Phenomenology of three-neutrino masses and mixings

Thomas Schwetz

Int. Workshop on Neutrino Telescopes — 18-22 March 2019, Venice, Italy

www.kit.edu

The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m₀
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$
- 3 phases (1 Dirac, 2 Majorana)

The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m_0
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$

neutrino oscillations

• 3 phases (| Dirac, 2 Majorana)

The 3-flavour paradigm

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m_0
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$
- 3 phases (| Dirac, 2 Majorana)

- each parameter determined by several (classes of) experiments
- especially true for not-so-well determined parameters (θ₂₃, MO, Dirac-phase)

• interplay of different data sets \rightarrow global analyses

I. Esteban, C. Gonzalez-Garcia, A. Hernandez, M. Maltoni, T. Schwetz, 1811.05487, JHEP 19

- data available till Oct 2018 (incl. Neutrino 2018 releases)
- T2K: I4.93e20 pot neutrino, II.24e20 pot antineutrino
- NOvA:
 8.85e20 pot neutrino, 6.91e20 pot antineutrino
- full list of data see <u>http://www.nu-fit.org/sites/default/files/v40.release-notes.pdf</u>

NuFit 4.0 (2018)

NuFit 4.0 (2018)

Solar parameters

- using reconstructed fluxes from Daya-Bay in KamLAND analysis
- tension between solar and KamLAND remains at ~2σ
- robust wrt to solar models (abundances)
- driven by spectrum upturn and day/night data from SK

Atmospheric parameters

not-so-well determined

- preference for second octant of θ_{23} , bf at $\sin^2\theta_{23} = 0.58$ $\sin^2\theta_{23} < 0.5$ disfavoured with $\Delta \chi^2 \approx 4.4$ (6.0) without (with) SK atm
- NO preferred over IO by $\Delta \chi^2 = 4.7$ (9.3) without (with) SK atm
- CP conservation allowed at $\Delta \chi^2 = 1.8$, bf at $\delta = 217^{\circ}$

LBL disappearance results

LBL appearance data

 $N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2 (1+2oA) - C' \sin \delta_{\rm CP} (1+oA) \right]$

 $N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2 (1 - 2oA) + C' \sin \delta_{\rm CP} (1 - oA) \right]$

following Elevant, Schwetz, 15

$$C' \approx 0.28$$
$$o \equiv \operatorname{sgn}(\Delta m_{3\ell}^2)$$
$$A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \operatorname{T2K} \\ 0.1 & \operatorname{NOvA} \end{cases}$$

	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$
\mathcal{N}	40	3.8	11	34	11
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8

- Both neutrino and anti-neutrino events are enhanced by increasing s_{23}^2 .
- Values of $\sin \delta_{CP} \simeq +1 (-1)$ suppress (increase) neutrino events, and have the opposite effect for anti-neutrino events.
- For NO (IO) neutrino events are enhanced (suppressed) due to the matter effect, whereas anti-neutrino events are suppressed (enhanced).
- For NO (IO) the matter effect increases (decreases) the impact of δ_{CP} for neutrinos, while the opposite happens for anti-neutrinos.

θ_{23} octant

$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\mathrm{CP}}(1+oA) \right] \qquad \qquad C' \approx 0.28$$

$$o \equiv \mathrm{sgn}(\Delta m_{3\ell}^2)$$

$$N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2(1-2oA) + C' \sin \delta_{\mathrm{CP}}(1-oA) \right] \qquad \qquad A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \mathrm{T2K} \\ 0.1 & \mathrm{NovA} \end{cases}$$

	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$
\mathcal{N}	40	3.8	11	34	11
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8

CP phase

$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\mathrm{CP}}(1+oA) \right] \qquad \qquad C' \approx 0.28$$

$$o \equiv \mathrm{sgn}(\Delta m_{3\ell}^2)$$

$$N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2(1-2oA) + C' \sin \delta_{\mathrm{CP}}(1-oA) \right] \qquad \qquad A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \mathrm{T2K} \\ 0.1 & \mathrm{NOvA} \end{cases}$$

CP phase

-	Normal Ordering (best fit)		Inverted Orde	Inverted Ordering ($\Delta \chi^2 = 9.3$)		
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$		

Leptonic CP violation

Jarlskog invariant:

 $J = |\text{Im}(U_{\alpha 1}U_{\alpha 2}^{*}U_{\beta 1}^{*}U_{\beta 2})| = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^{2}\sin\delta \equiv J^{\max}\sin\delta$

Leptonic CP violation

Jarlskog invariant:

 $J = |\text{Im}(U_{\alpha 1}U_{\alpha 2}^{*}U_{\beta 1}^{*}U_{\beta 2})| = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^{2}\sin\delta \equiv J^{\max}\sin\delta$

