusually broad peak at 287 cm-1, as 

described by Quarti et al., reflects the torsional mode of the organic cations and points to the 

increased orientational disorder of the material [20]. 

The absorption coefficients () are determined from the transmission (T), reflection 

(R) and thickness (t) measurements using  = -ln[T/(1-R)]/t (Fig. 5a) [23]. The onset of the 

interband absorption shown in Fig. 5b around 1.63 eV. One noticeable feature in our data is 

the presence of a large absorption tail (reflecting the peak asymmetry) towards the low 

energy that could be described in terms of an Urbach tail or possibly scattering caused by the 

grain boundaries [24]. The deposited films exhibited photoluminescence (PL) properties as 

demonstrated by the room temperature PL studies (ex = 532 nm), which again confirmed the 

deposition of PVK. A film deposited at 250 °C, gave an emission peak (em) at 1.63eV with a 

full width at half maximum (FWHM) of 79 meV as shown in Fig. 5b. No shift with respect to 

its absorption was found, in contrary, to energy shifts previously seen for the CH3NH3PbI3 

system and ascribed to self-absorption [25]. With decreasing deposition temperature, em 

shifts due to phase change from tetragonal to orthorhombic as shown by Sutherland et al [26]. 

At higher photon energies, the peak shape became slightly asymmetric and reflects the 

inherent nature of the emitting species [19]. Figure 5c demonstates the shift in energy 

between samples deposited at different temperatures. We find that the em at 200 oC (Fig. 5c) 

was marginally shifted towards lower energy (few meV) due to quantum confinement effects 

with a larger FWHM (89 meV) which reflects an increased distribution of particle sizes. This 

is in line with the rather looser film network as seen in the SEM images (Fig. 3a).  

4. Conclusions  

By control of deposition temperature and substrate position, an AACVD process in a tube 

furnace has been shown to deposit tetragonal CH3NH3PbI3 films. Careful control of sample 

position relative to the precursor entry point was important to prevent deposition of only PbI2 
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films, which occurred due to MAI being the self-limiting step during the process. Although 

perovskite could be deposited at 200 oC, the optimum temperature for a more compact film 

was 250 oC. The perovskite films exhibited strong absorption and emission properties, 

suggesting their suitability as light absorbing materials for the fabrication of solar cell 

devices. Raman spectroscopy showed bands assigned to PbI2 and organic components which 

are decomposition products of perovskite films. The enhanced presence of the PbI2 may be 

induced by the intensity of the excitation laser.  
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Figure captions 

Scheme 1. Schematic illustration showing substrate positions in the tube reactor during the 

coating experiments.  

Fig. 1. A photograph showing as-deposited film at 275 oC.  

Fig. 2. XRD patterns of tetragonal CH3NH3PbI3 and hexgonal PbI2 deposited at different 

temperatures. * indicate monoclinic PbI2-MAI-DMF intermediate. 

Fig. 3. SEM images of deposited films at 200 oC and 250 oC temperatures.  

Fig. 4. Raman spectra of film deposited at 250 °C with different laser powers. 

Fig. 5. (a) Transmission and reflection spectra, and (b) absorption coefficient and 

photoluminescence of films deposited at 250 °C. (c) Photoluminescence spectra of 

deposited perovskite thin films at different growth temperatures.  
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