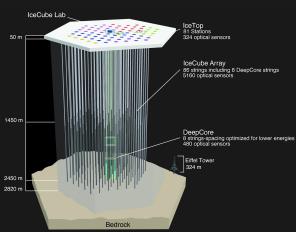


Realtime and Multimessenger Programs using IceCube

Mike Richman

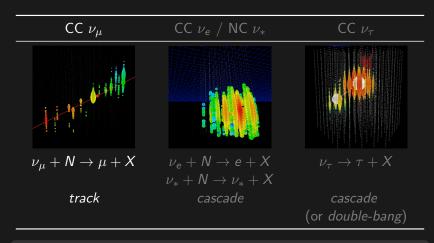
XVIII International Workshop on Neutrino Telescopes March 19, 2019

The IceCube Neutrino Observatory


1.5–2.5 km deep in the South Pole glacier

Initial filtering on-site > 99% uptime

5160 light sensors All-sky visibility

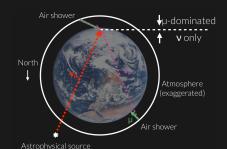

1 km³ instrumented volume

[JINST 12 P03012 (2017)]

Neutrino Detection

interactions and detector signatures

Tracks are far better suited to rapid follow-up.


Event Selection

two approaches to neutrino selection

Drexel NIVERSITY ICECUEE

Classic ν_{μ} strategy:

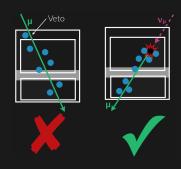
- Downgoing cosmic ray muon tracks outnumber neutrinos by > 10⁵ ×
- Earth acts as neutrino filter
- Well-reconstructed northern tracks must be neutrinos

ightarrow North sky and u_{μ} only

Both methods used to produce neutrino alerts.

Event Selection

two approaches to neutrino selection



Classic ν_{μ} strategy:

- Downgoing cosmic ray muon tracks outnumber neutrinos by $> 10^5 \times$
- Earth acts as neutrino filter
- Well-reconstructed northern tracks must be neutrinos

ightarrow North sky and u_{μ} only

Veto to select starting events:

ightarrow Very low background

Both methods used to produce neutrino alerts.

Data Flow Overview

from IceCube to the community

Alerts & data for improved reconstructions transferred via Iridium RUDICS

Data Flow Overview

from IceCube to the community

Alerts & data for improved reconstructions transferred via Iridium RUDICS

Real-time Processing

Iridium Data Transfer to "The North"

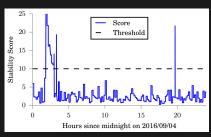
Optical

IceCube ν

Private multiplet streams since 2008

■ Public singlet streams since 2016 67093193_127853.amon

Realtime Detector Performance


Orexel CECUBE

low latency, high duty factor

Goal: maximum info \rightarrow minimum latency

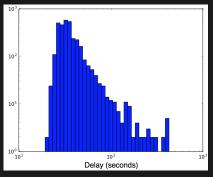
Automated stability monitoring ensures data quality

Trigger and filter rates compared to exp.-weighted moving average for stability score

[Astropart. Phys., 92, 30 (2017)]

Realtime Detector Performance

Drexel DECUBE


low latency, high duty factor

Goal: maximum info \rightarrow minimum latency

Automated stability monitoring ensures data quality

Trigger and filter rates compared to exp.-weighted moving average for stability score

 \sim 33 s median delay from detection to received alert

[Astropart. Phys., 92, 30 (2017)]

Throughgoing Tracks

classic muon neutrino strategy

North: well-reconstructed tracks with $\delta > -5^{\circ}$

South: high E, single muons (try to reject bundles)

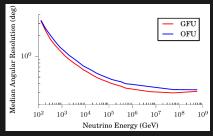
Online system requires < 30 s processing per event

Performance still comparable to offline analyses

[Astropart. Phys., 92, 30 (2017)]

Throughgoing Tracks

classic muon neutrino strategy



North: well-reconstructed tracks with $\delta > -5^{\circ}$

South: high E, single muons (try to reject bundles)

