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1. Introduction to the report 

This document is one of the 28 Pest Reports produced by the EFSA Working Group on EU Priority Pests 
under task 3 of the mandate M-2017-0136. It supports the corresponding Pest Datasheet published 
together on Zenodo1 and applies the methodology described in the Methodology Report published on the 
EFSA Journal (EFSA, 2019).  

This Pest Report has five sections. In addition to this introduction, a conclusion and references, there are 
two key sections, sections 2 and 3. 

Section 2 first summarises the relevant information on the pest related to its biology and taxonomy. The 
second part of Section 2 provides a review of the host range and the hosts present in the EU in order to 
select the hosts that will be evaluated in the expert elicitations on yield and quality losses. The third part 
of Section 2 identifies the area of potential distribution in the EU based on the pest’s current distribution 
and assessments of the area where hosts are present, the climate is suitable for establishment and 
transient populations may be present. The fourth part of Section 2 assesses the extent to which the 
presence of the pest in the EU is likely to result in increased treatments of plant protection products. The 
fifth part of section 2 reviews additional potential effects due to increases in mycotoxin contamination or 
the transmission of pathogens. 

In Section 3, the expert elicitations that assess potential yield losses, quality losses, the spread rate and 
the time to detection are described in detail. For each elicitation, the general and specific assumptions 
are outlined, the parameters to be estimated are selected, the question is defined, the evidence is 
reviewed, and uncertainties are identified. The elicited values for the five quantiles are then given and 
compared to a fitted distribution both in a table and with graphs to show more clearly, for example, the 
magnitude and distribution of uncertainty. A short conclusion is then provided.  

The report has two appendices. Appendix A contains a host list created by amalgamating the host lists in 
the EPPO Global Database (EPPO, online) and the CABI Crop Protection Compendium (CABI, 2018a). 
Appendix B provides a summary of the evidence used in the expert elicitations. 

It should be noted that this report is based on information available up to the last day of the meeting2 
that the Priority Pests WG dedicated to the assessment of this specific pest. Therefore, more recent 
information has not been taken into account. 

For Agrilus planipennis, the following documents were used as key references: pest risk analyses (PRAs) 
by EPPO (2013a) and Norway (VKM, 2014) and a contingency plan developed by Mainprize (2017) for the 
UK.  

 

                                                           

1 Open-access repository developed under the European OpenAIRE program and operated by CERN,  
https://about.zenodo.org/ 
2 The minutes of the Working Group on EU Priority Pests are available at   
http://www.efsa.europa.eu/sites/default/files/wgs/plant-health/wg-plh-EU_Priority_pests.pdf 

https://about.zenodo.org/
http://www.efsa.europa.eu/sites/default/files/wgs/plant-health/wg-plh-EU_Priority_pests.pdf
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2. The biology, ecology and distribution of the pest 

2.1. Summary of the biology and taxonomy 

Emerald ash borer (EAB) (Agrilus planipennis Fairmaire, 1888, Coleoptera: Buprestidae) is a single 
taxonomic entity. It originates from Far-East Asia and it was detected in 2002 in North America (USA and 
Canada) and in 2005 in the European part of Russia (Moscow region), causing extensive ash mortality in 
both areas of invasion (e.g. Haack et al., 2002; Baranchikov et al., 2008). 

Time required to complete 1 generation: 

• One year: adults begin to emerge in late spring or early summer → larvae develop in summer and 
autumn → the pest overwinters as fourth instar larvae or prepupae → pupation occurs in spring 
of the following year. The pest completes 1 generation in one year when frost free days are over 
150 per year (Wei et al., 2007). 

• Two years: young larvae (first to third instars) overwinter in the cambial area and resume feeding 
in spring of the following year → these individuals overwinter a second time as fourth instars or 
prepupae, and then pupate and emerge as adults the next year. The pest completes one 
generation in two years when frost free days are below 150 per year (Wei et al., 2007). 

The proportion of individuals completing their development in more than one year depends on when the 
eggs were laid during the summer months, the local climate, host condition, larval density in the tree. For 
example, Siegert et al. (2010). 

2.2. Host plants 

2.2.1. List of hosts 

The host range of EAB includes cultivated, ornamental and wild plants. The only verified larval host plants 
of A. planipennis are those from the genus Fraxinus (Jendek and Poláková 2014), the white fringe tree 
(Chionanthus virginicus L., Oleaceae) (Cipollini, 2015), Olea europaea subsp. europaea (Cipollini et al., 
2017). Olea could become an alternative host where ash foliage is available nearby for adults to consume 
in order to complete sexual maturation (Cipollini and Peterson, 2018). 

Susceptible species: F. americana, F. excelsior, F. angustifolia (syn = F. oxycarpa), F. mandshurica, F. 
chinensis, Fraxinus latifolia, F. ornus, F. pennsylvanica, F. quadrangulata and F. velutina (EPPO, 2013a). 

Other species from the literature not confirmed as larval hosts: Fraxinus lanuginosa, F. nigra x 
mandshurica, F. profunda, F. uhdei, F. mandshurica var. japonica, Juglans ailanthifolia (syn. J. mandshurica 
var. sieboldiana, J. sieboldiana, J. cordiformis, and J. mandshurica var. sachalinensis), J. mandshurica, J. 
mandshurica var. japonica Pterocarya rhoifolia Ulmus propinqua (=Ulmus davidiana var. japonica) (EFSA, 
2011; EPPO, 2013a). 

North American ash species are susceptible to EAB even when healthy, whereas Asian species (F. 
chinensis, F. mandshurica, F. rhynchophylla) are susceptible only when stressed (EPPO, 2013a; Poland et 
al., 2015). Of the North American ash species, blue ash (F. quadrangulata) is clearly the least susceptible, 
and white ash (F. americana) is somewhat less preferred than black ash (F. nigra) and green ash (F. 
pennsylvanica) (McCullough and Siegert, 2007; Herms and McCullough, 2014).  

