Performance studies on
different accelerators using
OpenCL

September 2016

Author:
Dominik Ernst

Supervisor(s):

Vincenzo Innocente
Felice Pantaleo

CERN openlab Summer Student Report 2016

15 years
CERNopenlab

CERN Openlab Summer Student Report 2016
Contents

1 OpenCL| 5

I Deviced o o 5

2_k-d Treel 7

[2.1 Usage Scenario of k-d trees| L. 8

22 Construction] 9

[2.2.1 Algorithm| 9

[2.2.2 Implementation|. oL 10

B3 Searchlo 12

[2.3.1 Algorithm| 12

[2.3.2 Implementation| 13

A Resullsl. o o 14

[2.5 Excursus: Beignet Bug Report| 0. 15

3 Linked Doublet Graph Path Enumeration| 17

[3.1 Usage Scenario of the Doublet Path Enumeration| 17

[3.2 Algorithm| 17

[3.3 Implementation| o 18

BA Resultsl. oo 19

4__Conclusions| 20

CERN Openlab Summer Student Report 2016

Project Specification

The High Luminosity LHC (HL-LHC) is a project to increase the luminosity of the Large
Hadron Collider to 5%1034 ¢cm-2 s-1. The CMS experiment is planning a major upgrade
in order to cope with an expected average number of overlapping collisions per bunch
crossing of 140. The dataset sizes will increase by several orders of magnitude and so
will be the request for larger computing infrastructure. The complete exploitation of a
machine capability is desirable, if not a requirement, that should anticipate a request for
new hardware resources to the funding agencies. Furthermore, energy consumption for
computing is becoming more and more an important voice into European data center’s
budget. The exploitation of Intel integrated accelerators like graphics processors or
FPGAs, which are and will be part of our machines, will allow us to achieve much
higher energy efficiency and higher performance. Furthermore, MIMD architectures like
Kalray’s Massively Parallel Processor Array could prove useful as embedded solutions in
real-time environments like the experiment trigger farms. All these accelerators can be
programmed using OpenCL. The aim of the project is to study the performance and the
power efficiency of these accelerators when executing some kernels which are part of the
reconstruction of CMS experiment events using the CMS software framework.

CERN Openlab Summer Student Report 2016

Abstract

This report introduces the OpenCL API and programming language and describes im-
plementations using OpenCL of several kernels used for particle track reconstruction in
the CMS software framework. The first part are kernels for construction and search in
the context of a k-d tree data structure. The second part is a set of kernels for building
possible tracks out of pairs of hits in the silicon tracker. Several OpenCL platforms are
tested and benchmarked.

CERN Openlab Summer Student Report 2016

1 OpenCL

OpenCL is both a programming language and an API for for the data parallel SPMD
(Same Program Multiple Data) programming paradigm. Algorithms that perform the
same operations for a large amount of items, are formulated as kernels, that each perform
an operation on a single work item. The API is then called to instantiate the kernel for
each work item. OpenCL calls each kernel instantiation a thread.

For example, the simple data parallel for loop

for(int i = 0; 1 < N; i++) {
[AL AL

is transformed into the kernel (note: not actual OpenCL syntax)

void square kernel(floatx A) {
int i = get thread id();
Ali] == Ali];

which is the instantiated N times with an API call:
launch kernel(square kernel(A), N);

The kernel instantiations can be mapped to threads and vector lanes that can be found
in GPUs, in all kind of many core architectures and in common multi core CPUs. The
underlying OpenCL platform cares about launching the appropriate thread count and
generating code for the right vector width for each kind of architecture, e.g. a lot of wide
vector threads for GPUs, and just a few, narrower vector threads for multi core CPUs.

There is no guarantee being made as to the order of execution of threads. Synchro-
nization and data exchange between OpenCL threads is restricted to threads that are
grouped together within what OpenCL calls a work group. The maximum size for a work
group is 1024 threads.