Mass ordering

$$N_{\nu_e} \approx \mathcal{N}_{\nu} \left[2s_{23}^2(1+2oA) - C' \sin \delta_{\mathrm{CP}}(1+oA) \right] \qquad \qquad C' \approx 0.28$$

$$o \equiv \mathrm{sgn}(\Delta m_{3\ell}^2)$$

$$N_{\bar{\nu}_e} \approx \mathcal{N}_{\bar{\nu}} \left[2s_{23}^2(1-2oA) + C' \sin \delta_{\mathrm{CP}}(1-oA) \right] \qquad \qquad A \equiv \left| \frac{2EV}{\Delta m_{3\ell}^2} \right| \approx \begin{cases} 0.05 & \mathrm{T2K} \\ 0.1 & \mathrm{NOvA} \end{cases}$$

	T2K CCQE (ν)	T2K CC1 π (ν)	T2K CCQE $(\bar{\nu})$	NOvA (ν)	NOvA $(\bar{\nu})$
\mathcal{N}	40	3.8	11	34	11
$N_{\rm obs} - N_{\rm bck}$	61.4	13.6	6.1	43.6	13.8

no reactor data, but θ_{13} prior added

T2K: $\Delta \chi^2(IO) \approx 4$ adding NOvA: $\Delta \chi^2(IO) \approx 2$

 v_e and v_{μ} disappearance depend on slightly different effective mass-squared differences

$$\Delta m_{ee}^2 = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

$$\Delta m_{\mu\mu}^2 = \sin^2 \theta_{12} \Delta m_{31}^2 + \cos^2 \theta_{12} \Delta m_{32}^2 + \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m_{21}^2$$

Nunokawa, Parke, Zukanovich, 05, 06

Mass ordering

no reactor data, but θ_{13} prior added

T2K: $\Delta \chi^2(IO) \approx 4$ adding NOvA: $\Delta \chi^2(IO) \approx 2$

adding reactors: $\Delta \chi^2(IO) \approx 4$

V_e and V_{μ} disapp. complementarity in future

T. Schwetz @ Neutrino Telescopes, Venice, 19 March 2019

•
$$\chi^2(IO)$$
 - $\chi^2(NO)$ = 4.3

Mass ordering incl. atmospherics

-	Normal Ord	ering (best fit)	Inverted Order	ring $(\Delta \chi^2 = 9.3)$
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\delta_{ m CP}/^{\circ}$	217_{-28}^{+40}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$

Atmospheric Neutrino Oscillation Analysis With Improved Event Reconstruction in Super-Kamiokande IV, 1901.03230

• $\chi^2_{(IO)}$ - $\chi^2_{(NO)}$ = 2.45 (compared to 4.3 from SK I-IV 2017)

 effective exposure 254 kt yr only 23% smaller (32% larger fiducial volume) (compared to 328 kt yr of SK I-IV 2017)

Absolute neutrino mass observables

Absolute neutrino mass observables

assumes standard 3-flavour & standard cosmology

Hannestad, Schwetz, 1606.04691

Hannestad, Schwetz, 1606.04691

"Strong evidence" for NO claimed in Simpson et al. 1703.03425 \rightarrow be aware of Bayesian priors [TS et al. 1703.04585]

Model A			Model B			
Parameter	Prior	Range	Parameter	Prior	Range	
m_1/eV	linear	0 - 1	$m_{ m lightest}/{ m eV}$	linear	0 - 1	
	log	$10^{-5} - 1$		log	$10^{-5} - 1$	
m_2/eV	linear	0 - 1	$\Delta m^2_{21}/{ m eV^2}$	$\Delta m^2_{21}/{ m eV^2}$ linear	$5 \times 10^{-5} - 10^{-4}$	
	log	$10^{-5} - 1$			5×10 10	
$m_3/{ m eV}$	linear	0 - 1	$ \Delta m^2_{31} /{ m eV^2}$	² linear	$1.5 \times 10^{-3} - 3.5 \times 10^{-3}$	
	log	$10^{-5} - 1$			1.0 × 10 - 0.0 × 10	

Archidiacono, de Salas, Gariazzo, Mena, Ternes, Tortola, 1801.04946

 assuming a log prior in the 3 masses prefers strongly NO (just from oscillation data!)