Species present in the assessment area: 
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• F. excelsior: this species is widely present in the planted and natural forests of Europe. It is found 
in: Austria, Belgium, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxemburg, 
Macedonia, The Netherlands, Norway, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, 
Switzerland, ex-Yugoslavia and United Kingdom (EFSA, 2011; EPPO, 2013a). In particular, this 
species is found at the EU border with Russia, Belarus and Ukraine where the beetle might first 
enter the EU (Beck et al., 2016).  

• F. ornus and F. angustifolia: these species have a more southerly distribution than F. excelsior 
(Caudullo and de Rigo, 2016; Caudullo and Houston Durrant, 2016). 

When combining the distribution of the three species, susceptible Fraxinus hosts to A. planipennis can be 
found throughout the European Union (EFSA, 2011). 

• F. americana: present as sub-spontaneous tree in Bulgaria, France, Hungary, Lithuania (DAISIE, 
online) and Romania (Sîrbu et al., 2011). 

• ornamental plants such as Fraxinus latifolia, F. mandshurica, F. nigra, F. pennsylvanica, F. 
quadrangulata and F. velutina (EPPO, 2013a; EFSA, 2011). 

Appendix A provides the full list of hosts.  

2.2.2. Selection of hosts for the evaluation 

All the European ash species (F. angustifolia, F. excelsior and F. ornus) seem to be highly susceptible to 
EAB attack even when healthy (Herms, 2015, Baranshikov et al., 2014). These three Fraxinus species are 
considered to be the main hosts for EAB in the EU. Details on their ecology and their distribution in Europe 
are provided for F. excelsior by Beck et al. (2016), for F. angustifolia by Caudullo et al. (2016) and for F. 
ornus by Caudullo and de Rigo (2016). 

2.2.3. Conclusions on the hosts selected for the evaluation 

The three common native European Fraxinus species (F. angustifolia, F. excelsior and F. ornus) were 
assessed together for impact since they are all known to have high susceptibilities and, taken together, 
they can be found throughout the EU. 

2.3. Area of potential distribution  

2.3.1. Area of current distribution 

Figure 1 provides an overview of the current area of distribution of the pest. In the EU no outbreaks have 
yet been reported. 
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Figure 1 Distribution map of Agrilus planipennis from the EPPO Global Database accessed 11/04/2019. 

2.3.2. Area of potential establishment 

The wide distribution of A. planipennis covers most of the Köppen-Geiger climates present in the EU: large 
part of its life cycle is completed inside the trunk, where it is protected from extreme meteorological 
conditions, and can be extended over longer periods of time, in case of unfavourable conditions. This 
explains its establishment in Moscow, where winter temperatures often reach below −30°C.  

Field observations identified the lethal temperature for larvae (−25°C on average; Venette and 
Abrahamson, 2010) and laboratory studies for prepupae (−30°C on average; Crosthwaite et al., 2011). No 
data are instead available on the development thresholds for adult emergence and the temperature-
based control of the adult flight: adults are active in strong sunlight and at temperatures above 25°C 
(Wang et al., 2010). In experimental conditions, A. planipennis adults fly at room temperatures of 23°C 
(Taylor et al., 2010) and express their maximum flying capacity at 27.9 °C (Fahrner et al., 2015). 

2.3.3. Transient populations 

Agrilus planipennis is not expected to form transient populations in the EU (for “transient” see the 
definition in EFSA, 2019). 

2.3.4. Conclusions on the area of potential distribution 

The area of potential distribution for A. planipennis is considered to be the whole of the EU because: (i) 
all three European Fraxinus species are highly susceptible, (ii) taken together, these species occur 
throughout the EU and (iii) it is assumed that the whole of the EU is climatically suitable for A. planipennis 
(Figure 2). 
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Figure 2 The potential distribution of the pest in the EU NUTS2 regions based on the scenarios established for assessing the 
impacts of the pest by the EFSA Working Group on EU Priority Pests (EFSA, 2019). This link provides an online interactive version 
of the map that can be used to explore the data further: https://arcg.is/18auzf  

 

https://arcg.is/18auzf
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2.4. Expected change in the use of plant protection products 

Chemical control is used mostly for high-value trees (e.g. urban trees and ornamentals). In these 
circumstances, injections or sprays are considered as valid methods to protect living and cut trees (Petrice 
and Haack, 2006; Herms et al., 2009; McCullough et al., 2011). Trunk or soil systemic injections or soil 
drenches could be used to prevent tree infestations (100% effective) or kill A. planipennis already present 
in trees though this is not 100% effective except for emamectin benzoate (Petrice and Haack, 2006). The 
efficacy of systemic products is also affected by the size of the tree. 

In North America mass-rearing and release of Chinese parasitoids (the larval parasitoids Spathius agrili 
and Tetrastichus planipennisi, and the egg parasitoid Oobius agrili) to reduce the pest populations has 
been conducted. All three are currently established in the US but their impact on the populations of A. 
planipennis is not yet known. A number of other parasitoids reared from Agrilus are being investigated, 
such as Spathius galinae originating from the Russian Far-East (Belokobylski et al., 2012; Yang et al., 
2012a). In North America and China several native species were also found attacking A. planipennis (Johny 
et al., 2012; Yang et al., 2012b) with highly variable parasitism rates (ranging from 1.2% to 40.7% according 
to Lyons, 2010).  

In forested areas, chemical insecticidal control is neither economically viable nor environmentally 
desirable (Poland, 2007). 

Due to the fact that no effective treatments with plant protection products (PPPs) are currently available, 
the most suitable PPP indicator is Case “A” and the category is “0” based on Table 2. 

Table 1:  Expected changes in the use of Plant Protection Products (PPPs) following Agrilus planipennis establishment in the EU 
in relation to four cases (A-D) and three level score (0-2) for the expected change in the use of PPPs.  

Expected change in the use of PPPs Case PPPs 
indicator 

PPPs effective against the pest are not available/feasible in the EU A 0 

PPPs applied against other pests in the risk assessment area are also effective against the 
pest, without increasing the amount/number of treatments 

B 0 

PPPs applied against other pests in the risk assessment area are also effective against the pest 
but only if the amount/number of treatments is increased 

C 1 

A significant increase in the use of PPPs is not sufficient to control the pest: only new 
integrated strategies combining different tactics are likely to be effective  

D 2 

 

2.5. Additional potential effects  

2.5.1. Mycotoxins 

The species is not known to be related to problems caused by mycotoxins. 