OpenCL defines a memory model with several memory spaces:

e Host Memory, accessible by normal, native code

e Global Memory, accessible only from kernels and with explicit copy functions
from/to Host Memory, writes can be observed by all threads

e Local Memory, accessible only from kernels, replicated for every work group, writes
can only be observed by threads in the same work group

1.1 Devices

Despite already being 3 years old, support for OpenCL 2.0 is still not widespread.
OpenCL version 1.2 is therefore being targeted here. While by far not the biggest
addition to OpenCL 2.0, the so called Work-Group Functions introduced in OpenCL
2.0 were the biggest missing feature for the implementation of the described kernels.

CERN Openlab Summer Student Report 2016

The Work-Group Functions contain parallel primitives that perform horizontal opera-
tions across the threads of a work group, like prefix sums or reductions. The vendor
supplied primitives are potentially the best implementations on each device. Doing a
correct and performance portable implementation of these primitives is a hard task.

Multi Core CPUs Intel and AMD both develop OpenCL Platforms that run OpenCL
code on normal multi core CPUs. Both platforms are not exclusive to the CPUs of the
respective vendor, since they compile and execute OpenCL code as x86 assembly. Both
platforms use multi threading and try to use modern CPUs SIMD ISAs (SSE, AVX) if
possible and deemed beneficial. The explicit parallelism can lead to better vectorization
compared to code generated from normal sequential C code. However, the restrictions
imposed on OpenCL code, that enable suitability for GPU like architectures, do not
always fit well on CPUs. For example, the algorithms and approaches to expose the
amount of parallelism in the range of 10%-10° threads to saturate a large GPU, are
unnecessary for even large HPC CPUs, whose parallelism is in the range of around 100.

The biggest advantage of CPU platforms is in debugging, testing, and compatibility,
as it does not require accelerator hardware. Widespread support is currently limited to
OpenCL 1.2

Many Core CPUs, i.e. Xeon Phi Although definitely CPUs in most of their architec-
tural and operational characteristics, Intels line of Xeon Phi products deserves a separate
category in being called many core architectures. The first widely released iteration,
codenamed Knights Corner (KNC), found itself still somewhat in between traditional
CPUs and newer GPUs both in appearance, with being a PCle add-in board, and op-
eration mode, running only a very reduced and modified OS, requiring a host system
to boot and operate, and executing a modified version of the x86 ISA, with both ele-
ments removed and added. The second iteration, Knights Landing (KNL), is much more
autonomous. It runs an almost unmodified OS, can boot and operate without a host
system, is fully compatible to standard CPUs ISA, and its ISA additions will eventually
make their way into standard CPUs.

What they both still retain from GPU design philosophy is less reliance on instruction
level parallelism (ILP), more cores, wider vectors and more multi threading (SMT), which
all increase the degree of parallelism to several thousand threads.

Similarly to its in-betweeness in system architecture, there is a split in programming
models for the Xeon Phi line. KNC could be programmed both in offloading mode, where
work is queued from the host either with OpenMP extensions or with OpenCL, or in
native mode, where normal multi core code would be compiled and executed as a native
binary on the device. Since KNL does not depend on a host system any more, the first
option is no longer available.

Intel favors OpenMP both for offloading and native code, and does not support OpenCL
any more for KNC. In theory, KNL could just be treated as a normal CPU to execute
OpenCL via a CPU platform. In practice, Intels CPU platform does not recognize the
currently still unreleased KNL and does not run OpenCL programs on it. With pub-

CERN Openlab Summer Student Report 2016

lic availability of KNL in the future, the publicly available CPU platform could support
KNL.

In conclusion, neither iteration of the Xeon Phi currently run OpenCL. In the future,
the situation could become similar to normal CPUs on KNL.

NVIDIA GPUs NVIDIA produces classical GPUs with the aforementioned character-
istics: many simple cores, low ILP exploitation, high degree of SMT, wide vectors and
always dependent on a host system to boot and queue work. The possible programming
approaches are explicitly parallel kernel languages like OpenCL and NVIDIAs CUDA and
more implicit offloading annotation models like OpenMP and OpenACC. NVIDIAs pro-
motes its proprietary CUDA, that is conceptually very similar to OpenCL, rather than
promoting OpenCL. NVIDIA does offer a OpenCL platform for their hardware, but re-
moved OpenCL support from all of their development tools. NVIDIA currently supports
only version 1.2, and has no published plans for version 2.0.