Online system requires < 30 s processing per event

Performance still comparable to offline analyses

[Astropart. Phys., 92, 30 (2017)]

Gamma-ray Followup

Orexel NIVERSITY DEGUBE

targetting neutrino bursts from known source candidates

Search for point-like, time-clustered emission from predefined subset of *Fermi*-LAT's 3FGL: mostly BL Lacs and FSRQs

Considers range of timescales up to 180 days

Northern sky operational since 2012; southern sky added 2015

Catalog favors variable sources visible to MAGIC, VERITAS, HESS

[JINST 11 (2016) no.11, P11009]

Optical and X-ray Followup

Drexel IDEGLIBE

targetting short bursts of neutrinos

Search for northern multiplets within 3.5° and $100 \, s$

Signal candidates include GRBs or supernovae with choked jets

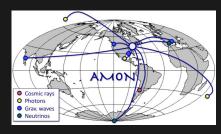
Operational since 2008, with partners PTF, MASTER, ASAS-SN, LCOGT, *Swift*-XRT

Doublets: per-telescope cut depending on angular+temporal separation and telescope FoV

Higher multiplicity: alerts forwarded immediately

Partners through AMON

Astrophysical Multimessenger Observatory Network

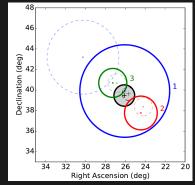


Facilitates sharing as agreed upon by participants

Alerts from AMON coincidence analyses under development

Partners include FACT, VERITAS, MASTER, LMT, ASAS-SN, LCOGT

[Astropart.Phys. 45 (2013) 56-70]


A Rare IceCube Multiplet

three neutrinos within 100s

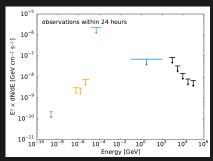
Two doublets sharing an event on 2016-02-17

$$(\Delta T < 100 \,\mathrm{s}, \, \Delta \Psi = 3.6^\circ)$$

[A&A 607, A115 (2017)]

A Rare IceCube Multiplet

three neutrinos within 100 s



Two doublets sharing an event on 2016-02-17

$$(\Delta T < 100 \, \text{s}, \, \Delta \Psi = 3.6^{\circ})$$

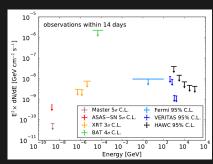
Manual alert at $+22 \, hrs \rightarrow$

- VERITAS, Swift XRT+BAT
- ASAS-SN, LCO, MASTER
- Later: Fermi-LAT, HAWC

[A&A 607, A115 (2017)]

A Rare IceCube Multiplet

three neutrinos within 100 s



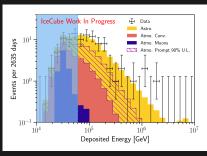
Two doublets sharing an event on 2016-02-17

$$(\Delta T < 100 \, \text{s}, \, \Delta \Psi = 3.6^{\circ})$$

Manual alert at $+22 \, hrs \rightarrow$

- VERITAS, Swift XRT+BAT
- ASAS-SN, LCO, MASTER
- Later: Fermi-LAT, HAWC

[A&A 607, A115 (2017)]


Singlet Alerts

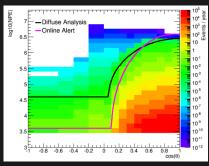
individual astrophysical neutrino candidates

High Energy Starting Events (HESE): first $> 5\sigma$ astrophysical flux observation

Public alerts for EHE or high quality HESE tracks issued to GCN via AMON.

[Neutrino 2018]

Singlet Alerts


individual astrophysical neutrino candidates

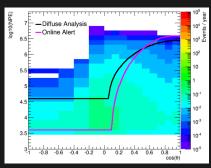
High Energy Starting Events (HESE): first $> 5\sigma$ astrophysical flux observation

Extremely High Energy (EHE): bright throughgoing tracks

Public alerts for EHE or high quality HESE tracks issued to GCN via AMON.