2.5.2. Capacity to transmit pathogens 

The species is not known to vector any plant pathogens.  
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3. Expert Knowledge Elicitation report 

3.1. Yield and quality losses 

3.1.1. Structured expert judgement 

3.1.1.1. Generic scenario assumptions 

All the generic scenario assumptions common to the assessments of all the priority pests are listed in the 
section 2.4.1.1 of the Methodology Report (EFSA, 2019). 

3.1.1.2. Specific scenario assumptions 

• Susceptible hosts are living trees that would be killed by EAB.  

• There are no differences in terms of pest preferences and host vulnerability between the different 

EU ash species 

• The potential severity of impacts is considered to be the same in all the different climatic zones 

in the area of potential establishment 

• Urban areas, natural forests and commercial plantations are assessed together  

• The amount of stress that an ash tree is suffering is not expected to influence substantially its 

vulnerability to an EAB attack 

• The effect of Chalara ash dieback does not influence the assessment  

• The damage is to the outer layers so the wood quality is not affected. The use of reduced quality 

wood (e.g. pulp wood/fuel wood) has not been considered.   

• Any infestation with EAB will cause 10-20% losses for hardwood/veneer production.  

• The assessment only considers damage to the European ash species and does not take into 

account the potential losses to other ornamental, non-native ash species which are less widely 

grown. 

• There is a uniform age distribution of ash trees, from very young to the end of rotation (100-120 

years), in the area of potential establishment. 

3.1.1.3. Selection of the parameter(s) estimated 

No standards for reduced quality (e.g. pulp wood/fuel wood) are considered. All loss is covered by the 

proportion of yield loss.  

3.1.1.4. Defined question(s) 

What is the percentage yield loss in Fraxinus trees under the scenario assumptions in the area of the EU 
under assessment for Agrilus planipennis, as defined in the Pest Report? 

3.1.1.5. Evidence selected 

The experts reviewed the evidence obtained from the literature (see Table B.1 in Appendix B) selecting 

the data and references used as the key evidence for the EKE on impact. A few reference publications 

were identified: 

• Tanis and McCullough, 2012 

• Knight et al., 2013,  

• Burr and McCullough, 2014, 
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• Klooster et al., 2014,  

3.1.1.6. Uncertainties identified 

• Dead trees may still have a trunk large enough to provide relevant yield 

• There may be some ash genotypes resistant to EAB 

• Interactions with Chalara ash dieback 

• Most of the data published come from observations at nurseries and where ash populations may 

be genetically homogeneous: a greater variability in responses to EAB attacks is expected in 

natural conditions 

• Potential effect of native parasitoids (see Russia for example) 

3.1.2. Elicited values for yield losses 

What is the percentage yield loss in Fraxinus trees under the scenario assumptions in the area of the EU 
under assessment for A. planipennis, as defined in the Pest Report? 
 

The five elicited values on yield loss in Fraxinus sp. on which the group agreed are reported in the table 
below. 

Table 2:  Summary of the 5 elicited values on yield loss (%) on Fraxinus plantations 

 

 

 

 

3.1.2.1. Justification for the elicited values for yield loss on Fraxinus sp. 

Reasoning for a scenario which would lead to high yield loss (99th percentile / upper limit) 

The upper value of yield loss is based on experiences in North America. Some ash genotypes could be 
more attractive or vulnerable to EAB attack. Native parasitoids have no effect. EAB attack will result in 
tree mortality and total loss of yield. 

Reasoning for a scenario which would lead to low yield loss (1st percentile / lower limit) 

The lower value of yield loss is given mainly by the fact that genetic variability could cause some ash 
genotypes to be less attractive or vulnerable to EAB. This also takes into account what has been observed 
in the US where some wild ash survived colonization and could even recover (Aubin et al., 2015). Native 
parasitoids could have an impact on the EAB population.  

There is more chance of tree recovery so that the attacked trees still provide relevant yield. 

Reasoning for a central scenario equally likely to over- or underestimate the yield loss (50th percentile 
/ median) 

The median value of yield loss is given by the high expected mortality compensated by the capacity of 
some affected plants to recover. 

Percentile 1% 25% 50% 75% 99% 

Expert 
elicitation 

50% 65% 75% 85% 99% 
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Reasoning for the precision of the judgement describing the remaining uncertainties (1st and 3rd 
quartile / interquartile range) 

The precision is mainly affected by uncertainty in the expected responses by EU ash species in the different 
habitats (from urban areas to wild forests). 
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3.1.2.2. Estimation of the uncertainty distribution for yield loss on Fraxinus sp. 

The comparison between the fitted values of the uncertainty distribution and the values agreed by the 
group of experts is reported in the table below. 

Table 3:  Fitted values of the uncertainty distribution on the yield loss (%) on Fraxinus sp. 

Percentile 1% 2.5% 5% 10% 17% 25% 33% 50% 67% 75% 83% 90% 95% 97.5% 99% 

Expert 
elicitation 50%     65%  75%  85%     99% 

Fitted 
distribution 

49% 51% 53% 57% 61% 65% 69% 75% 82% 85% 88% 92% 95% 96% 98% 

Fitted distribution: BetaGeneral (2.1392,1.6113,0.45,1), @RISK7.5 

 

 

 

Figure 2 Comparison of judged values (histogram in blue) and fitted distribution (red line) for yield loss on Fraxinus sp. 

 

 

Figure 3 Fitted density function to describe the uncertainties with 90% uncertainty interval (left) and fitted descending 
distribution function showing the likelihood (y-axis) that a given proportion (x-axis) maybe exceeded (right) for yield loss on 
Fraxinus sp. 
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3.1.3. Conclusions on yield and quality losses 

Due to the assumption of homogeneous growing conditions for Fraxinus sp. plants in Europe no further 
spatial stratification due to climatic conditions or other factors affecting the potential establishment of 
the pest is made. This estimation of yield loss can therefore be applied to all EU NUTS2 regions where 
ashes are present. 