Intel GPUs Intel has included GPUs into their desktop CPUs since the Nehalem series.
Integrated CPUs are constrained by much smaller power and die size envelopes compared
to discrete GPUs and having to share a smaller memory bandwidth with the CPU. As an
advantage, they do use the same DRAM that the CPU uses, so that memory copies from
host to device memory are either faster or can be completely omitted. Intel does not
have official support for OpenCL on Linux, but backs the Open Source project Beignet,
that implements an OpenCL platform for integrated Intel CPUs starting from the Ivy
Bridge series. Beignet currently supports OpenCL 1.2, with experimental support for
2.0. The still ongoing development status of Beignet was illustrated by a bug in Beignets
on line compiler, that is triggered by the k-d tree kernels. This currently makes Beignet
and Intels integrated GPUs unavailable for evaluation.

AMD GPUs AMD produces both classical and integrated GPUs. Rather than promot-
ing a proprietary solution like NVIDIA, AMD only supports OpenCL. They are therefore
much more invested into the API, which also shows in being the first vendor to sup-
port OpenCL 2.2. NVIDIA currently enjoys a much larger mind and market share in the
HPC market. There was no AMD hardware available for evaluation.

2 k-d Tree

A k-d Tree (short for k -dimensional tree) is a binary space partitioning tree data struc-
ture. The problem space is split into two half spaces by an axis aligned hyper plane.

Continuing to split the resulting half spaces hierarchically generates a binary tree.
All the hyper planes used within each level of the tree have the same orientation. The
orientation of the planes cycles through the k different possible alignments, i.e. on level
[, all hyper planes are perpendicular to the dimension [mod k.

With the orientation of the splitting planes being fixed, the position has to be specified.
Points inserted into the data structure are used to implicitly specify splitting planes. By

CERN Openlab Summer Student Report 2016

Figure 1: Cloud of 2D Points with overlaid space partitioning hierarchy

BN [T T T TP B

Figure 2: Linearized tree format of a tree that is built with the median point as splitting
plane.

ordering the points along the axis perpendicular to the splitting plane and then selecting
the median point, a splitting plane is found which separates all points into two groups
of points of mostly equal sizes, which generates a balanced tree.

However, by choosing a splitting point that ensures a complete sub tree on the right
half instead of the median point, the tree can be linearized without forming holes. The
position of a point in the tree is implicitly described by its index, and the children of a
point can be found by index calculations. Explicit storage of parent-child relationship is
thus not required.

2.1 Usage Scenario of k-d trees

k-d trees allow for fast and efficient spatial queries of geometry data, e.g. a request for all
points that lie in a specific axis aligned box. In the particle track reconstruction in the
CMS software framework, hits in the inner detector are inserted into a five dimensional

CERN Openlab Summer Student Report 2016

CT T T T T T T T T T

Figure 3: Linearized tree format of a tree where the splitting point is chosen to avoid
holes

Figure 4: Example of a box query that searches for points on the second detector layer
that could belong to the same track as one of the hits on the innermost detector
layer

k-d tree data structure. The five dimensions of each particle are the three spatial dimen-
sions, time and the angle of incidence. The data structure is then used to form pairs of
hits or doublets that could belong to the same particle track. For each hit, prospective
candidates to form doublets are obtained by querying the data structure for all hits in
an appropriate five dimensional box.

2.2 Construction
2.2.1 Algorithm

A key element in constructing a k-d tree is the quick select or nth_element algorithm.
The C++ reference cppreference.com describes this algorithm as:

void nth_element(RandomIt first, RandomIt nth, RandomIt last);

CERN Openlab Summer Student Report 2016

nth_element is a partial sorting algorithm that rearranges elements in [first,
last) such that:

e The element pointed at by nth is changed to whatever element would
occur in that position if [first, last) was sorted.

e All of the elements before this new nth element are less than or equal
to the elements after the new nth element.