Hannestad, Schwetz, 1606.04691

minimal values:
$$\Sigma = \begin{cases} 58.5 \pm 0.48 \text{ meV} & (\text{NO}) \\ 98.6 \pm 0.85 \text{ meV} & (\text{IO}) \end{cases}$$
 $(m_0 = 0).$

simulated future data: 2 yrs of EUCLID data, available ~2023-24

 need accuracy better than 0.02 eV to exclude 0.1 eV against 0.06 eV at 2σ

 this would imply a 3σ evidence for non-zero neutrino mass (for Sum = 0.06 eV)

Summary

• octant of $\theta_{23:}$

preference for second octant, bf at $\sin^2\theta_{23} = 0.58$ $\sin^2\theta_{23} < 0.5$ disfavoured with $\Delta \chi^2 \approx 4.4$ (6.0) without (with) SK atm

• mass ordering:

NO preferred by $\Delta \chi^2 = 4.7$ (9.3) without (with) SK atm

SK significance goes down with "improved" analysis global fit (incl. IceCube & JUNO) may be the fastest track towards MO

• CP phase:

CP conservation allowed at $\Delta \chi^2 = 1.8$, bf at $\delta = 217^{\circ}$

(slight tension between T2K and NOvA)

Summary

• octant of $\theta_{23:}$

preference for second octant, bf at $\sin^2\theta_{23} = 0.58$ $\sin^2\theta_{23} < 0.5$ disfavoured with $\Delta \chi^2 \approx 4.4$ (6.0) without (with) SK atm

• mass ordering:

NO preferred by $\Delta \chi^2 = 4.7$ (9.3) without (with) SK atm

SK significance goes down with "improved" analysis global fit (incl. IceCube & JUNO) may be the fastest track towards MO

• CP phase:

CP conservation allowed at $\Delta \chi^2 = 1.8$, bf at $\delta = 217^{\circ}$

(slight tension between T2K and NOvA)

Thank you for your attention!

supplementary slides

NuFit 4.0 (2018)

		Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 4.7)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	
	$ heta_{12}/^\circ$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82_{-0.76}^{+0.78}$	$31.61 \rightarrow 36.27$	
	$\sin^2 \theta_{23}$	$0.580\substack{+0.017\\-0.021}$	$0.418 \rightarrow 0.627$	$0.584^{+0.016}_{-0.020}$	$0.423 \rightarrow 0.629$	
	$ heta_{23}/^{\circ}$	$49.6^{+1.0}_{-1.2}$	$40.3 \rightarrow 52.4$	$49.8^{+1.0}_{-1.1}$	$40.6 \rightarrow 52.5$	
-	$\sin^2 \theta_{13}$	$0.02241\substack{+0.00065\\-0.00065}$	$0.02045 \rightarrow 0.02439$	$0.02264\substack{+0.00066\\-0.00066}$	$0.02068 \rightarrow 0.02463$	
atn	$ heta_{13}/^\circ$	$8.61\substack{+0.13\\-0.13}$	$8.22 \rightarrow 8.99$	$8.65_{-0.13}^{+0.13}$	$8.27 \rightarrow 9.03$	
tt SK-	$\delta_{ m CP}/^{\circ}$	215^{+40}_{-29}	$125 \rightarrow 392$	284^{+27}_{-29}	$196 \rightarrow 360$	
withou	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	$7.39_{-0.20}^{+0.21}$	$6.79 \rightarrow 8.01$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.032}$	$+2.427 \rightarrow +2.625$	$-2.512^{+0.034}_{-0.032}$	$-2.611 \rightarrow -2.412$	
		Normal Ore	dering (best fit)	Inverted Ordering ($\Delta \chi^2 = 9.3$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	
	$ heta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$	
	$\sin^2 heta_{23}$	$0.582\substack{+0.015\\-0.019}$	$0.428 \rightarrow 0.624$	$0.582\substack{+0.015\\-0.018}$	$0.433 \rightarrow 0.623$	
	$ heta_{23}/^{\circ}$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	$49.7^{+0.9}_{-1.0}$	$41.2 \rightarrow 52.1$	
_	$\sin^2 \theta_{13}$	$0.02240^{+0.00065}_{-0.00066}$	$0.02044 \to 0.02437$	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \to 0.02461$	
-atm	$ heta_{13}/^\circ$	$8.61_{-0.13}^{+0.12}$	$8.22 \rightarrow 8.98$	$8.65_{-0.13}^{+0.12}$	$8.27 \rightarrow 9.03$	
th SK	$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \to 351$	
wi	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	
	$\Delta m_{2\ell}^2$. 0. 401 0. 600	$2 = 10 \pm 0.034$	0.000 0.110	

MO sensitivity of existing experiments

http://www-nova.fnal.gov/plots_and_figures/plots_and_figures.html

T. Schwetz @ Neutrino Telescopes, Venice, 19 March 2019

Atmospheric Neutrino Oscillation Analysis With Improved Event Reconstruction in Super-Kamiokande IV, 1901.03230

θ_{13} constrained — expected sensitivity