Based on the general and specific scenarios considered in this assessment, the proportion (in %) of yield 
losses (here with the meaning of mortality rate) is estimated to be 75% (with a 95% uncertainty range of 
51 - 96%).  

 

 

 

3.2. Spread rate 

3.2.1. Structured expert judgement 

3.2.1.1. Generic scenario assumptions 

All the generic scenario assumptions common to the assessments of all the different priority pests are 
listed in the section 2.4.2.1 of the Methodology Report (EFSA, 2019). 

3.2.1.2. Specific scenario assumptions 

• Local displacement of logs is not considered to be important for short distance dispersal so the 
spread rate only takes into account the active and passive (wind supported) natural spread. 

• Different ash species do not influence the spread rate. 

• Hitchhiking is excluded as it is not confirmed to be a major component of spread 

3.2.1.3. Selection of the parameter(s) estimated 

The spread rate has been assessed as the number of metres per year. 

3.2.1.4. Defined question(s) 

What is the spread rate in 1 year for an isolated focus within this scenario based on average European 
conditions? (Units: m/year) 

3.2.1.5. Evidence selected 

The experts reviewed the evidence obtained from the literature (see Table B.2 in Appendix B) selecting 

the data and references used as the key evidence for the EKE on spread rate. The main references 

considered are: 

• McCullough et al., 2011,  

• Mercader et al., 2012, 2016,  

• Siegert et al., 2010, 

• Taylor et al., 2010. 
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One general point was made: the speed of colonisation by A. planipennis in the EU might not be as the 

same as that observed in North America, since by the time it was first observed in North America, it had 

already spread away from the initial outbreak. 

3.2.1.6. Uncertainties identified 

• Flight-mill experiments overestimate the real flying capacity 

• some of the papers have a component of human-assisted spread, being chronological 
reconstructions of invasion events (e.g. Siegert et al., 2014, Baranchikov et al., 2016) 

• the effect of wind in the dispersal mechanism 

3.2.2. Elicited values for the spread rate 

What is the spread rate in 1 year for an isolated focus within this scenario based on average European 
conditions? (Units: m/year) 

The five elicited values on time to detection on which the group agreed are reported in the table below. 

Table 4:  Summary of the 5 elicited values on spread rate (m/y) 

 

 

 

 

3.2.2.1. Justification for the elicited values of the spread rate 

Reasoning for a scenario which would lead to wide spread (99th percentile / upper limit) 

The upper value takes into account the fact that the values provided by flight-mill experiments are usually 
overestimations of the actual flight capacity of an insect but this consideration is counterbalanced by the 
potential effect of winds supporting passive dispersal mechanisms. 

The widespread availability of preferred host plants will favour longer distances of spread. 

Reasoning for a scenario, which would lead to limited spread (1st percentile / lower limit) 

The lower value of spread rate is justified by the fact that, although in some cases individuals have been 
observed to move only to the next closest plant from one generation to the other, the biology of this pest 
supports spread even when it is not necessary just for finding food (McCullough et al., 2011).  

The potential effect of wind is considered to be negligible. 

Reasoning for a central scenario, equally likely to over- or underestimate the spread (50th percentile / 
median) 

The median value is lower than some of the papers because the expert group considers an earlier stage 
of colonisation and not an invasion after 7 years or more as documented in many of the North American 
references (e.g. Siegert et al., 2014). 

Reasoning for the precision of the judgement describing the remaining uncertainties (1st and 3rd 
quartile / interquartile range) 

The precision is given by the fact that the median value is a good estimate well supported by the experts 
with a long tail on the right.  

Percentile 1% 25% 50% 75% 99% 

Expert 
elicitation 

100 1,000 1,500 3,000 10,000 
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3.2.2.2. Estimation of the uncertainty distribution for the spread rate 

The comparison between the fitted values of the uncertainty distribution and the values agreed by the 
group of experts is reported in the table below. 

Table 5:  Fitted values of the uncertainty distribution on the spread rate (m/y) 

Percentile 1% 2.5% 5% 10% 17% 25% 33% 50% 67% 75% 83% 90% 95% 97.5% 99% 

Expert 
elicitation 100         1,000   1,500   3,000         10,000 

Fitted 
distribution 

236 320 416 562 729 930 1,138 1,627 2,325 2,846 3,628 4,708 6,362 8,262 11,196 

Fitted distribution: Gamma (0.94924,2093), @RISK7.5 

 

 

 

Figure 4 Comparison of judged values (histogram in blue) and fitted distribution (red line) for spread rate. 

 

 

Figure 5 Fitted density function to describe the uncertainties with 90% uncertainty interval (left) and fitted descending 
distribution function showing the likelihood (y-axis) that a given proportion (x-axis) maybe exceeded (right) for spread rate. 
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3.2.3. Conclusions on the spread rate 

Based on the general and specific scenarios considered in this assessment, the maximum distance 
expected to be covered in one year by A. planipennis is approximately 1,600 m (with a 95% uncertainty 
range of 320 – 8,262 m).  

Due to the assumption of homogeneous growing conditions for Fraxinus sp. plants in Europe, this 
estimation can be applied to all EU NUTS2 regions where ash trees are present. 

 

 

 

3.3. Time to detection 

3.3.1. Structured expert judgement 

3.3.1.1. Generic scenario assumptions 

All the generic scenario assumptions common to the assessments of all the different priority pests are 
listed in the section 2.4.2.1 of the Methodology Report (EFSA, 2019). 

3.3.1.2. Specific scenario assumptions 

No specific assumptions are introduced for the assessment of the time to detection.  

3.3.1.3. Selection of the parameter(s) estimated 

The time for detection has been assessed as the number of years between the first event of pest transfer 

to a suitable host and its detection. 

3.3.1.4. Defined question(s) 

What is the time between the event of pest transfer to a suitable host and its first detection within this 
scenario based on average European conditions? (Unit: years) 

3.3.1.5. Evidence selected 

• Size of the adults and its habit of remaining in the canopy make this species hard to be seen in 
spite of the attractive colors. Visual inspection is the main method for detection in the EU. 

• Current traps are not fully effective, and no long-range pheromone traps are available 

• Most new EAB infestations have been at least 6-10 years-old before being identified. 