(http://en.cppreference.com/w/cpp/algorithm/nth_element)

If as a comparison operator a comparison of the coordinate axis perpendicular to the
splitting plane is chosen, this algorithm both delivers the sought splitting point at *nth, if
the position of nth is chosen as first + median. It also partitions the remaining points
into the two half spaces, as all points [first, nth) belong to the left half space and
the points in (nth, last) belong to the right half space. Sorting the range would have
the same effect. However, because the points need not be sorted within the half spaces,
nth_element does less work, which is reflected by nth_element having linear complexity
instead of the nlogn complexity of a complete sort.

After performing the nth_element, the point at nth is inserted at its index in the linear
tree data structure, and the same procedure is recursively performed on the resulting
half spaces [first, nth) and (nth, last).

partition (first , last, dimension) {
nth element (first , nth, last, order by dimension);
insert xnth into tree
partition (first , nth, (dimension+1) % k)
partition (nth + 1, last, (dimension+1) % k)

2.2.2 Implementation

Rather than implementing the Depth First (DFS), recursive approach as in the pseudo
code, an iterative, Breadth First (BFS) algorithm is chosen. Each level of the tree is a
separate kernel launch. Since OpenCL 2.0, it is possible to enqueue new work from the
device, which would enable the different tree branches to run asynchronously, but this
has not been examined in this report due to support and time constraints. The different
branches on each level are processed in parallel. As the construction progresses from the
root of the tree to the deeper branches, the branch count goes up, starting at a single
node, but the amount of points under each branch decreases down to just one point per
node. Two different algorithms and parallelisation strategies for different depth have
therefore been implemented.

The first strategy launches a workgroup per node. This makes the cooperative work
on each branch easier, as communication and synchronization is possible in a workgroup.
The nth_element primitive is implemented with a truncated radix sort. In contrast to a
full radix sort, only the bucket that contains the nth element is sorted further. A moving

10

http://en.cppreference.com/w/cpp/algorithm/nth_element

CERN Openlab Summer Student Report 2016

bit mask of four bits, starting from bits 27-31 down to 0-3, is used to assign points to 16
buckets. Each thread creates a thread local histogram of points in the partition.

for (int i = threadld; i < size; i += workGroupSize) {
localBuckets| bucketIndex(pointsSrc|[i], lowBit, highBit) |++;
}

Listing 1: thread local histograms created in a grid stride loop

Figure 5: Interleaved Thread Local Histograms with two Threads

The thread local histograms are then interleaved, so that the counts of all threads
for the first bucket are after another, than those of the second bucket and so on. The
exclusive prefix sum of this interleaved histogram buffer is computed, which computes
the count of all values smaller than the current bucket plus the preceding values of the
same buckets of threads with smaller ids. The bucket with the nth element in it is the
one where the count of values smaller than the bucket is smaller than the nth position,
but the count of values smaller or equal is larger than the nth position. All threads again
iterate cooperatively over all points, select all that fall into the chosen bucket with the
nth element in it, and put them into a new buffer. The positions that each thread assigns
the values it found to are determined by the values of the prefix sum. It contains the sum
of all threads counts smaller than a specific thread, so that that thread can safely assign
its first value to one position above, and has enough space to assign all of its values, since
the next bigger thread will leave exactly enough head room.

for (int i = threadld; i < size; i += workGroupSize) {
if (bucketIndex(pointsSrc|[i], lowBit, highBit) = chosenBucket) {
pointsDst [prefixSum [threadId]|++] = pointsSrc|i];
}

}

swap (pointsSrc, pointsDst);

11

CERN Openlab Summer Student Report 2016

Figure 6: Exclusive Prefix Sum Indicates Buffer Positions

The source buffer and the destination buffer now only containing the values of the
chosen buffer are swapped, and the procedure repeats with the next lower bit mask.
This repeats either down to the lowest four bits, or until the chosen bucket only contains
one value, which must then be the nth element.