(atmospheric backgrounds) [Astropart. Phys., 92, 30 (2017)]

Singlet Alerts


individual astrophysical neutrino candidates

High Energy Starting Events (HESE): first $> 5\sigma$ astrophysical flux observation

Extremely High Energy (EHE): bright throughgoing tracks

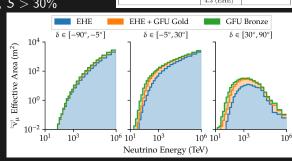
Public alerts for EHE or high quality HESE tracks issued to GCN via AMON.

 $\overline{(E^{-2} \text{ neutrinos})}$ [Astropart. Phys., 92, 30 (2017)]

Singlet Alerts — Upgrade

rexel DECUBE

improved performance, simplified alerts, coming very soon


Unified track selection based on signalness $S = N_{\text{sig}}/(N_{\text{sig}} + N_{\text{bg}})$

Two categories:

- Gold: EHE|GFU|HESE, S > 50%
- Bronze: GFU|HESE, S > 30%

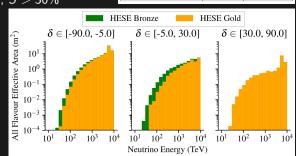
Improved cuts reduce HESE 90% angular errors

counts per year Gold events Bronze Events 8.4 (Total) 6.6 (Total) 5.1 (GFU) 7.6 (GFU) Signal $(E^{-2.19})$ 0.5 (HESE) 0.8 (HESE) 2.1 (EHE) 6.1 (Total) 19.8 (Total) 4.7 (GFU) 18.5 (GFU) Atmospheric Backgrounds 0.4 (HESE) 1.3 (HESE) 1.9 (EHE) 9.9 (Total) 28.2 (Total) 7.8 (GFU) 26.2 (GFU) Observed historical rate 1.1 (HESE) 2.0 (HESE) 4.3 (EHE)

Singlet Alerts — Upgrade

Prexel LECUBE

improved performance, simplified alerts, coming very soon

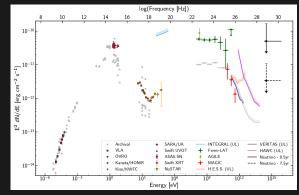

Unified track selection based on signalness $S = N_{\text{sig}}/(N_{\text{sig}} + N_{\text{bg}})$

Two categories:

- Gold: EHE|GFU|HESE, S > 50%
- Bronze: GFU|HESE, S > 30%

Improved cuts reduce HESE 90% angular errors

counts per year Gold events Bronze Events 8.4 (Total) 6.6 (Total) 5.1 (GFU) 7.6 (GFU) Signal $(E^{-2.19})$ 0.5 (HESE) 0.8 (HESE) 2.1 (EHE) 6.1 (Total) 19.8 (Total) 4.7 (GFU) 18.5 (GFU) Atmospheric Backgrounds 0.4 (HESE) 1.3 (HESE) 1.9 (EHE) 9.9 (Total) 28.2 (Total) 7.8 (GFU) 26.2 (GFU) Observed historical rate 1.1 (HESE) 2.0 (HESE) 4.3 (EHE)


Some Interesting Singlet Alerts

Orexel NIVERSITY DECUBE

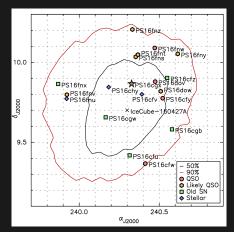
TXS 0506+056 and SN PS16cgx

IC-170922A \rightarrow TXS 0506+056

Detailed spectral measurements within 14 days

[Science 361, eaat1378 (2018)]

Some Interesting Singlet Alerts

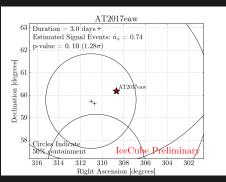

Orexel Priversity ICECUBE

TXS 0506+056 and SN PS16cgx

IC-170922A \rightarrow TXS 0506+056

Detailed spectral measurements within 14 days

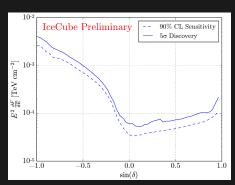
Pan-STARRS1 found SN PS16cgx near IC-160427A (likely Type Ia)


[arXiv:1901.11080 (sub. to A&A)]

O Dr

...what did IceCube see?