3.3.1.6. Uncertainties identified 

• Visibility of exit holes 

• Possible confusion between EAB and Chalara ash dieback symptoms. Other metallic green 
buprestid beetles could also be confused with EAB. 

• Overall awareness of the phytosanitary services and the general public – the capacity of people 
to observe EAB and be so interested by its presence that they contact phytosanitary services 

3.3.2. Elicited values for the time to detection 

What is the time between the event of pest transfer to a suitable host and its first detection within this 
scenario based on average European conditions? (Unit: years) 
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The five elicited values on time to detection on which the group agreed are reported in the table below. 

Table 6:  Summary of the 5 elicited values on time to detection (years) 

 

 

 

 

3.3.2.1. Justification for the elicited values of the time to detection 

Reasoning for a scenario which would lead to a long time for detection (99th percentile / upper limit) 

The upper value takes into account the experience with Chalara ash dieback: it took many years to be 
noticed and identified, in addition, dieback could hide the presence of EAB. In this case there is already a 
damage scenario. Exit holes are very hard to be seen. The two-year life cycle delays symptom 
development. Forest inventories are assumed to occur every 4 years. 

Reasoning for a scenario which would lead to a short time for detection (1st percentile / lower limit) 

The lower value of 2 years is based: on somebody seeing the beetle, e.g. in a private garden or when 
surveillance activity is undertaken to detect Chalara ash dieback or peeling bark symptoms are detected 
on a tree attacked by EAB during the first year (when larvae are already present). Ash is a common urban 
tree in the EU where the symptoms of EAB can be more easily seen than in forests. 

Reasoning for a central scenario, equally likely to over- or underestimate the time for detection (50th 
percentile / median) 

The median value is related to the fact that the current survey and detection activity is very unlikely to 
find a new outbreak and social involvement and knowledge on this pest is still low. Most new EAB 
infestations have occurred for at least 6-10 years before being detected. Invasive pests frequently take 10 
years to be detected. 

Reasoning for the precision of the judgement describing the remaining uncertainties (1st and 3rd 
quartile / interquartile range) 

The precision is mainly driven by the assumption that forest inventories in the EU are conducted every 4 
years on average (Hauk, 2007). However, the values closer to Q1 are more representative of a scenario in 
urban areas while Q3 is more related to detection in forests. 

 

  

Percentile 1% 25% 50% 75% 99% 

Expert 
elicitation 

2% 7% 10% 15% 20% 
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3.3.2.2. Estimation of the uncertainty distribution for the time to detection 

The comparison between the fitted values of the uncertainty distribution and the values agreed by the 
group of experts is reported in the table below. 

Table 7:  Fitted values of the uncertainty distribution on the time to detection (years)  

Percentile 1% 2.5% 5% 10% 17% 25% 33% 50% 67% 75% 83% 90% 95% 97.5% 99% 

Expert 
elicitation 2         7   10   15         20 

Fitted 
distributio
n 

1.6 2.1 2.8 3.9 5.2 6.6 8.0 10.6 13.2 14.6 16.2 17.5 18.8 19.6 20.2 

Fitted distribution: BetaGeneral (1.3141,1.5198,3,19), @RISK7.5 

 

 

 

Figure 6 Comparison of judged values (histogram in blue) and fitted distribution (red line) for time to detection. 

 

 

Figure 7 Fitted density function to describe the uncertainties with 90% uncertainty interval (left) and fitted descending 
distribution function showing the likelihood (y-axis) that a given proportion (x-axis) maybe exceeded (right) for time to detection. 
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3.3.3. Conclusions on the time to detection 

Based on the general and specific scenarios considered in this assessment, the time between the event of 
pest transfer to a suitable host and its detection is estimated to be 10 years (with a 95% uncertainty range 
of 2 – 19 years). 

 

 

 

4. Conclusions 

Hosts selection 

The three common native European Fraxinus species (F. angustifolia, F. excelsior and F. ornus) were 
assessed together for impact since they are all known to have high susceptibilities and, taken together, 
they can be found throughout the EU. 

Area of potential distribution  

The area of potential distribution for A. planipennis is considered to be the whole of the EU because: (i) 
all three European Fraxinus species are highly susceptible, (ii) taken together, these species occur 
throughout the EU and (iii) it is assumed that the whole of the EU is climatically suitable for A. planipennis. 

Expected change in the use of plant protection products 

Due to the fact that no effective treatments with plant protection products (PPPs) are currently available, 
the most suitable PPP indicator is Case “A” and the category is “0”. 

Yield loss  

Due to the assumption of homogeneous growing conditions for Fraxinus sp. plants in Europe no further 
spatial stratification due to climatic conditions or other factors affecting the potential establishment of 
the pest is made. This estimation of yield loss can therefore be applied to all EU NUTS2 regions where 
ashes are present. 

Based on the general and specific scenarios considered in this assessment, the proportion (in %) of yield 
losses (here with the meaning of mortality rate) is estimated to be 75% (with a 95% uncertainty range of 
51 - 96%).  

Spread rate 

Based on the general and specific scenarios considered in this assessment, the maximum distance 
expected to be covered in one year by A. anxius is approximately 1,600 m (with a 95% uncertainty range 
of 320 – 8,262 m).  

Due to the assumption of homogeneous growing conditions for Fraxinus sp. plants in Europe, this 
estimation can be applied to all EU NUTS2 regions where ash trees are present. 

Time for detection after entry 

Based on the general and specific scenarios considered in this assessment, the time between the event of 
pest transfer to a suitable host and its detection is estimated to be 10 years (with a 95% uncertainty range 
of 2 – 19 years).  
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Appendix A – CABI/EPPO host list 

 

The following list, defined in the Methodology Report (EFSA, 2019) as the full list of host plants, is compiled 

merging the information from the most recent PRAs, the CABI Crop Protection Compendium and the EPPO 

Global Database. Hosts from the CABI list classified as ‘Unknown’, as well as hosts from the EPPO list 

classified as ‘Alternate’, ‘Artificial’, or ‘Incidental’ have been excluded from the list. 