A similar count, scan and scatter operation is then performed to partition all points
into on of the three buckets smaller, equal or greater than the nth element.

The second strategy for deeper levels uses just a single thread per node, and uses a
simple bubble sort full sorting scheme to find the nth element and to partition the range.
Since the point count at this stage should be less than 32, often just two or three values,
bubble sort, while not optimal, is not prohibitively slow.

2.3 Search
2.3.1 Algorithm

In order to perform a box query, the root node of the tree is checked whether it lies
in the box and added to the result set if it does. It is then checked whether the box
overlaps at least partly the left and the right half space, and if so, the same procedure is
hierarchically repeated for the child nodes of the root nodes.

search (rootNode, box) {
if (rootNode in box) add rootNode to results
if (box overlaps left half space)
search (leftChild , box)
if (box overlaps right half space)
search (rightChild , box)

12

CERN Openlab Summer Student Report 2016

Figure 7: A partily progressed box query on the second level. The root node, the left
half space, and the lower half of the right half space are already discarded, and
only the upper half of the right half space is still considered

2.3.2 Implementation

Similar to the Construction implementation, BFS is preferred over DFS. A large inde-
pendent count of queries already supplies a lot of parallelism. However, there might not
be enough queries to saturate a larger GPU, so exploiting parallelism inside of a query is
desirable. A configurable thread count or gang work collaboratively to perform a single
search query. The gang size can be as low as one, if enough parallelism is available and
the architecture favors it, and as big as the maximum work group size, as all threads in
a gang need to be in the same work group. Choosing the gang size similar to the vector
width can be advantageous, as this keeps the granularity of thread divergence above the
vector level. Good values where found in the range of 4-32.

srcBuf[0] = rootNode;
for(int level = 0; iter < maxLevel; level++) {
for (int branch = threadId; branch < branchCount; branch += gangSize) {
if (nodeInBox(box, srcBuf|[branch]|)
resultSet.add(srcBuf|[branch]);
if (overlapsBox(srcBuf|branch|->leftChild , box))
dstBuf.add (srcBuf|branch|—>left Child);
if (overlapsBox(srcBuf|branch|—>rightChild , box))
dstBuf.add(srcBuf[branch|—>rightChild);
}

barrier ();
swap (srcBuf, dstBuf);

13

CERN Openlab Summer Student Report 2016

The implementation keeps two buffers with branches that are to be evaluated, srcBuf
for the current level and dstBuf for the next Level. srcBuf initially only contains the
root node. The outer loop iterates over all tree levels. In the inner loop, the gang of
threads then collaboratively iterates in a grid stride loop with the gang size as grid size
over the current list of branches, srcBuf. Each branch is checked whether the node
itself is a point in the box, if so, it is added to the result set. The left and right half
spaces are checked whether they are overlapped by the box, if so, they are added to the
list of branches to evaluate on the next level, dstBuf. After the inner loop, all threads
synchronize and the two buffers are swapped.

The three add operations are realized with an atomic counter increase. Since both the
next buffer and the result buffer are private to each gang and only a part of the threads
will push data back, the number of threads that hit the same counter is low.

void add(Tx buf, int bufCount, T val) {
int oldIndex = atomic inc(bufCount);
buf|oldIndex| = val;

2.4 Results
0.4
0.35
0.3 m Sandy Bridge, 2c, OCL
W Sandy Bridge, 2c
0.25
Nehalem, 8c, OCL
02 ® Nehalem, 8c
B K20
015 GTX580
0.1
0.05

0

Figure 8: Time in seconds to construct a k-d tree from a point cloud of 500000 points.
OpenCL measurements include transfer time. Less is better

The results show the OpenCL implementations to be slower in general. On the small
two core machine, the native implementation is 3 times faster, on the larger, 8 core
machine the parallel OpenCL version still takes longer than the sequential native version.
On the two tested NVIDIA GPUs, the construction takes about four times longer than
for the native CPU implementation.