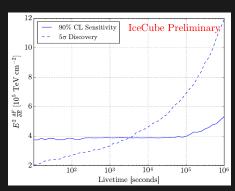
Pre-set transient analysis


[followup of ATel 10372]

... what did IceCube see?

Pre-set transient analysis

Search for neutrinos given direction, duration, and angular extent of "something interesting"


[PoS(ICRC2017)1007]

... what did IceCube see?

Pre-set transient analysis

Search for neutrinos given direction, duration, and angular extent of "something interesting"

[PoS(ICRC2017)1007]

what did IceCube see?

Pre-set transient analysis

Search for neutrinos given direction, duration, and angular extent of "something interesting"

Since mid-2018, issuing ATels, GCN circulars more frequently

GCN CIRCULAR TITLE:

SUBJECT: Search for additional neutrino events from the direction of IceCube-198221A with TceCube

19/02/22 20:57:41 GMT

FROM: Alex Pizzuto at ICECUBE/U of Wisconsin <pizzuto@wisc.edu>

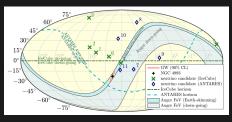
The IceCube Collaboration (http://icecube.wisc.edu/) reports:

IceCube has performed a search for additional track-like muon neutrino events arriving from the direction of IceCube-190221A (https://gcn.gsfc.nasa.gov (gcn3/23918.gcn3) in a time range of 2 days centered on the alert event time (2019-02-20 08:25:40.00 UTC to 2019-02-22 08:25:40.00 UTC) during which IceCube was collecting good quality data. Excluding the event that prompted the alert, 2 additional track-like events are found in spatial coincidence with the 90% PSF containment of IceCube-190221A. We find that these 2 additional events are well described by atmospheric background expectations, with a p-value of 0.08. Accordingly, these data would represent a time-integrated muon-neutrino flux upper limit assuming an E^-2 spectrum (E^2 dN/dE) at the 90% CL of 2.71 x 10^-4 TeV cm^-2 for this observation period.

A subsequent search was performed to include the previous month of data (2019-01-21 08:25:40.00 UTC to 2019-02-22 08:25:40.00 UTC). In this case, we report a p-value of 1.0, consistent with no significant excess of track events, and a corresponding time-integrated muon-neutring flux upper limit assuming an E^-2 spectrum (E^2 dN/dE) at the 90% CL of 3.5 x 10^-4 TeV cm^-2.

The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector operating at the geographic South Pole, Antarctica. The IceCube realtime alert point of contact can be reached at

roc@icecube.wisc.edu<mailto:roc@icecube.wisc.edu>

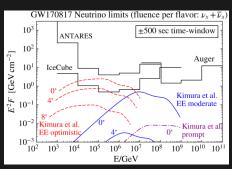

[GCN Circular 23926]

Gravitational Waves

working up to LIGO+Virgo O3 run

So far, simple all-sky $\pm 500 \, \text{s}$ search upon GW observations

[ApJL 850 (2017) no.2, L35]


Gravitational Waves

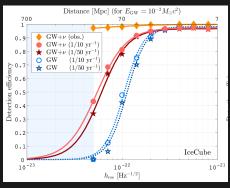
working up to LIGO+Virgo O3 run

So far, simple all-sky $\pm 500 \, \text{s}$ search upon GW observations (ad-hoc detailed study for GW170817 BNS merger)

New, more sensitive "GW as spatial prior" analysis ready for O3 rapid followup

[ApJL 850 (2017) no.2, L35]

Gravitational Waves


working up to LIGO+Virgo O3 run

So far, simple all-sky $\pm 500 \, s$ search upon GW observations (ad-hoc detailed study for GW170817 BNS merger)

New, more sensitive "GW as spatial prior" analysis ready for O3 rapid followup

Related method for lowering GW threshold also under development

[ApJ 870 (2019) no.2, 134]

Summary

IceCube is working closely with EM and GW partners to maximize opportunities for detailed time-dependent studies

Ongoing work seeks to improve alert and followup systems in response to community needs — talk to us!