 

Genus Species epithet 

Chionanthus virginicus 

Fraxinus 
 

Fraxinus americana 

Fraxinus angustifolia 

Fraxinus chinensis 

Fraxinus excelsior 

Fraxinus japonica 

Fraxinus lanuginosa 

Fraxinus mandshurica 

Fraxinus nigra 

Fraxinus ornus 

Fraxinus pennsylvanica 

Fraxinus profunda 

Fraxinus quadrangulata 

Fraxinus rhynchophylla 

Fraxinus uhdei 

Fraxinus velutina 

Juglans mandshurica 

Olea europaea 

Pterocarya rhoifolia 

Ulmus davidiana 
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Appendix B – Evidence tables 

 

B.1 Summary on the evidence supporting the elicitation of yield and quality losses  

Susceptibility Infestation Symptoms Impact Additional information Reference Limitations/ 
uncertainties 

 Incidence Severity Losses    
Fraxinus americana,  F. 
pennsylvanica, F. nigra, 
F. profunda, and F. 
quadrangulata 

  Mortality rate: nearly 
100% 

Ohio, Michigan and Pennsylvania, 2004-
2010. Monitoring plots (>250) to track 
decline and mortality of ash trees and 
saplings (>4500) in forests. Mortality 
reached about 100% in all areas and plots. 

Knight et al., 2010  

F. americana L. (~28%), 
F. nigra Marsh. (~5%), F. 
pennsylvanica Marsh. 
(~70%) 

  Reduction in average ash 
volume:  
75% in five years 
 
 

Historical spread of EAB in Michigan and 
neighbouring States (data: FIA program). 
Data are for growing-stock trees (live 
trees, >12.7 cm DBH) on timberland. The 
75% decrease is for the ‘core’ area (<50 
km of the epicenter of the EAB invasion) in 
the period 2004-2009. Average ash 
volume decreased from 12.7 to 3.2 
m3 ha-1=75%. 

Pugh et al., 2011  

F. quadrangulata, 
F. americana 

  Percentage of dead trees: 
F. quadrangulata: 29-37% 
F. americana: 84-100% 

Survival of two ash species in two south-
eastern Michigan woodlots, surveyed 
several years after the A. planipennis 
invasion (EAB population peak ~2005). 

Tanis and 
McCullough, 2012 

 

F. americana, F. 
pennsylvanica, F. nigra, 
F. profunda, and F. 
quadrangulata 

  Mortality rate from the 
estimated time of 
infestation: 25% (after 3y), 
50% (4y), 75% (5y) and 
>99% (6y)  

Field study. Naturally infested tree stands 
(N = 31) in forested areas in EAB-infested 
counties, Ohio. 

Knight et al., 2013  

All native ash species Incidence:  

• In the whole 
area: 16.9%  

• Core areas 
(close to the 
epicentre): 
21.2%  

• Non-core 
areas: 12.9%  

 Mortality rate:  

• In the whole area: 4.8%  

• Core areas (close to the 
epicentre): 7.8%;  

• Non-core areas: 2.1%.  
 

Aerial and on-ground surveys. Study area: 
Northern Indiana, southern Michigan and 
northern Ohio (estimated ash population: 
318 million trees). Estimates are from 432 
sample plots (1436 trees). 
Incidence: % of standing ash trees 
>5cm DBH attacked by EAB. 
Data on killed trees as % of symptomatic 
trees: 29% (study area); 36.6% (core 
areas); 16.3% (non-core areas). 

Marshall et al., 2013  
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F. pennsylvanica 
(medium-large size 
trees: DBH 10–65 cm) 

Incidence: 98% Distribution in damage 
categories 
(0=healthy; 7=dead) 
 

Damage 
category 

No. of 
trees 

0 7 

1 9 

2 22 

3 118 

4 340 

5 424 

6 9 

7 11 

Total 940 
 

Mortality rate: 2% 
(at the time of survey) 

Survey, city of Moscow. 
F. pennsylvanica was the most abundant 
ash species in the city. 
Small trees (DBH <10 cm) were generally 
in very good condition. Some data also for 
F. excelsior (not included here: very few 
trees in the area). 
Incidence: ratio of all categories but 0 and 
1 to the total.  
Mortality rate: ratio of categories 6 and 7 
to the total. 

Straw et al., 2013  

• European ash 
species: F. excelsior, 
F. angustifolia and F. 
ornus  

• American ash species: 
F. pennsylvanica and 
F. americana 

• Asian ash species: F. 
mandshurica, F. 
chinensis 

  % killed by EAB: 

• European ash species: 
70-100% 

• American ash species: 
81-90% 

• Asian ash species: 0% 
 

EAB infestation in the Main Botanical 
Garden of the Russian Academy of 
Sciences, Moscow. Russia.  
EAB first registered at the garden in 2011. 
The data refer to trees killed during the 
period 2010–2014. 

Baranchikov et al., 
2014 

 

Major component of F. 
pennsylvanica 

  killed by EAB (% of the 
total ash basal area): 
14-87% 
 

A. planipennis invasion wave across 
southern Michigan. 
Survey in 24 forested sites, each 
categorised as being part of the ‘Core’, 
‘Crest’ or ‘Cusp’ of the invasion. The loss in 
2011 was 87%, 57% and 14% in the Core, 
Crest and Cusp sites, respectively. 

Burr and 
McCullough, 2014 

First year of invasion 
is not provided? 

F. americana, 
F. pennsylvanica and  
F. nigra 

  Cumulative mortality rate: 

• Michigan: 99.7 % 

• Ohio: varying, up to 
100% (higher in sites 
infected for longer) 

 

Ash monitoring plots in two areas: (1) SE 
Michigan (2004-2010) – 38 forested 
stands; area with high mortality (Upper 
Huron River watershed); (2) Ohio (2005-
2008), 62 forested stands; levels of ash 
mortality heterogeneous and varying in 
time; non-infested sites included. 
 
In Michigan, cumulative ash mortality 
increased from 40% in 2005 to 99.7% in 
2009. 