The native CPU version uses the nth_element function from the standard library.
While not parallel, it is still supposed to be well optimized. This function had to be
specifically implemented for this project, and a lot of the trade-offs between performance

14

CERN Openlab Summer Student Report 2016

and implementation time had to be decided in favour of implementation time. OpenCL
version 2.0 contains some function primitives, like work group prefix sums, that would
have saved implementation and execution time, but were not available in most of the
targeted platforms.

1,000.00
900.00

800.00 H 2c CPU, BFS

700.00 W 2c CPU, DFS
2c CPU, CPU
600.00 m 8c CPU, BFS
500.00 H 8c CPU, DFS
: 8c CPU, CPU
400.00 W GTX580, BFS
GTX580, DFS
300.00 H K20, BFS
200.00 K20, DFS
100.00
0.00

Figure 9: Search performance in Megaqueries per second in a k-d tree consisting of 500000
points. Higher is better. BFS and DFS use OpenCL, CPU is native code

On the CPU systems, the previously existing depth first CPU implementation is faster
than both the for this project implemented breadth first approach and the native CPU
code. The two core and the eight core CPU do not have the same architecture and clock
rates, so that precise scaling behaviour cannot be determined from the data. On both
GPUs, the BFS variant outperforms the DFS variant.

That DFS favours CPUs and BFS favours GPUs is somewhat expected. The BFS
approach was chosen specifically to avoid code patterns that do not run well on GPUs.
CPUs do not have these limitations and rather benefit from higher data locality which
helps to make their caches useful.

2.5 Excursus: Beignet Bug Report

All k-d tree kernels employ a code pattern, that reliably triggered a segmentation fault
in Beignets online compiler compiled from the git commit cb5506. A reduced sample of
one of the kernels was produced, that retained only what was necessary to trigger the
crash.

kernel void crashing sample(global uintx A, global uintx B,
uint nPoints, uint nQueries) {
for (uint id = 0; id < nQueries; id++) {
A[0] = 0;

uint maximum depth = nPoints;
for (uint depth = 0; depth <= maximum depth; depth++) {

15

CERN Openlab Summer Student Report 2016

global uintx temp = A;
A = B;
B = temp;

The common element in the crashing kernels is this swap pattern, that helps to itera-
tively process intermediate data. The kernels have two temporary working buffers, where
A is the buffer where the source data is read from and B is where the intermediate results
are written to. At the end, the two buffers are swapped, and the newly created data is
now the source data, and the old source data is overwritten by new data. In the sample,
no actual data processing takes place, the buffers are just swapped.

Beignets online compiler gets stuck in an infinite recursive loop while doing data flow
analysis, runs out of stack space, and crashes. A patch posted by one of the developers
fixed the segmentation fault. However, in the course of further testing and benchmarking,
it was found that the search kernel under counted the number of found points very
significantly. It was possible to provoke similar wrong results in the reduced sample.

kernel void wrong output sample(global uintx A, global uintx B,
uint nPoints, uint nQueries) {
printf("\n\n");
for (uint id =
Al0] = 0;

0; id < nQueries; id++) {

uint maximum depth = nPoints;
for (uint depth = 0; depth <= maximum depth; depth++) {
for (uint i = 0; i < nPoints; i++) {
B[i| = A[i] + 1;
printf("%u_.", B[i]);
}
printf("\n");
global uintx temp = A;
A = B;
B = temp;
}
printf("\n");
}
}

Actual data processing is added to the swap pattern loop, where the previous buffer
is simply counted up by one. If buffer A is completely initialized with 7, the expected
result, that was produced by four other OpenCL platforms, would be:

1 888
2999

16

CERN Openlab Summer Student Report 2016

3 10 10 10
11 11 11
12 12 12

AN

13 13 13
14 14 14
15 15 15
16 16 16
17 17 17

[]

Instead, the result is:

T W N =

—_ N = N
—_ N N
— N = N
[S)

N — DN = =
D — N 4
GRS RS
OIS RS)

(...