Klooster et al., 2014  
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European ash species: F. 
excelsior, F. ornus and F. 
angustifolia subsp. 
oxycarpa 
 
American ash species: F. 
americana, F. latifolia, F. 
nigra, F. pennsylvanica 
and F. quadrangulata 
 
Asian ash species: F. 
mandshurica 
Hybrid: F. nigra x 
mandshurica 

  Mortality rates (% initial 
population) 
 
European: 

• F. excelsior: 95% 

• F. ornus: 100% 

• F. angustifolia subsp. 
Oxycarpa: 100% 

 
American: 

• F. Americana: 55-80% 

• F. latifolia: 100% 

• F. nigra: 95-100% 

• F. pennsylvanica: 65-
100% 

• F. quadrangulata: 35% 
 
Asian/hybrid: 

• F. mandshurica: 20% 

• F. nigra x mandshurica: 
20% 

 

Common garden study (established in 
2004) in southeast Michigan. Each taxon 
replicated 20 times in a randomised 
complete block design. Mortality rates 
(cumulative) are those recorded in 2014. 

Herms, 2015  

F. americana,  
F. pennsylvanica, 
F. nigra,  
F. profunda, and   
F. quadrangulata 

  Decrease in ash volume: 
up to 81% in five years.  

Study area: 22 States in the eastern US. 
Forest inventory data used to quantify 
trends in ash mortality rate and volume 
per hectare in the period 2009-2014 
relative to the year of initial EAB 
detection. 
 
For areas where detection occurred in 
2003-2008 (Table 2, green frame), there 
was an overall decrease in ash volume 
between 2009 and 2014. The 81% loss is 
for detection years 2003-2004: 1.6 m3/ha 
(year 2014)/ 8.4 m3/ha (year 2009) = 81%.  
For older infestations (detection year 
<2003), major losses had probably already 
depleted the population by 2009. 
 
Tables 1 and 2 at pages 707 and 708 from 
Morin et al., 2017 

Morin et al., 2017 
 

The authors point out 
that there is a time 
lag between EAB 
detection and 
impacts on mortality: 
e.g. there was no 
consistent trend in 
volume loss for more 
recent detection 
years (2009 and 
later). 

Ash mortality rate  
(on a per-volume basis): 

• For old infestations: up 
to 23.6%/year 

• For more recent 
infestations: increasing 
by up to 2.7 % /year 

 
 

Fraxinus americana, F. 
pennsylvanica, F. nigra 

  76% fallen dead ash trees 
from 2008 to 2012. 

 Perry et al., 2018  

 



 
 

 30  

 

 

B.2 Summary on the evidence supporting the elicitation of the spread rate 

Spread Additional information Reference Uncertainty 

Max flight distance in a 
year:  
 
up to 750 m 
 
 

Data collected from two newly-colonized sites in Michigan (naturally / artificially infested). Estimate 
of larval density on trees as a function of distance from the source of infestation. Infestation occurred 
less than 1 year earlier.  

• 88.9% and 90.3% larvae within 100 m 

• 100% and 97.8% within 300 m 

• One larva at one site at 750 m 

Mercader et 
al., 2009 
 

There may have been 
dispersal >750 m, but 
sampling was 
conducted only up to 
750-800 m  

Rate of expansion of 
infestation front: 
 
20 km/year 

Estimate of historical spread in Ohio, 1998-2006. 
 
Rate of expansion estimated using a spatially explicit model with ‘stratified’ dispersal: a combination 
of short-range (insect flight) and long-range dispersal (human-facilitated, e.g. on or in vehicles, plant 
or wood material). 
 

Prasad et al., 
2010 

 

Max flight distance in a 
year: 
 
180-638 m  
 

Sampling conducted at two sites (Michigan; mixed land cover types) where infestation originated 1 yr 
and 3 yr earlier from infested nursery trees. A. planipennis dispersal assessed by locating galleries 
constructed by the progeny of dispersing EAB adults. Colonised trees were found out to 638 and 540 
m from the epicenters at the 1 yr and 3 yr sites, respectively.  

Siegert et al., 
2010 

 

Distance flown by mated 
females in a day: 
 
>3 km (median) 
>10 km (20%) 
>20 km (1%) 
 

Free-flight distances estimated from results of flight-mill experiments.  Taylor et al., 
2010 

How these 
observations 
translate 
to field settings is 
unknown (Mercader 
et al., 2012) 

< 200 m/y The vast majority of eggs laid by A. planipennis 
females are within 200 m of their emergence point 
(Mercader et al., 2009, Siegert et al., 2010) 

Mercader et 
al., 2012 
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Two rates (short/long 
range) 
 
Expansion rate of the main 
invasion front: 

• 3.84 km/year (1998-
2001) 

• 12.97 km/year (2001-
2003) 

 
 
‘Jump distance’ of new 
satellite colonies (formed 
each year): 

• average 27.4 km  

• maximum 64.7 km  
 

Dendrochronological reconstruction of early spread of EAB in Michigan. Study area (> 15000 km2) 
included urban and residential areas, forested parks, small woodlots and agricultural fields. 
Progression of ash mortality (1997-2003) reconstructed from estimated dates of tree death and used 
as a surrogate for the spread of EAB.  
 
Spread mechanism: combination of natural EAB dispersal and human-assisted transport of infested 
ash material. 
 

Siegert et al., 
2014 

The switch to a faster 
rate of expansion of 
the main front (12.97 
km/year) is not linked 
to changes in the 
spread mechanism. It 
occurred because 
growing satellite 
colonies coalesced 
with the primary 
population: as a 
result, the main front 
(defined as the edge 
of the primary 
population) suddenly 
expanded.  

Spread rate: 
 

• 0.4–0.7 km/year (recent 
infestation) 

• 1.2–1.7 km/year  (older 
infestation) 

 

Spread rates of EAB (2008-2011) in two recently established EAB infestations sites in Michigan (one 
larger, presumably older; the other one smaller, presumably more recent). The area included 
forestland, a state park, small municipality with street trees. Estimates were based on larval presence 
in girdled detection trees. 
 
Spread mechanism: mainly natural spread. According to the authors, it is unlikely that human-
assisted spread played a major role.  

Mercader et 
al., 2016 
 

 

Rate of expansion of 
infestation front: 
 
10-12 km/year 

Dendrochronological reconstruction of the expansion of the western front of the EAB invasion in the 
European part of Russia.  
 

Baranchikov et 
al., 2016 
(in Russian; 
discussed in 
Musolin et al., 
2017) 
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B.3 Summary on the evidence supporting the elicitation of the time to detection 

Reference Case Results  
/ evidence 

Detection methods 

Haack et al., 2002; 
EPPO, 2005; de 
Groot et al. 2006; 
CFIA, 2015; USDA-
APHIS, 2012 

Visual symptoms • D-shaped exit holes produced by emerging adults 

• Larval galleries, which are typical for the genus Agrilus. 

• Symptoms of infested trees: yellowing then premature browning of the foliage, thinning of crowns, dying of branches, 
longitudinal bark splits with larval galleries underneath, epicormic branches and shoots often along the lower trunk, dead 
branches. 

• Woodpecker injury is commonly observed in North America and European Russia on infested trees. Woodpeckers remove small 
patches of bark or create small holes in the bark to extract developing A. planipennis. On heavily infested trees, woodpeckers in 
search of A. planipennis can flake off large areas of outer bark, which can accumulate at the base of the tree. This also leaves the 
trunk with large areas of light brown or whitish bark after the flakes of bark have been removed. 

• Dieback and dead trees. 

EPPO, 2013a Reliability  No reliable single method to detect low level populations.  

Monitoring usually relies on several methods, most commonly a combination of trapping, visual inspection of trees, and branch 
or tree sampling. 

Chamorro et al., 
2012 

Identification First detailed description of the egg, larval instars I–IV, prepupa, and pupa of A. planipennis and comparison with other7 Agrilus 
species to determine its affinity 

EPPO, 2013b Official procedures EU standard for official control available  

McCullough et al., 
2011 

Traps efficiency • Purple double-decker traps: 65% of all EAB captured 

• green double-decker traps: 18% of the beetles 

• whereas sticky bands on girdled trees: 11%  
Purple traps differently baited and suspended in the trees canopy: 5%  

McCullough et al., 
2011 

Use of girdled trees Mean N of EAB larvae/m2 of ash phloem on girdled (12.2) and nongirdled (2.6) ash trees  

Mercader et al., 
2012 

Use of girdled trees The probability of detecting low density populations by sampling nongirdled trees is very low (even when detection tools are 
assumed to have three-fold higher detection probabilities than nongirdled trees) 

Mercader et al., 
2012 

Number of sampled 
trees 

Sampling at 1,000 m from the epicentre 
1 tree → 55-60% error 
5 trees → 5-7% error 
Sampling at 3,000 m from the epicentre 
1 tree → 99% error 
5 trees → 95% error 

Biology of the pest 

Brown-Rytlewski 
and Wilson, 2005 

Pest life cycle after accumulation of 230-260 degree-days base 10°C, adults emerge 



 
 

 33  

 

Siegert et al., 2010; 
Villari et al., 2016 

Pest life cycle Prolonged larval development (2yr) is more common in healthy trees, in northern habitats, and when there are low densities of 
A. planipennis infesting a tree. 

In stressed trees, nearly all EAB develop within 1 yr  

Although all instars can overwinter, pupation does not occur until after prepupae have overwintered 

Mercader et al., 
2012 

Larval population 
density 

Very difficult to delineate the extent of the distribution of localized EAB populations, particularly when a small proportion of the 
population was assumed to have a higher propensity for dispersal 

Rutledge and 
Keena, 2012 

Pest reproduction BBB males > successful at transferring a spermatophore > EAB males, with BBB males succeeding in 47/48 attempts > 43/52 
attempts of EAB  
45% of singly mated EAB females failed to lay any eggs > 12% of singly mated BBB  
BBB shows also < mate discrimination 
than EAB 

EPPO, 2013a Pest life cycle Eggs: laid individually or in small groups on the bark surface, usually inside bark cracks and crevices (68-90 eggs per female; Haack 
et al., 2002). 

Normally oviposition is on live trees; occasionally on freshly cut ash logs, although larvae emerging from such eggs rarely complete 
their development (Petrice and Haack, 2007, citing others; Anulewicz et al., 2008) 

EPPO, 2013a Pest life cycle Larvae: 4 instars. First-instar larvae tunnel through the bark to the cambium, then feed in the inner bark and outer sapwood. 
They produce galleries (up to 26-32 cm long), which are S- shaped and filled with frass 

EPPO, 2013a Pest life cycle Pupae: at the end of the larval gallery, predominantly in the sapwood when the bark is thin, otherwise in the outer bark when 
the bark is thick 

EPPO, 2013a Pest life cycle Callow adults: under the bark for 1-2 weeks, then exit through D-shaped holes (3-4 mm wide) 

EPPO, 2013a Feeding and flying 
behaviour 

Adults are active during the day and rest on foliage at night. When conditions are not favourable for flight, adults rest in bark 
cracks and on foliage. 

They feed on the foliage of their host throughout their lives, starting to feed and fly soon after emergence 

EPPO, 2013a, citing 
Bauer and Miller, 
unpublished 

Lifespan Female: 28-120 (average 63) days, lying 1-307 (average 74) eggs  

Male: 12-83 (average 43) days  

EPPO, 2013a Infestation progress On large trees it starts in the canopy, progresses down the tree finally infesting the base of the tree and surface roots. 

Favoured: 5-10 cm diameter 

Host conditions during the period of potential detection 

Knight et al., 2010 Host size EAB populations kill small ash saplings as they reach susceptible size (3-cm diameter at breast height). 

McCullough et al., 
2011 

Effects on symptom 
expression 

Infestations from ash nursery trees, logs, or firewood are typically discovered at least 4-6 years after establishment, when 
declining canopies of heavily infested ash trees are noticed 

McCullough and 
Mercader, 2012 

Effects on symptom 
expression 

To date, most A. planipennis outlier populations have been discovered at least 3-4 years after establishment, when A. 
planipennis densities are high enough for the tree to exhibit external signs of infestation. Trees with low densities of A. 
planipennis exhibit few, if any, external symptoms 
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