This does once again have the look of a bug in the dataflow analysis. The bug
(https://bugs.freedesktop.org/show_bug.cgi?id=97190) is still open as of the time
of writing.

3 Linked Doublet Graph Path Enumeration

3.1 Usage Scenario of the Doublet Path Enumeration

A previous stage of the detector data analysis forms doublets of hits in adjacent detector
layers that could belong to the same particle track. Each hit usually belongs to several
different doublets. The Doublet Path Enumeration Algorithms links several (in this
particular case three) doublets to form prospective particle tracks.

3.2 Algorithm
The doublet linking algorithm has three phases:

1. For each hit, create a list of doublets this hit is used in

17

https://bugs.freedesktop.org/show_bug.cgi?id=97190

CERN Openlab Summer Student Report 2016

Yl []
r 1
] i
I 1
..................... é.--4‘.------.“'-------------------
] (]
1]
]]
1 1
]]
.................... .*------*--.*--------------------
(]]
]]
(] 1
] []
[]]
...................... T L LLLLLL LT

Figure 10: Doublets between hits on different layers of the detector (in grey) are con-
nected to form complete prospective particle tracks (in teal)

2. For each doublet, create a list of doublets in the next layer that this doublet could
be linked to. Conditions are that the two doublets share a points, have similar RZ-

alignment, and have similar curvature

3. Find all paths through the graph of linked doublets

3.3 Implementation

The first phase is parallelized over all doublets. A grid stride loop iterates over all
doublets. For each doublet, the doublet id is added to the list of doublets the inner point

belongs to.

for(id = tid; id < doubletCount; id += threadCount) {
doublets [innerPointIds|id ||. push back(id);
}

The second phase is parallelized over all doublets again. For each doublet, via the inner
point id, a list of doublets, that use this inner point as an outer point, can be looked
up. All these pairs of doublets are checked whether they are aligned in the radius/depth
plane, and whether they have a similar curvature. If so, the second doublet is added to
the list of doublets the first doublet is connected to. This creates a connection list of the
unidirectional graph spanned by the doublets. In this graph, points on each layer are
only connected with points on the next upper layer.

for(id = tid; id < doubletCount; id += threadCount) {
for (otherDoublet = 0...doubletCounts|[innerPointIds|id ||) {
if (RZ alignment and similar curvature) {
connectedDoublets|[id |.push back(otherDoublet);

}
}
}

18

CERN Openlab Summer Student Report 2016

The third phase enumerates all possible paths from the lowest to the highest layer
through the unidirectional graph. Since connections between points are always towards
points on the next higher level, in case with four layers, each path has exactly four nodes.

The implementation starts out by enumerating all paths with three nodes, or two
doublets. The parallelization is over the doublets in the lowest layer. Each thread then
iterates over the second layer doublets linked to its first layer doublet, and adds all
combinations to the result set. All threads push back into the same result set. The
atomic_inc operation will quickly become a bottleneck here, as all threads need to
increase the same counter for every push back operation. To reduce the contention
on the result sets size counter, each thread reserves the complete amount of space it
needs for its elements in one atomic_add operation. Each thread can easily determine
the amount of elements it will push back. This cuts contention down by the average fan
out of each node.

After that first pass, each further pass creates a new result set of paths with one more
node. In the case with four layers, each paths has only three doublets, and the algorithm
is finished after one further pass. The passes are parallelized over the the paths created
by the previous pass. A thread iterates over all possible 3 doublet continuations of its 2
doublet input path.

for (path = tid; path < pathCount; path += threadCount) {
threadStart = atomic add(newPathCount, connectedDoubletCount|[path]);
for(i=0...connectedDoubletCount) {
threadStart|[i]| = newPath(path, doublet|i]);
}

}

3.4 Results

Figure 12 shows the results of measuring the execution time of the implementation.
While the GPU results were very repeatable, he CPU results fluctuated around 30%.
The plotted results are the median results over several measurements. Both the high
fluctuations, the generally bad results little speedup 8 core CPU versus the 2 core CPUs
might be attributable to a bad implementation of the atomic operations. The timing of
phase 1 also includes both host and device allocation and copy operations, which might
be a reason for the large difference between the two CPU systems.

The GPUs perform much better than the CPUs. However, the newer and more potent
K20 is slower than the older GTX580. The reason for this is the heavy use of atomics.
More concurrent threads mean more contention, which limits parallelization speedup.
Generally, the older Fermi architecture of the GTX580 is narrower in terms of execution
units, but runs at higher clock speeds, and also expends more hardware towards ILP
extraction. The much wider Kepler design normally offsets somewhat simpler and slower
clocked hardware. In this case, the use of atomics reduces the scaling to more threads,
that would have been necessary for the K20 to run at its full speed.

19

CERN Openlab Summer Student Report 2016

25

2
1.5
B Phase 1
B Phase 2
1 Phase 3
) L .
0

lvy 2¢ Nehalem 8c GTX580

Figure 11: Time in ms to execute the three phases of the Path Enumeration Algorithm

4 Conclusions

OpenCL version support OpenCL is held back by the slow adoption of newer versions
of the standard by hardware vendors. OpenCL version 2.0 is 3 years old as of the
time of writing, yet all of the examined platforms only support OpenCL 1.2. Memory
management, built in work-group functions and dynamic parallelism are OpenCL 2.0
features that would have increased implementation and execution speed for the projects
reported about here.

OpenCL device support The initial goals expressed in the project description encom-
passed evaluation of the implemented kernels on a wider variety of parallel devices. A
usable state of support was found only for two device classes, conventional multi core

CPUs and discrete GPUs.

Parallel HEP algorithms The typical algorithms in High Energy Physics, of which a
few are presented in this report, are much harder to adopt for large scale parallelism and
thread coherence required by GPU like devices. It is easy to rewrite an algorithm for
OpenCL in the same parallel style that works on multi core CPUs. However, to extract
the kind of parallelism that the devices that OpenCL targets require, algorithms need to
have threads work collaboratively and data parallel with maximum coherence in data and
control flow between each other. A lot of patterns, that are easy to implement sequentially
or already standard library functions like nth_element, have to be reimplemented in
parallel.

Irregular data sizes require flexible parallelism. A frequent pattern is many threads

20

CERN Openlab Summer Student Report 2016

adding values to a list. This can be solved by either a counting/interleaving/scanning
pattern to find partition positions for each threads values in a compact array or with an
atomic add operation. The first is fast but requires more work initially, the other scales
bad with the parallelism of push backs.

OpenCL on CPUs For the kernels examined in this report, the OpenCL implementa-
tions are usually competitive with the native CPU implementations. This however al-
ready includes multi core parallelization, which comes for free with OpenCL, but is not
always implemented for the CPU versions. It has not been examined whether the CPU
platforms generate vectorized code. The CPUs simpler SIMD instruction set requires
even more control and data coherence than GPUs, and it is not unlikely that the on line
compiler does not generate vector instructions because correctness cannot be guarenteed.

OpenCL on GPUs For classical discrete GPUs, the results sometimes show good speedups
compared to a small single socket CPU, but nowhere near the ratio of their raw potential.
In some cases, a wider, newer GPU (K20) is slower than is predecessor (GTX580), which
hints a lack of scaling with more parallelism. Both the large degree in parallelism and
the thread coherence which are required are probably not sufficiently present. Having
to resort to atomics to to guarantee correctness also hurts scalability. This is an in-
herent problem of HEP algorithms, but also an issue of implementation quality. While
the efforts going into the presented implementations largely center about providing the
aforementioned properties, they are far from the optimal approaches. Much more tuning
and performance engineering needs to be expended here.

21

	OpenCL
	Devices

	k-d Tree
	Usage Scenario of k-d trees
	Construction
	Algorithm
	Implementation

	Search
	Algorithm
	Implementation

	Results
	Excursus: Beignet Bug Report

	Linked Doublet Graph Path Enumeration
	Usage Scenario of the Doublet Path Enumeration
	Algorithm
	Implementation
	Results

	Conclusions

